Semi-Compatible Maps On Intuitionistic Fuzzy Metric Space

Pradeep Kumar Dwivedi¹ & Anil Rajput²
¹Millennium Group of Institutions, Bhopal, India, ²CSA, Govt. PG College, Sehore, India,

Abstract: In this paper, we prove common fixed point theorem for semi-compatible mappings on intuitionistic fuzzy metric space with different some conditions of Park and Kim ([10], 2008). This research extended and generalized the results of Singh and Chauhan ([14], 2000). The concept of fuzzy set was developed extensively by many authors and used in various fields. Several authors have defined fuzzy metric space Kramosil and Michalek(((5],1975) etc.) with various methods to use this concept in analysis. Jungck (([3],1986), ([4],1988)) researched the more generalized concept compatibility than commutativity and weak commutativity in metric space and proved common fixed point theorems, and Singh and Chauhan ([14],2000) introduced the concept of compatibility in fuzzy metric space and studied common fixed point theorems for self maps in intuitionistic fuzzy metric space.

I. Introduction:

In this paper, we prove common fixed point theorem for semi-compatible mappings on intuitionistic fuzzy metric space with different some conditions of Park and Kim ([10], 2008). This research extended and generalized the results of Singh and Chauhan ([14], 2000).

We give some definitions and properties of intuitionistic fuzzy metric space. Throughout this paper, N will denote the set of all positive integers.

Let us recall Schweizer and Sklar (see ([13], 1960)) that a continuous t-norm is a binary operation*: [0, 1] x [0, 1] → [0, 1] which satisfies the following conditions:
(a) * is commutative and associative;
(b) * is continuous;
(c) a * 1 = a for all a ∈ [0, 1];
(d) a * b ≤ c * d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Similarly, a continuous t-conorm is a binary operation: [0, 1] x [0, 1] → [0, 1] which satisfies the following conditions:
(a) ◊ is commutative and associative;
(b) ◊ is continuous;
(c) a ◊ 0 = a for all a ∈ [0, 1];
(d) a ◊ b ≥ c ◊ d whenever a ≤ c and b ≤ d (a, b, c, d ∈ [0, 1]).

Also, let us recall (see [6] that the following conditions are satisfied:
(a) For any any r₁, r₂ ∈ (0, 1) with r₁ > r₂ there exist r₅, r₆ ∈ (0, 1) such that r₁ * r₅ ≥ r₂ and r₆ ◊ r₅ ≤ r₁;
(b) For any r₅ ∈ (0, 1), there exist r₆, r₇ ∈ (0, 1) such that r₆ * r₇ ≥ r₅ and r₇ ◊ r₅ ≤ r₅.

1.1 Definition:- (Park and Kwun ([7], 2006)). The 5-tuple (X, M, N, *, ◊) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norms, ◊ is a continuous t-conorm and M, N are fuzzy sets on X such that
(a) M(x, y, t) > 0,
(b) M(x, y, t) = 1 ↔ x = y,
(c) M(x, y, t) = M(y, x, t),
(d) M(x, y, t) * M(y, z, s) ≤ M(x, z, t + s),
(e) M(x, y,) : (0, ∞) → [0, 1] is continuous,
(f) N(x, y, t) > 0,
(g) N(x, y, t) = 0 ↔ x = y,
(h) N(x, y, t) = N(y, x, t),

www.iosrjournals.org 59 | Page
(i) \(N(x, y, t) \cap N(y, z, s) \geq N(x, z, t + s) \).
(ii) \(N(x, y, \cdot) : (0, \infty) \rightarrow (0, 1) \) is continuous.

Note that \((M, N) \) is called an intuitionistic fuzzy metric on \(X \). The functions \(M(x, y, t) \) and \(N(x, y, t) \) denote the degree of nearness and the degree of non-nearness between \(x \) and \(y \) with respect to \(t \), respectively.

1.2 Definition
(Park and Kwun ([12], 2005)). Let \(X \) be an intuitionistic fuzzy metric space. Then (a) A sequence \(\{x_n\} \subset X \) is convergent to \(x \) in \(X \) if and only if for each \(\varepsilon > 0 \), \(t > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(M(x_n, x, t) > 1 - \varepsilon \), \(N(x_n, x, t) < \varepsilon \) for all \(n \geq n_0 \).

