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Abstract: In this paper, we established a traveling wave solution by using the proposed Tan-Cot function 
algorithm for nonlinear partial differential equations. The method is used to obtain new solitary wave solutions 

for various type of nonlinear partial differential equations such as, the (1+1)-dimensional Ito equation, 

Pochhammer-Chree (PC) equation, MIKP equation, Konopelchenko and Dubrovsky (KD) system of equations 

which are the important Soliton equations. Proposed method has been successfully implemented to establish 

new solitary wave solutions for the nonlinear PDEs. 
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I. INTRODUCTION 
     The exact solutions of nonlinear partial differential equations (NLPDEs) play an important role in the study 

of many physical phenomena. With the help of exact solutions, when they exist, the mechanism of complicated 

physical phenomena and dynamical processes modeled by these NLPDEs can be better understood. They can 

also help to analyze the stability of these solutions and to check numerical analysis for these NLPDEs. Large 

varieties of physical, chemical, and biological phenomena are governed by nonlinear partial differential 

equations. One of the most exciting advances of nonlinear science and theoretical physics has been the 

development of methods to look for exact solutions of nonlinear partial differential equations [1]. Exact 

solutions to nonlinear partial differential equations play an important role in nonlinear science, especially in 

nonlinear physical science since they can provide much physical information and more insight into the physical 

aspects of the problem and thus lead to further applications. Nonlinear wave phenomena of dispersion, 

dissipation, diffusion, reaction and convection are very important in nonlinear wave equations. In recent years, 
quite a few methods for obtaining explicit traveling and solitary wave solutions of nonlinear evolution equations 

have been proposed. A variety of powerful methods, such as, tanh-sech method [2], extended tanh method [3], 

hyperbolic function method [4], Jacobi elliptic function expansion method [5], F-expansion method [6], and the 

First Integral method [7]. The sine-cosine method [8] has been used to solve different types of nonlinear systems 

of PDEs. 

    In this paper, we applied the Tan-Cot method to solve the (1+1)-dimensional Ito equation, Pochhammer-

Chree (PC) equation, MIKP equation, Konopelchenko and Dubrovsky KD) system of equations, given 

respectively by: 

 

utt + uxxxt + 3 2ux ut + uuxt + 3uxx  ut   dx
x

−∞
= 0                                                                                          (1) 

 utt − uttxx −  (a u − b  u3)xx = 0                                                                                                                                       (2) 
𝑢𝑡𝑥 + 2𝑢  𝑢𝑥

2 +  𝑢2  𝑢𝑥𝑥 + 𝑎 𝑢𝑥𝑥𝑥𝑥 + 𝑏 𝑢𝑦𝑦 = 0                                                                                                  (3) 

𝑢𝑡 − 6 𝑏 𝑢 𝑢𝑥 −  𝑢𝑥𝑥𝑥 +
3

2
𝑎2  𝑢2  𝑢𝑥 − 3 𝑣𝑦 + 3𝑎 𝑢𝑥  𝑣 = 0        ,  𝑢𝑦 = 𝑣𝑥                                                           (4) 

 

II. THE TAN-COT FUNCTION METHOD 
Consider the nonlinear partial differential equation in the form [9] 

𝐹 𝑢,𝑢𝑡 ,𝑢𝑥 ,𝑢𝑦 ,𝑢𝑡𝑡 ,𝑢𝑥𝑥 ,𝑢𝑥𝑦 , 𝑢𝑦𝑦 ,………… = 0                                                                                                  (5)                       

 where u(x, y, t) is a traveling wave solution of nonlinear partial differential equation Eq. (5). We use the 

transformations, 

 𝑢 𝑥, 𝑦, 𝑡 = 𝑓 𝜉                                                                                                                                                    (6) 

 where 𝜉 = 𝑘𝑥 + 𝛿𝑦 − 𝜆𝑡  This enables us to use the following changes:  

 
𝜕

𝜕𝑡
 .  = −𝜆

𝑑

𝑑𝜉
 .    ,  

𝜕

𝜕𝑥
 .  = 𝑘

𝑑

𝑑𝜉
 .   , 

𝜕

𝜕𝑦
 .  = 𝛿

𝑑

𝑑𝜉
 .                                                                                        (7)  

