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Abstract: The fractional Hankel transform which is a generalization of the Hankel transform has many
applications. In this paper we establish the initial and final value theorem for the generalized fractional Hankel
transform.
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. Introduction:

Namias [1, 2] introduced the concept of Fourier transform of fractional order by the method of eigen
values and open the path of defining the number of fractional integral transform having applications in quantum
mechanics [1], Optics [3] and Signal processing [4]. Hankel transform is also generalized to its fractional
version. Namias [2] himself has presented the formula for fractional Hankel transform as

HlF 10 = ot 2 [ stk 1 (2) poya,

Which is a generalization of Hankel transform,

Hf 1) = j f (), (ey)dx.

o

Kerr [5] introduced the fractional Hankel transform as,

H[f (x)](y) =F) = [ fO)K(x,y)dx, (11)
where K, (x,y) = A, «€ " )wt_( n )2 <| n )

|Sl7’l—| sm—|

=6(x —y)forxc=0& « =27,

_1
and 4, = |sin§| : e(l(za__)(wl)) =sgn«, f € L*(RY),x ERand v > —1,
which is a generalization of the Hankel transform,

Hf@IO) = j I, ey

We have extended (1.1) to the Zemanian spaces and obtained inverse in [6, 7]. For the parameter «c= 7 the
fractional Hankel transform reduces to the above Hankel transform. Initial and final value theorems are proved
for Hankel type transformation in [8]. The paper is organized as follows. In section II, Initial value theorem and
in section 1l final value theorem on fractional Hankel transform are given, where as section IV concludes the
paper.

I1.  Initial Value Theorem:
We first prove the classical initial-value theorem.
Theorem: 2.1:

Let [v| < % and a function f (x) satisfies the following conditions,
i)f(x) »0asx >
1

—p—

ii) x~"72 f(x) is absolutely integrable on every compact subsets X < x < o and
i) " A0 = p

Suppose F(y) = H*[f(x)](y) is fractional Hankel transform of f(x) then
(cos;)w—l

= I, then using equation (1.1), and the result from[9], (p.

lim e——y tan
y — 00

ZF(Y) = vaa Whereroc =

Proof:- Consider |e ang 2F(y) - pB,,
no. 30.(8.6), result (12)), we obtaln,
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1
. =
e 2 gy ZlAu,me’_%yzmgfooox”Jrz_e e icory <|5 |) I <|S |) dx = :T)vz-i—lv
in>

which gives,

1
|= e_%yzmn;y ZAyo(f e——(x +y2)Cot—( xy |) ]17 <|5 |)f(x)dx_

|sin>

pe—i2y2tancc2y—v—12 Av,xe—i2 y2Cotox20oxv+12 e—i2 x2CotxZxySinx212/v(xySine2)dx,
(2.1)

1
where 0 << mand —1 < Rev < 3

1
i 4 1 o i x 2
_ e_Ethan?y—v—z—Av'o( fo e (x2+y2)Cot2 ( "Cy‘x) <|5 ) [f(X) px ]d
in=|

|Sln5|

1
i < i < 2
< e_iyztaniy—v—zlAv'o( f()i(e_z_(x2+y2)60t5< 9lcy5|> I <|5 |> [f(x) — va+2]dx +

|Sm2

1
L2 Syl o _L x z 1
e_EthanEy_v_z_Av'o( fX e 2 (X2+y2)COLLZ <|S’;J:E|) _]17 <|S’;fz|) [f(x) _ pri+2 ]dx
2 2
<I;+1,forsome X, 0 < X < oo,

1
i [ 1 i < 2
Consider I, = e "2y ™" 74, fOXe—z‘(x2+y2)C‘”E< ’,‘yx) <|S )[f(x) px" ]d
m=

|5m5|

1
—v— Sup [f(x) ]wl
< bt () (2o 2% o[-l

f(X)

By hypothesis (iii) as x = 0,

p|<e.

Moreover J,(x) = O(x") as x - 0.
Therefore above inequality becomes,

E v 1
[1 < y v ZAUo(Ef M(|Sln—|> <_|SZC7'):E|> xv+5dx .
2

< Avocf—ffo x2v*1 dx|, (2.2)
|Sln°(|
integral on R.H.S. existsas x - 0 if v > —1.
Therefore, because of R.H.S. is independent of y, I, can be made less than g if v>-—1.

1
o 2 L
Now 1 = o775y e S (o o, (g 10 = e
2 2

=y Ay (|S «|) (|S «|> [F () — px**7]dx]. 23)

Since vz J,(2) is bounded on 0 < z < o, moreover [f(x) — va+_] is absolutely integrable in
X < x < oo, hence I, can be made <§ asy — o provided v > —%.

Therefore I, < S ifv > —%.
Weget! <I; +1, < S +§ if lvl < % from (2.1), (2.2), and (2.3).
Hence the proof.
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I11.  Final Value Theorem:
Theorem: 3.1: Let |[v| < % and a function f(x) satisfies the following conditions,
i)f(x) —»0asx - o

i) x 2 f (x) is absolutely integrable on every compact subsets X < x < « and
i) x 2 f(x) =
Suppose F(y) = H“[f (x)](y) is fractional Hankel transform of f(x) then

I e eny () = 6B,

y—=0
Proof :- Consider
- e_%yzta"%y zAvo(foo ——(x +y?)Cot <|5’16n |) I <|5 |> [f(x) — 6x"+2]dx (3.1)

1
where 0 <x<mand —1 < Rev < 3

1
e—éym”%y—”_%Ay,« fOXe_zi(XZerz)cot;( xy ) I <|5 |> [f(x) — 6XV+2]dx n

|Sm |

IA

i « L s 2
e_EYZtanEy_v_zlAv,o( f;e_z_(x2+y2)COtE< chyo() I <|5 |) [f(x) _ 5x”+2]dx

|Sm5|
<L+,
1
i [ 1 i <
Now I, = e‘fyzt“"fy‘”‘z‘Av,xIOXe_z_(xzﬂz)wt?(ﬁﬂ) (Is I)[f 0= eI,
2

v+5
moreover J,(z) = 0(z")asz = 0,1, = [y 2 A, J; M( ) [f(0) — 6x"*7]dx

Jsin3]

= A—+f i X [f(x) — 6x"*T]dx (3.2)

Jsing] "2
1
The term is independent of y and x"*z f(x) is integrable according to condition (i),

. . . €
therefore integral converges if x2V*2 converges as if v > —1, hence I; can be made less than >
1

L x 1 o _L x 1

|SLnE|

= V__ vocf (|s o<|> Iy <| |> [f(x) — 6xv+2]dx

but vz J,(z) = 0(1) as z >
1 ® 1
I, < |y_V_Z_Av,o<M fx X'tz [%— 6] dx‘, (3.3
x'Z
by condition (iii) in hypothesis, R.H.S. converges in X < x < o. Also as y — 0, R.H.S. converges if v < —%,

thereforeI < I, + I, < S +§ provided -1 < v < —%, using (3.1), (3.2) and (3.3),
Hence the proof.

IV.  Conclusion:
We have proved the Initial and Final value theorems for fractional Hankel transform. Further we plan
to apply these theorems for solving some definite integrals.
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