(b) A sequence \(\{x_n\} \subset X \) is called Cauchy sequence if and only if for each \(\varepsilon > 0 \), \(t > 0 \), there exists \(n_0 \in \mathbb{N} \) such that \(M(x_n, x_m, t) > 1 - \varepsilon \), \(N(x_n, x_m, t) < \varepsilon \) for all \(m, n \geq n_0 \).

(c) \(X \) is complete if every Cauchy sequence in \(X \) is convergent.

1.3 Definition
(Park and Kim ([10], 2008)). Let \(A, B \) be mappings from intuitionistic fuzzy metric space \(X \) into itself.

(a) \((A, B) \) are said to be compatible if and only if
\[
\lim_{n \to \infty} M(ABx_n, BAx_n, t) = 1, \quad \lim_{n \to \infty} N(ABx_n, BAx_n, t) = 0, \quad \text{for all} \ t > 0, \quad \text{whenever} \ \{x_n\} \subset X
\]
such that \(\lim_{n \to \infty} n \to \infty A_x = \lim_{n \to \infty} B x = x \) for some \(x \in X \).

(b) \((A, B) \) are said to be semi-compatible if and only if
\[
\lim_{n \to \infty} M(ABx_n, Bx, t) = 1, \quad \lim_{n \to \infty} N(ABx_n, Bx, t) = 0, \quad \text{for all} \ t > 0, \quad \text{whenever} \ \{x_n\} \subset X
\]
such that \(\lim_{n \to \infty} n \to \infty A_x = \lim_{n \to \infty} B x = x \) for some \(x \in X \).

1.4 Lemma
(Park([10],2008)). Let \(A, B \) to be self mappings on intuitionistic fuzzy metric space \(X \). If \(B \) is continuous, then \((A,B) \) is semi-compatible if and only if \((A,B) \) is compatible.

II. Main Result

2.1 Theorem
Let \(P, Q, S \) and \(T \) be self maps of complete intuitionistic fuzzy metric space \(X \) with \(t - \text{norm}^* \) and \(t - \text{conorms} \) (defined by \(a + b = \min \{a, b\} \) and \(a \cdot b = \max \{a, b\}, a, b \in [0, 1] \), satisfying

(a) \((P, S) \) and \((Q, T) \) are semi-compatible pairs of maps,

(b) \(S \) and \(T \) are continuous,

(c) \(P^p(x) \subset T^q(x), \quad Q^p(x) \subset S^q(X), \)

(d) \(M(P^p x, Q^q y, kt) \geq \min \{M(S^q x, T^p y, t), M(P^p x, S^q y, t), M(Q^q x, T^p y, t), M(P^p x, T^q y, \alpha t), M(Q^q y, S^p x, (2 - \alpha t)t)\} \),

\[
N(P^p y, Q^q x, k t) \leq \max \{N(S^q y, T^p x, t), N(P^p x, S^q y, t), N(Q^q y, T^p x, t), N(P^p x, T^q y, \alpha t), N(Q^q y, S^p x, (2 - \alpha t)t)\}.
\]

(e) \(\lim_{t \to \infty} t \to \infty M(x, y, t) = 1, \)
\(\lim_{t \to \infty} M(x, y, t) = 0 \)
for all \(x, y \in X, \alpha \in (0, 2), t > 0 \) and \(p, q, s, t \in \mathbb{N} \).

Then \(P, Q, S \) and \(T \) have a unique common fixed point in \(X \).

Proof
Let \(x_0 \) be an arbitrary point in \(X \), we can inductively construct a sequence \(\{y_n\} \subset X \) such that
\[
y_{2n+1} = T^x_{x_{2n+1}} = P^p y_{2n+2}, \quad y_{2n} = S^q y_{2n+1} \quad \text{for} \quad n = 1, 2, 3, ...
\]
First, we prove that \(\{y_n\} \) is a Cauchy sequence, from (d) with \(\alpha = 1 \), we have.

\[
M(y_{2n+1}, y_{2n+2}, K t) = M(P^p_{2n+2}, Q^q_{2n+2}, K t) \geq \min \{M(S^q_{2n+2}, T^p_{2n+2}, 1), M(P^p_{2n+2}, S^q_{2n+2}, 1), M(Q^q_{2n+2}, T^p_{2n+2}, 1), M(P^p_{2n+2}, T^q_{2n+2}, 1), M(Q^q_{2n+2}, S^p_{2n+2}, 0)\}
\]
\[
\geq \min \{M(y_{2n+1}, y_{2n+2}, 1), M(y_{2n+1}, y_{2n+2}, 1), M(y_{2n+2}, y_{2n+1}, 1), M(y_{2n+1}, y_{2n+2}, 1), M(y_{2n+2}, y_{2n+1}, 1)\}
\]
\[
\geq \min \{M(y_{2n+1}, y_{2n+2}, 1), M(y_{2n+2}, y_{2n+1}, 1), 1\}
\]
\[
N(y_{2n+1}, y_{2n+2}, K t) = (P^p_{2n+2}, Q^q_{2n+2}, K t).
\]
Semi-Compatible Maps On Intuitionistic Fuzzy Metric Space