Using Eq. (7) to transfer the nonlinear partial differential equation Eq. (5) to nonlinear ordinary differential 

equation  

𝑄 𝑓,𝑓 ′ ,𝑓′′ , 𝑓′′′ ,…………… .  = 0                                                                                                                          (8)  
The ordinary differential equation (8) is then integrated as long as all terms contain derivatives, where we 

neglect the integration constants. The solutions of many nonlinear equations can be expressed in the form [9]:  
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𝑓 𝜉 = 𝛼 𝑡𝑎𝑛𝛽  𝜇𝜉    ,                𝜉 ≤
𝜋

2𝜇
                                                                                  

or in the form                                                                                                                                                         (9) 

𝑓 𝜉 = 𝛼 𝑐𝑜𝑡𝛽  𝜇𝜉    ,                𝜉 ≤
𝜋

2𝜇
                                                                                

Where 𝛼 , μ, and β are parameters to be determined, We use 

 𝑓 𝜉 = 𝛼 𝑡𝑎𝑛𝛽  𝜇𝜉                    

𝑓′ = 𝛼 𝛽 𝜇  [ 𝑡𝑎𝑛𝛽 − 1 𝜇𝜉  +   𝑡𝑎𝑛𝛽 + 1 𝜇𝜉 ]                                                                                                (10) 

𝑓′′ = 𝛼 𝛽𝜇2[(𝛽 − 1)  𝑡𝑎𝑛𝛽 − 2 𝜇𝜉 +  2𝛽  𝑡𝑎𝑛𝛽  𝜇𝜉 + (𝛽 + 1) 𝑡𝑎𝑛𝛽 + 2 𝜇𝜉  ]   

𝑓′′′ = 𝛽𝜇3𝛼[ 𝛽 − 1  𝛽 − 2  𝑡𝑎𝑛𝛽 − 3 𝜇𝜉 +   3𝛽2 − 3𝛽 + 2  𝑡𝑎𝑛𝛽 − 1  𝜇𝜉 +  𝛽 + 1  𝛽 + 2 𝑡𝑎𝑛𝛽 𝜇𝜉   +

 2𝛽2   𝑡𝑎𝑛𝛽 + 1  𝜇𝜉 + (𝛽 + 1)(𝛽 + 2) 𝑡𝑎𝑛𝛽 + 2 𝜇𝜉  ]  
and their derivative. Or use  

f ξ = α cotβ μξ                    

𝑓′ = − α β μ   [  cotβ− 1 μξ +   cotβ + 1 μξ ]                                                                                                                           

𝑓′′ = α βμ2[   β − 1   cotβ − 2 μξ +  2β cotβ μξ + (β + 1)  cotβ + 2 μξ ]                                                 (11) 
and so on. We substitute Eq.(10) or Eq.(11) into the reduced equation (8), balance the terms of the tan functions 

when Eq. (10) are used, or balance the terms of the cot functions when Eq. (11) are used, and solve the resulting 

system of algebraic equations by using computerized symbolic packages. We next collect all terms with the 

same power in  𝑡𝑎𝑛𝑘 𝜇𝜉  or  𝑐𝑜𝑡𝑘 𝜇𝜉  and set to zero their coefficients to get a system of algebraic equations 

among the unknown's  𝛼 , μ and β, and solve the subsequent system.    

              

III. Applications 
In this section we apply the Tan-Cot method to different nonlinear partial differential equations:  

1. The (1+1)-dimensional Ito equation 

Consider The (1+1)-dimensional Ito equation [10]: 

utt + uxxxt + 3 2ux ut + uuxt + 3uxx  ut   dx
x

−∞
= 0                                                                                        (12) 

Assume: 

u x, t = vx (x, t)                                                                                                                                                  (13) 

Then Eq.(12) can be written as: 

vttx + vxxxxt + 3 2vxx vxt + vx  vxxt  + 3vxxx vt = 0                                                                                           (14) 

we introduce the transformations 

ξ = kx − λt                                                                                                                                                          (15) 

where  k, and λ  are real constants. Equation (14) becomes 

λ v′′′ −  k3v(5) − 3 k2  [v′2]′′ = 0                                                                                                                         (16) 
Integrating Eq. (16) twice with zero constants, we get 

λ v′ −  k3v′′′ − 3 k2 v ′ 2 = 0                                                                                                                              (17) 
Let 

w(ξ) = v′(ξ)                                                                                                                                                        (18) 

Eq.(18) becomes 

λ w −  k3w′′ − 3 k2w2 = 0                                                                                                                                (19) 
 Applying the tan function method as in Eq.(10), then Eq.(19) becomes  

λ α tanβ μξ − k3α βμ2[(β − 1)  tanβ − 2 μξ +  2β  tanβ  μξ + (β + 1) tanβ + 2 μξ  ] −
3k2α2  tan2β μξ = 0                                                                                                                                          (20) 
Then Eq.(20) can written as 

λ tanβ μξ − k3  βμ2[(β − 1)  tanβ − 2 μξ +  2β  tanβ  μξ + (β + 1) tanβ + 2 μξ  ] − 3k2α tan2β μξ = 0                                                                                                                                          
                                                                                                                                                                             (21) 

Balancing the exponents  β + 2 and 2β then 

β + 2 = 2β  and we get  β = 2 

Substitute β = 2 in Eq. (21) to get the value of :  

λ = 8k3  μ2 
,  α = −2k   μ2  

 
Then : 

w(ξ) = −2k   μ2  
 tan2 μξ                                                                                                                                  (22) 

Integrate Eq.(22) for ξ to get:  

v(x, t) = −2k  μ [tan μ kx − λt  − μ(kx − λt)]                                                                                            (23)  

From Eq.(23) we get: 

u(x, t) = vx = −2k2 
μ2  tan2 μk x − 8k2μ2t                                                                                                (24)  
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For μ = k = 1,  Eq.(24) becomes: 

u(x, t) = −2 tan2 x − 8 t                                                                                                                                  (25) 

𝑢 𝑥, 𝑡  in (25) is represented in  Figure (1) for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 . 

 
Figure (1) represent  𝑢 𝑥, 𝑡  in (25) for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 . 

 

2. Pochhammer-Chree (PC) equation 

Consider the Pochhammer-Chree (PC) equation [11]   

 𝑢𝑡𝑡 − 𝑢𝑡𝑡𝑥𝑥 −  (𝑎 𝑢 − 𝑏  𝑢3)𝑥𝑥 = 0                                                                                                                    (26) 

We introduce the transformation  𝜉 = (𝑘𝑥 − 𝜆𝑡) , where k, and 𝜆  are real constants. Equation (26) transforms 

to the ODE: 

𝜆2  𝑢′′ − 𝜆2𝑘2  𝑢(4) − 𝑘2  (𝑎 𝑢 − 𝑏  𝑢3) 
′′

= 0                                                                                                       (27) 
Integrating Eq.(27) twice with zero constant to get the following ordinary differential equation: 

𝜆2  𝑢 − 𝜆2𝑘2  𝑢′′ − 𝑘2  (𝑎 𝑢 − 𝑏  𝑢3) = 0                                                                                                            (28)  
Seeking the solution in Eq.(11) 

𝜆2  α cotβ μξ − 𝜆2𝑘2α βμ2[   β − 1   cotβ− 2 μξ +  2β cotβ μξ + (β + 1)  cotβ + 2 μξ ] −
𝑘2𝑎 α cotβ μξ + 𝑘2  𝑏  α3  cot3β μξ  = 0                                                                                                         (29) 

Equating the exponents and the coefficients of each pair of the cot functions we find the following algebraic 

system: 

3β = β + 2  → β = 1                                                                                                                                          (30) 
Substituting Eq. (30) into Eq. (29) to get:  

𝜆2    cot μξ − 2𝜆2𝑘2    μ2[    cot  μξ +    cot3 μξ ] − 𝑘2𝑎   cot  μξ + 𝑘2  𝑏  α2  cot3  μξ  = 0                     (31) 

Equating the exponents and the coefficients of each pair of the cot function, we obtain a system of algebraic 

equations: 

cot  μξ    ∶ 𝜆2 − 2 𝜆2𝑘2    μ2 − 𝑘2𝑎  = 0  

cot3 μξ   ∶  −2𝜆2𝑘2    μ2 + 𝑘2  𝑏  α2   = 0                                                                                                          (32) 
By solving the algebraic system (32), we get, 