\[\leq \max \{ N(S^x_{2n}, T^x_{2n+1}, t), N(P^p_{2n}, S^x_{2n}, t), N(Q^q_{2n+1}, T^x_{2n+1}, t), N(P^p_{2n}, T^x_{2n+1}, t), N(Q^q_{2n+1}, S^x_{2n}, t) \} \]

\[\leq \max \{ N(y_{2n}, y_{2n+1}, t), N(y_{2n+1}, y_{2n}, t), N(y_{2n+2}, y_{2n+1}, t), N(y_{2n+1}, y_{2n+1}, t), N(y_{2n+2}, y_{2n+1}, t) \} \]

\[\leq \max \{ N(y_{2n}, y_{2n+1}, t), N(y_{2n+2}, y_{2n+1}, t), 0 \} \]

which implies

\[M(y_{2n}, y_{2n+1}, L_k t) \geq M(y_{2n-1}, y_{2n}, t), \]

\[N(y_{2n}, y_{2n+1}, L_k t) \leq N(y_{2n-1}, y_{2n}, t), \]

\[\text{Generally,} \quad M(y_{n}, y_{n+1}, L_k t) \geq M(y_{n-1}, y_{n}, t), \]

\[N(y_{n}, y_{n+1}, L_k t) \leq N(y_{n-1}, y_{n}, t). \]

Therefore,

\[M(y_n, y_{n+1}, t) \geq M(y_{n-1}, y_n, \frac{L}{k}) \]

\[\geq ... \]

\[\geq M(y_0, y_1, \frac{L}{k^n}) \]

Taking limit \(n \to \infty \) then it tends to \(\to 1 \) as

\[N(y_n, y_{n+1}, t) \leq N(y_{n-1}, y_n, \frac{L}{k}) \]

\[\leq ... \]

\[\leq N(y_0, y_1, \frac{L}{k^n}) \to 0 \text{ as } n \to \infty \]

Hence for \(t > 0 \) and \(\varepsilon \in (0, 1) \), we can choose \(n_0 \in \mathbb{N} \) such that

\[M(y_n, y_{n+1}, t) > 1 - \varepsilon, \quad N(y_n, y_{n+1}, t) < \varepsilon \]

for all \(n \geq n_0 \).

Suppose that for \(m \),

\[M(y_n, y_{n+m}, t) > 1 - \varepsilon, \quad N(y_n, y_{n+m}, t) < \varepsilon \]

for all \(n \geq n_0 \) and for every \(m \in \mathbb{N} \).

Then

\[M(y_n, y_{n+m+1}, t) \geq \min \{ M(y_n, y_{n+m}, \frac{L}{2}), M(y_{n+m}, y_{n+m+1}, \frac{L}{2}) \} \]

\[> 1 - \varepsilon, \]

\[N(y_n, y_{n+m+1}, t) \leq \max \{ N(y_n, y_{n+m}, \frac{L}{2}), N(y_{n+m}, y_{n+m+1}, \frac{L}{2}) \} \]

\[< \varepsilon. \]

Therefore \(\{y_n\} \subset X \) is a cauchy sequence.

Second, we prove that \(P^p, Q^q, S^x, \) and \(T^t \) have a unique common fixed point.

Since \(\{y_n\} \) converges to some point \(x \) from completeness of \(X \),

\[P^p x_{2n} \to x, \quad S^x x_{2n} \to x, \quad Q^q x_{2n+1} \to x \] and \(T^t x_{2n+1} \to x \)

Since \(S \) is continuous, hence

\[S^x (P^p x_{2n}) \to S^x(x) \]

Thus for \(t > 0 \) and \(\varepsilon \in (0, 1) \), there exists an \(n_0 \in \mathbb{N} \) such that

\[M(S^x (P^p x_{2n}), S^x(x), \frac{L}{2}) > 1 - \varepsilon, \]

\[N(S^x (P^p x_{2n}), S^x(x), \frac{L}{2}) < \varepsilon \]

for all \(n \geq n_0 \). Also since \((P, S) \) and \((Q, T) \) are semi – compatible pairs, by Lemma 1.4, \((P, S) \) and \((Q, T) \) are compatible pairs.