 𝜆 =  𝑘 
𝑎

 1−2 𝑘2  μ2 
   ,  α  =    

2𝑎

𝑏   1−2 𝑘2  μ2 

 

 k μ                                                                                                (33) 

Then by substituting Eq.(33) into Eq.(11), the exact soliton solution of equation (26) can be written in the form 

𝑢 𝑥, 𝑡 =    
2𝑎

𝑏  1−2 𝑘2  μ2 

 

 k μ 
 

𝑐𝑜𝑡  𝜇𝑘 (𝑥 −  
𝑎

 1−2 𝑘2  μ2 
𝑡)      ,     0 < 𝜇𝑘 (𝑥 −  

𝑎

 1−2 𝑘2  μ2 
𝑡) < 𝜋                 (34) 

 For , 𝜇 =  𝑘 = 휀  = 1  , then (34) becomes: 

𝑢 𝑥, 𝑡 =    
−2𝑎

𝑏  

 

  𝑐𝑜𝑡   (𝑥 −  −𝑎 𝑡)   , 𝑎 < 0 , 𝑏 > 0                                                                                    (35) 

For , 𝑎 = −1 , 𝑏 = 1 , then (35) becomes: 

𝑢 𝑥, 𝑡 =    2
 
  cot(𝑥 −  𝑡)                                                                                                                                (36) 

𝑢 𝑥, 𝑡  in (36) is represented in  Figure (2) for −10 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 . 
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Figure (2). Represents  𝑢 𝑥, 𝑡   in (36) for 0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 . 

 

 3. MIKP equation 
Consider the MIKP equation [12]          

𝑢𝑡𝑥 + 2𝑢  𝑢𝑥
2 +  𝑢2  𝑢𝑥𝑥 + 𝑎 𝑢𝑥𝑥𝑥𝑥 + 𝑏 𝑢𝑦𝑦 = 0                                                                                                (37)  

       Let us now solve Eq.(37) by the proposed method. We introduce the transformation 

𝑢 𝑥,𝑦, 𝑡 = 𝑈(𝜉) ,      𝜉 = 𝑘𝑥 + 𝑙𝑦 − 𝜆𝑡                                                                                                            (38)  

, where k, and 𝜆  are real constants. Equation (38) transforms to the ODE: 

−𝑘𝜆 𝑢′′ + 𝑘2[ 2  𝑢 𝑢′2 +   𝑢2  𝑢′′] + 𝑎 𝑘4  𝑢′′′′ + 𝑏 𝑙2  𝑢′′ = 0                                                                               (39) 
Eq.(39) can be written as 

−𝑘𝜆 𝑢′′ +
𝑘2

3
[ 𝑢3]′′ + 𝑎 𝑘4  𝑢′′′′ + 𝑏 𝑙2  𝑢′′ = 0                                                                                                     (40)  

Integrating (40) once with zero constant to get the following ordinary differential equation: 

(𝑏 𝑙2  –  𝑘𝜆 ) 𝑢 +
𝑘2

3
 𝑢3   + 𝑎 𝑘4  𝑢′′ = 0                                                                                                               (41)  

Seeking the solution in (11)          

  𝑏 𝑙2  –  𝑘𝜆  α cotβ μξ +
𝑘2

3
α3  cot3β μξ  + 𝑎 𝑘4   α βμ2[ β− 1   cotβ − 2 μξ +  2β cotβ μξ +

 β + 1  cotβ + 2 μξ ]  = 0                                                                                                                                        

(42) 

Equating the exponents and the coefficients of each pair of the cot functions we find the following algebraic 

system: 

3β = β + 2  → β = 1         

 𝑏 𝑙2  –  𝑘𝜆   cot  μξ +
𝑘2

3
α2  cot3  μξ  + 2 𝑎 𝑘4    μ2[     cot  μξ +   cot3 μξ ]  = 0                                      (43)                                                                                                

cot3 μξ    ∶   
𝑘2

3
α2 + 2 𝑎 𝑘4     μ2 = 0  

cot1 μξ   ∶   𝑏 𝑙2  –  𝑘𝜆  + 2 𝑎 𝑘4    μ2 = 0                                                                                                        (44) 

By solving the algebraic system (44), we get, 

 α =  
i

k

 
 3 𝜆𝑘 − 𝑏 𝑙2   , 𝜇 =   

𝜆𝑘−𝑏  𝑙2

2 𝑎  𝑘4                                                                                                                 (45)                                            

Then by substituting Eq. (45) into Eq. (11) , the exact soliton solution of equation (37) can be written in the 

form 

𝑢 𝑥, 𝑡 =  
i

k

 
 3 𝜆𝑘 − 𝑏 𝑙2   𝑐𝑜𝑡    

𝜆𝑘−𝑏  𝑙2

2 𝑎  𝑘4   𝑘𝑥 + 𝑙𝑦 − 𝜆𝑡     ,0 <  
𝜆𝑘−𝑏  𝑙2

2 𝑎  𝑘4   𝑘𝑥 + 𝑙𝑦 − 𝜆𝑡 < 𝜋                  (46) 

For 𝜆 = 𝑘 = 𝑙 = 1 , 𝑎 = 𝑏 = 1/2  Eq.(46) becomes 

𝑢 𝑥, 𝑡 =  i   
3

2
  𝑐𝑜𝑡    

1

2
  𝑥 + 𝑦 − 𝑡                                                                                                                (47) 

𝑢 𝑥, 𝑡  in (47) is represented in figure (3) for 0 ≤ 𝑥 ≤ 10 and 𝑦 = 1, 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 1 . 
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Figure (3). Represents  𝑢 𝑥, 𝑡  in (46)  for 0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑡 ≤ 1 . 

 

4. Konopelchenko-Dubrovsky (KD) equation 
                Konopelchenko and Dubrovsky (1984) presented the Konopelchenko-Dubrovsky (KD) equation[13] 

𝑢𝑡 − 6 𝑏 𝑢 𝑢𝑥 −  𝑢𝑥𝑥𝑥 +
3

2
𝑎2  𝑢2  𝑢𝑥 − 3 𝑣𝑦 + 3𝑎 𝑢𝑥  𝑣 = 0                                                                               (48) 

𝑢𝑦 = 𝑣𝑥                                                                                                                                                                (49) 

where a and b are real parameters. Equations (48), and (49) is a new nonlinear integrable evolution equation on 

two spatial dimensions and one temporal. This equation was investigated by the inverse scattering transform 

method. The F-expansion method is also used in Wang and Zhang [14] to investigate the KD equation.  

To solve Eqs.(48), and (49) by the proposed method. We introduce the transformation  𝜉 = (𝑘𝑥 + 𝑙𝑦 − 𝜆𝑡) , 

where 𝑘, 𝑙, 𝑎𝑛𝑑 𝜆  are real constants. Equation (48) transforms to the ODE: 

−𝜆 𝑢′ − 6 𝑘 𝑏 𝑢 𝑢′ − 𝑘3  𝑢′′′  +
3

2
𝑘 𝑎2  𝑢2  𝑢′ − 3 𝑙 𝑣′ + 3𝑘𝑎 𝑢′  𝑣 = 0                                                              (50) 

And Eq.(49) transforms to: 

𝑣′ =
𝑙 𝑢 ′

𝑘  
                                                                                                                                                               (51) 

Integrating Eq.(51) with zero constant  

𝑣 =
𝑙

𝑘
 𝑢                                                                                                                                                                (52) 

Substitute Eqs.(51) and (52) in Eq.(50) to get 

 −𝜆𝑘 − 3 𝑙2  𝑢′
 − 𝑘3  𝑢′′′ −

3

2
𝑘 2 𝑘 𝑏 −  𝑙 𝑎 [ 𝑢2]′ +

1

2
𝑘2  𝑎2   𝑢3 ′    = 0                                                       (53) 

Integrating Eq(53) once with zero constant to get  

− 𝜆𝑘 + 3 𝑙2  𝑢 − 𝑘3  𝑢′′ −
3

2
𝑘 2 𝑘 𝑏 −  𝑙 𝑎  𝑢2 +

1

2
𝑘2  𝑎2  𝑢3   = 0                                                                   (54) 

Seeking the solution in (10) 