Therefore \((P^p, S^x) \) and \((Q^q, T^t) \) are compatible pairs for all \(P, q, s, t \in \mathbb{N} \). From (a), we have

\[\lim n \to \infty \quad M(P^p (S^x x_{2n}), S^x(P^p x_{2n}), \frac{L}{2}) = 1 \]

www.iosrjournals.org 61 | Page
\[\lim n \to \infty \ N(P^0(S^t \ x_{2n}), S^i(P^0_{2na}) \frac{L}{2}) = 0 \]

Hence,
\[M(S^t(P^0_{2na}), S^i(t), t) \geq \min \{ M(P^0(S^t \ x_{2n}), S^i(P^0_{2na}), \frac{L}{2}), M(S^t(P^0_{2na}), S^i(t), \frac{L}{2}) \} \]
\[> 1 - \varepsilon , \]
\[N(S^t(P^0_{2na}), S^i(t), t) \leq \max \{ N(P^0(S^t \ x_{2n}), S^i(P^0_{2na}), \frac{L}{2}), N(S^t(P^0_{2na}), S^i(t), \frac{L}{2}) \} \]
\[< \varepsilon \]

for all \(n \geq n_0 \).

Therefore \(\lim n \to \infty \ (P^0 S^i \ x_{2n}) = S^i \ x \).

Also since \(\lim n \to \infty \ Q^i(t_{2n-1}) = x \) and \(T \) is continuous,
\[\lim n \to \infty \ T^i(t_{2n-1}) = T^i \ x. \]

Thus for \(t > 0 \) and \(\varepsilon \in (0, 1) \), there exists an \(n_0 \in \mathbb{N} \) such that
\[M(T^i(Q^i(t_{2n-1}), T^i(x), t/2) > 1 - \varepsilon, N(T^i(Q^i(t_{2n-1}), T^i(x), t/2) < \varepsilon \]

for all \(n \geq n_0 \).

From (a), we have
\[\lim n \to \infty \ M(Q^i(T^i \ x_{2n-1}), T^i(Q^i \ x_{2n-1}), t/2) = 1 \]
\[\lim n \to \infty \ N(Q^i(T^i \ x_{2n-1}), T^i(Q^i \ x_{2n-1}), t/2) = 0 \]

Hence
\[M(Q^i(T^i \ x_{2n-1}), T^i(x), t) \geq \max \{ M(Q^i(T^i \ x_{2n-1}), T^i(Q^i \ x_{2n-1}), t/2), M(T^i(Q^i \ x_{2n-1}), T^i(x), t) \} \]
\[\geq 1 - \varepsilon \]
\[N(Q^i(T^i \ x_{2n-1}), T^i(x), t) \leq \max \{ N(Q^i(T^i \ x_{2n-1}), T^i(Q^i \ x_{2n-1}), t/2), N(T^i(Q^i \ x_{2n-1}), T^i(x), t) \} \]
\[\leq \varepsilon \]

for all \(n \geq n_0 \).

Therefore \(\lim n \to \infty \ Q^i(T^i \ x_{2n-1}) = T^i \ x. \)

Using (d) with \(\alpha = 1 \), we have
\[M(P^0(S^i \ x_{2na}), Q^i(T^i \ x_{2na}), K) \geq \min \{ M(S^i(S^i \ x_{2na}), T^i(T^i \ x_{2na}), t), M(P^0(S^i \ x_{2na}), S^i(S^i \ x_{2na}), t), M(Q^i(T^i \ x_{2na}), T^i(T^i \ x_{2na}), t), M(P^0(S^i \ x_{2na}), T^i(T^i \ x_{2na}), t), M(Q^i(T^i \ x_{2na}), S^i(S^i \ x_{2na}), t) \} \]
\[N(P^0(S^i \ x_{2na}), Q^i(T^i \ x_{2na}), K) \leq \max \{ N(S^i(S^i \ x_{2na}), T^i(T^i \ x_{2na}), t), N(P^0(S^i \ x_{2na}), S^i(S^i \ x_{2na}), t), N(Q^i(T^i \ x_{2na}), T^i(T^i \ x_{2na}), t), N(P^0(S^i \ x_{2na}), T^i(T^i \ x_{2na}), t), N(Q^i(T^i \ x_{2na}), S^i(S^i \ x_{2na}), t) \} \]

Taking limit as \(n \to \infty \) and using above results,
\[M(S^i \ x_{2na}, T^i \ x_{2na}, K) \geq \min \{ M(S^i \ x_{2na}, T^i \ x_{2na}, t), M(S^i \ x_{2na}, S^i \ x_{2na}, t), M(T^i \ x_{2na}, T^i \ x_{2na}, t), M(S^i \ x_{2na}, T^i \ x_{2na}, t), M(T^i \ x_{2na}, S^i \ x_{2na}, t) \} \]
\[\geq M(S^i \ x_{2na}, T^i \ x_{2na}, t) \]
\[N(S^i \ x_{2na}, T^i \ x_{2na}, K) \leq \max \{ N(S^i \ x_{2na}, T^i \ x_{2na}, t), N(S^i \ x_{2na}, S^i \ x_{2na}, t), N(T^i \ x_{2na}, T^i \ x_{2na}, t), N(S^i \ x_{2na}, T^i \ x_{2na}, t), N(T^i \ x_{2na}, S^i \ x_{2na}, t) \} \]
\[\leq N(S^i \ x_{2na}, T^i \ x_{2na}, t) \]

which implies
\[S^i \ x_{2na} = T^i \ x_{2na} \]

Now from (d) with \(\alpha = 1 \),
\[M(P^0 \ x_{2na}, Q^i(T^i \ x_{2na}), K) \geq \min \{ M(S^i \ x_{2na}, T^i \ x_{2na}, t), M(P^0 \ x_{2na}, S^i \ x_{2na}, t), M(Q^i(T^i \ x_{2na}), T^i(T^i \ x_{2na}), t), M(P^0 \ x_{2na}, T^i(T^i \ x_{2na}), t), M(Q^i(T^i \ x_{2na}), S^i(S^i \ x_{2na}), t) \} \]
\[N(P^0 \ x_{2na}, Q^i(T^i \ x_{2na}), K) \leq \max \{ N(S^i \ x_{2na}, T^i(T^i \ x_{2na}), t), N(P^0 \ x_{2na}, S^i \ x_{2na}, t), N(Q^i(T^i \ x_{2na}), T^i(T^i \ x_{2na}), t), N(P^0 \ x_{2na}, T^i(T^i \ x_{2na}), t), N(Q^i(T^i \ x_{2na}), S^i(S^i \ x_{2na}), t) \} \]

Taking the limit as \(n \to \infty \) and using above results
\[M(P^0 \ x_{2na}, T^i \ x_{2na}, K) \geq \min \{ M(T^i \ x_{2na}, T^i \ x_{2na}, t), M(P^0 \ x_{2na}, T^i \ x_{2na}, t), M(T^i \ x_{2na}, T^i \ x_{2na}, t), M(P^0 \ x_{2na}, T^i \ x_{2na}, t), M(T^i \ x_{2na}, T^i \ x_{2na}, t), M(P^0 \ x_{2na}, T^i \ x_{2na}, t) \} \]
\[\geq M(P^0 \ x_{2na}, T^i \ x_{2na}, t) \]
\[N(P^0 \ x_{2na}, T^i \ x_{2na}, K) \leq \max \{ N(T^i \ x_{2na}, T^i \ x_{2na}, t), N(P^0 \ x_{2na}, T^i \ x_{2na}, t), N(T^i \ x_{2na}, T^i \ x_{2na}, t), N(P^0 \ x_{2na}, T^i \ x_{2na}, t), N(T^i \ x_{2na}, T^i \ x_{2na}, t) \} \]
\[M(p^\alpha_x, Q^\alpha_x, K t) \geq \max \{ M(p^\alpha_x, Q^\alpha_x, t), M(p^\alpha_x, S^\alpha_x, t), M(Q^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, T^\alpha_x, t), M(Q^\alpha_x, S^\alpha_x, t) \} \]

Hence \(p^\alpha_x = Q^\alpha_x = S^\alpha_x = T^\alpha_x \).