− 𝜆𝑘 + 3 𝑙2  𝛼 𝑡𝑎𝑛𝛽 𝜇𝜉  
 
− 𝑘3𝛼 𝛽𝜇2[(𝛽 − 1)  𝑡𝑎𝑛𝛽 − 2 𝜇𝜉 +  2𝛽  𝑡𝑎𝑛𝛽  𝜇𝜉 + (𝛽 +

1) 𝑡𝑎𝑛𝛽 + 2 𝜇𝜉  ]   −
3

2
𝑘 2 𝑘 𝑏 −  𝑙 𝑎 𝛼2  𝑡𝑎𝑛2𝛽 𝜇𝜉  +

1

2
𝑘2  𝑎2  𝛼3  𝑡𝑎𝑛3𝛽 𝜇𝜉    = 0                                  (55) 

From (55), equating exponents β + 2 and 3β yield 

β + 2 = 3β , so that β = 1                                                                                                                                   (56) 
then Eq.(56) becomes: 

− 𝜆𝑘 + 3 𝑙2    𝑡𝑎𝑛 𝜇𝜉  
 
− 2 𝑘3𝜇2   [𝑡𝑎𝑛 𝜇𝜉 +  𝑡𝑎𝑛3 𝜇𝜉  ]   −

3

2
𝑘 2 𝑘 𝑏 −  𝑙 𝑎 𝛼  𝑡𝑎𝑛2  𝜇𝜉  +

1

2
𝑘2  𝑎2  𝛼2  𝑡𝑎𝑛3  𝜇𝜉    = 0                                                                                                                                 (57) 

Balancing the same exponents to give: 

𝑡𝑎𝑛 𝜇𝜉 :  −  𝜆𝑘 + 3 𝑙2 − 2 𝑘3𝜇2 = 0   

𝑡𝑎𝑛2  𝜇𝜉 : −
3

2
𝑘 2 𝑘 𝑏 −  𝑙 𝑎 𝛼 = 0   

𝑡𝑎𝑛3 𝜇𝜉 :   − 2 𝑘3𝜇2 +
1

2
𝑘2  𝑎2  𝛼2 = 0                                                                                                             (58) 

By solving the algebraic system (58), we get, 

𝜆 = −2𝑘
6 𝑏2 + 𝑘𝑎2𝜇2

𝑎2    ,  𝑙 =
2 𝑘  𝑏

𝑎
     , 𝛼 =  ∓

2𝜇

𝑎
 𝑘                                                                                              (59) 

Then by substituting Eq. (59) into Eq. (10) , the exact soliton solution of equation (54) can be written in the 

form 

𝑢 𝑥, 𝑡 = ∓2
𝜇

𝑎
 𝑘   𝑡𝑎𝑛 [ 𝜇𝑘(𝑥 +

2 𝑏

𝑎
𝑦 + 2

6 𝑏2+ 𝑘𝑎2𝜇 2

𝑎2 𝑡) ]                                                                                 (60) 
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𝑣 𝑥, 𝑡 = ∓4 
  𝑘  𝑏𝜇

𝑎2   𝑡𝑎𝑛 [𝜇𝑘(𝑥 +
2 𝑏

𝑎
𝑦 + 2

6 𝑏2 + 𝑘𝑎2𝜇2

𝑎2 𝑡) ]                                                                                (61) 

for  𝜇 = 𝑘 = 𝑎 = 𝑏 = 1  
𝑢 𝑥, 𝑡 = ∓2 𝑡𝑎𝑛 [  (𝑥 + 2𝑦 + 14 𝑡) ]                                                                                                               (62) 

𝑣 𝑥, 𝑡 = ∓4 𝑡𝑎𝑛 [  (𝑥 + 2𝑦 + 14 𝑡) ]                                                                                                                (63) 

Figures (4) represents  𝑢 𝑥, 𝑡  in (62),  for 0 ≤ 𝑥 ≤ 10 , 𝑦 = 1,𝑎𝑛𝑑 0.1 ≤ 𝑡 ≤ 1 . 

 
Figure (4) represents  𝑢 𝑥, 𝑡  in (61) for 0 ≤ 𝑥 ≤ 10 and 0.1 ≤ 𝑡 ≤ 1 . 

 

IV. Conclusion 
In this paper, the Tan-Cot function method has been implemented to establish new solitary wave 

solutions for various types of nonlinear PDEs. We can say that the new method can be extended to solve the 

problems of nonlinear partial differential equations which arising in the theory of solitons and other areas. 
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