Furthermore using (d) with \(\alpha = 1 \), we have

\[N(p^\alpha_x, Q^\alpha_x, K t) \geq \max \{ N(p^\alpha_x, Q^\alpha_x, t), N(p^\alpha_x, S^\alpha_x, t), N(Q^\alpha_x, T^\alpha_x, t), N(p^\alpha_x, T^\alpha_x, t), N(Q^\alpha_x, S^\alpha_x, t) \} \]

Taking limit as \(n \to \infty \) we have

\[M(x, Q^\alpha_x, K t) \geq \max \{ M(x, Q^\alpha_x, t), M(x, Q^\alpha_x, t), M(Q^\alpha_x, Q^\alpha_x, t), M(x, Q^\alpha_x, t), M(Q^\alpha_x, x, t) \} \]

\[N(x, Q^\alpha_x, K t) \leq \min \{ N(x, Q^\alpha_x, t), N(x, Q^\alpha_x, t), N(Q^\alpha_x, Q^\alpha_x, t), N(x, Q^\alpha_x, t), N(Q^\alpha_x, x, t) \} \]

Which implies \(x = Q^\alpha_x \).

Therefore \(x = Q^\alpha_x = T^\alpha_x \).

That is, \(x \) is a common fixed point of \(p^\alpha_x \), \(Q^\alpha_x \) and \(T^\alpha_x \). Let \(z \) be another common fixed point of maps. Then from (d) with \(\alpha = 1 \)

\[M(p^\alpha_x, Q^\alpha_x, K t) \geq \max \{ M(p^\alpha_x, S^\alpha_x, t), M(p^\alpha_x, S^\alpha_x, t), M(Q^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, T^\alpha_x, t), M(Q^\alpha_x, S^\alpha_x, t) \} \]

\[N(p^\alpha_x, Q^\alpha_x, K t) \leq \min \{ N(x, Q^\alpha_x, t), N(x, Q^\alpha_x, t), N(Q^\alpha_x, Q^\alpha_x, t), N(x, Q^\alpha_x, t), N(Q^\alpha_x, x, t) \} \]

Which implies \(x = z \).

Hence \(x \) is a unique common fixed point of maps.

Third, we prove that this point \(x \) is a common fixed point of \(P, Q \) and \(T \).

Since \(p_x = P(p^\alpha_x) = P^\alpha(P_x) \) and \(P_x = P(S^\alpha_x) = S^\alpha(P_x) \)

from (a), hence \(p_x \) is a common fixed point of \(p^\alpha_x \) and \(S^\alpha_x \). Also since \(Q_x = Q(Q^\alpha_x) = Q^\alpha(Q_x) \) and \(Q_x = Q(T^\alpha_x) = T^\alpha(Q_x) \) from (a), hence \(Q_x \) is a common fixed point of \(Q^\alpha_x \) and \(T^\alpha_x \). Now letting \(x = P_x \) and \(y = Q_x \) and \(\alpha = 1 \) in (d), we have

\[M(P_x, Q_x, K t) = M(p^\alpha_x, Q^\alpha_x, K t) \geq \max \{ M(S^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, S^\alpha_x, t), M(Q^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, T^\alpha_x, t), M(Q^\alpha_x, S^\alpha_x, t) \} \]

\[N(P_x, Q_x, K t) = N(p^\alpha_x, Q^\alpha_x, K t) \leq \min \{ N(S^\alpha_x, T^\alpha_x, t), N(p^\alpha_x, S^\alpha_x, t), N(Q^\alpha_x, T^\alpha_x, t), N(p^\alpha_x, T^\alpha_x, t), N(Q^\alpha_x, S^\alpha_x, t) \} \]

Therefore \(P_x = Q_x \).

Also from (d) with \(\alpha = 1 \), we have

\[M(S^\alpha_x, T^\alpha_x, K t) = M(S^\alpha_x, T^\alpha_x, K t) \geq \max \{ M(S^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, S^\alpha_x, t), M(Q^\alpha_x, T^\alpha_x, t), M(p^\alpha_x, T^\alpha_x, t), M(Q^\alpha_x, S^\alpha_x, t) \} \]

\[N(S^\alpha_x, T^\alpha_x, K t) = N(S^\alpha_x, T^\alpha_x, K t) \leq \min \{ N(S^\alpha_x, T^\alpha_x, t), N(p^\alpha_x, S^\alpha_x, t), N(Q^\alpha_x, T^\alpha_x, t), N(p^\alpha_x, T^\alpha_x, t), N(Q^\alpha_x, S^\alpha_x, t) \} \]
Therefore, $Sx = Tx$. Since x is a unique common fixed point of P^0, Q^0, S^0, T^0. Hence $Px = Qx$ is a common fixed points of P^0, S^0 and $Sx = Tx$ is a common fixed points of Q^0, T^0. Hence $x = Px = Qx = Sx = Tx$. That is, x is common fixed point of P, Q, S and T.

References