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Abstract: We prove that every finite subspace generated by the linearly ordered idempotent elements in an 

incline has a unique standard basis. This leads to every finite subspace of a regular incline whose elements are 

all linearly ordered has a unique standard basis and thereby we disprove the result of Cao that is “Every 

subspace of a finite incline whose idempotent elements are linearly ordered has a unique standard basis”. As an 

application we exhibit that under certain conditions each vector in a finitely generated subspace of a vector 
space has a unique decomposition as a linear combination of the standard basis vectors.  
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I. Introduction 
 Inclines are additively idempotent semirings  in which products are less than (or) equal to either factor. 

The notion of inclines and their applications are described by  Cao, Kim and Roush[1]. Kim and Roush have 

surveyed and outlined algebraic properties of inclines and incline matrices [2]. Inclines are generalization of 

Boolean and Fuzzy algebra. Recently in [5], it is proved that an element in an incline is regular if and only if it is 

idempotent, further some characterization of regular elements in an incline are discussed and established that 

every commutative regular incline is a distributive lattice.  In our earlier work [6], we have discussed the 

consistency of the equation x A=b, where A is a matrix and b is a vector over an incline £. We have determined 
the condition for the existence of the maximum solution of the incline relational equation x A=b. 

 In general, a vector in an incline need not be expressible uniquely as a linear combination of its 

standard basis vectors (refer Example 4.1). In this paper, by using the maximum solution of the incline relational 

equation, we have discussed when a vector can be expressed as a linear combination of the standard basis 

vectors. As a special case, we have exhibited that each vector in a regular incline whose elements are all linearly 

ordered has a unique decomposition as a linear combination of its standard basis vectors, which we call as 

standard incline linear combination. This includes the result found in [3] as a special  case for standard linear 

combination of a vector over the max-min fuzzy algebra. In section 2, we present some basic definitions, 

notations  and required results on inclines. In section 3, we prove that every finite subspace generated by the 

linearly ordered  idempotent elements in an incline has a unique standard basis. This leads to every finite 

subspace of a regular incline whose elements are all linearly ordered has a unique standard basis and thereby we 
disprove the result of Cao, that is, “Every subspace of a finite incline whose idempotent elements are linearly 

ordered has a unique  standard basis”                (p.38, [1]).   In section 4, we exhibit that each vector x£n can be 

expressed uniquely as a linear combination of its standard basis vectors  ß =  (c1,c2,……cn), where   cj = (cj1, 
cj2,..,cjn) of a finitely generated subspace of a vector space over an incline under the condition that cjk for j=1 to n 

is comparable with the k th component of x and for each k. This leads to the structure of the solution               set 

Ω (C,x), where C is the matrix whose rows are the vectors in the standard basis. The main results in the present 

paper are the generalization of the results available in the literature [2,3]. 

 

II. Preliminaries 
 In this section, we present some basic definitions, notations and required results on inclines. 

 

Definition 2.1 
 An incline is a nonempty set £ with binary operations addition and multiplication denoted as (+,·) (we 

usually suppress the „dot‟ in a·b and write as ab) satisfying the following axioms; for a,b,c  £. 
 

i) a+b = b+a 

ii) a+(b+c) = (a+b) + c   : a(bc) = (ab) c 

iii) a (b+c) = ab +ac  : (b+c) a = ba + ca 

iv) a+a = a 

v) a + ac = a    : c+ ac = c 

Let us consider an incline (£,+,·) with the order relation “≤” defined as   x≤y <=> x+y = y for x, y £. 
This incline order relation “≤” has the following properties: 
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x+y ≥ x and x+y ≥ y for any x, y £     …… (2.1) 

xy ≤ x and  xy ≤ y for any x,y £     …… (2.2) 

 

Definition 2.2 

 A sub incline of an incline £ is a subset closed under the incline operations addition and multiplication. 

Definition 2.3 

 A set S of vectors over an incline £ is independent if and only if each element of S is not a linear 

combination of other elements of S, that is, no element v  S is a linear combination of elements in S\v. 
 

Definition 2.4 

 A basis for a subspace W of £n is a smallest linearly independent set S of vectors such that <S> = W, 
where <S> is the space spanned by the set S. 

 

Definition 2.5 

 A basis C over the incline £ is a standard basis if and only if whenever           ci = ∑aijcj  for  ci, cj  C 

and aij  £ then aiici = ci. 
 

Definition 2.6 

 a  £ is said to be regular if there exists an element x  £ such that axa =a.  Then x is called a g- inverse 
of a and a {1}  denotes the set of all g-inverses of a. 

 

 An incline £ is regular if and only if each element of £ is regular. 

 

Proposition 2.1 [5] 

 An element a  £ is regular if and only if a is idempotent. 
 

Proposition 2.2 [5] 

 A commutative incline £ is regular if and only if £ is a distributive lattice. 

 
 Let £mn and £n denotes the set of all mxn matrices and the set of all n vectors over £ respectively. Let 

DL be the set of all idempotent elements in £. DLmn and DLn be the set of all mxn matrices and the set of all n 

vectors in DL respectively. Let A*j denotes the jth column of A,  Nr denotes the set of all positive integers 1 to r 

and Ω (A,b) denotes the solution set of the incline relational equation xA = b. Matrix operations in £nn are 

induced by the incline operations of £. In general, £nn is not an incline since for any pair of matrices A,B £nn, 
AB ≤A (or)  AB≤B need not hold. 

 

III. Standard Bases 
 In this section, we prove that every finite subspace of DLn over a finite incline £ whose idempotent 

elements are linearly ordered has a unique standard basis. As a special case we deduce that every finite subspace 
of a regular incline whose elements are all linearly ordered has a unique standard basis and we disprove the 

result of Cao, that is “Every subspace of a finite incline  whose idempotent elements are linearly ordered has a 

unique standard basis ”              (p. 38, [1]) 

 

Lemma 3.1 

 In a vector space over a finite incline, let x=∑cix. Then for some n, x = ∑ci
n x  where ci

n are 

idempotents. 

Proof 

 Since x = ∑ ci x = cx, where c =  𝑐𝑖
𝑘
𝑖=1  then c > c x > c (cx) > c2(cx) > …. > ckx ≥ = …. By using 

incline property (2.2), we get c > c2 > c3 > … > cn > … For a finite incline, cn is idempotent for some n.  

        ...(3.1) 

 Again by using incline property (2.1), c > ci for each i = 1 to k.  

So we have c > ci > ci
2 > … > ci

m…         

For a finite incline ci
mi is idempotent for some mi and for each i = 1 to k .   …(3.2) 

From (3.1) we get cn = c2n and from (3.2), c1
m1 = c1

2m1, c2
m2 = c2

2m2, … ck
mk = ck

2mk and c > ci
mi for each i =1 to k. 

Choose the power of c which is the maximum of mi for each i = 1 to k.  
 Hence x = ∑ ci

nx, where ci
n is idempotent for some n > 1. 
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Lemma 3.2 

 Let  x be a member of a standard basis of DLn over a finite incline £ whose idempotent elements are all 

linearly ordered. If   x= ∑yi for yi in the space spanned by the standard basis of DLn then x= yk for some k. 

 

Proof 

 Let   {x1, x2,…………. xk} be the standard basis of DLn and x=x1. Write        yi =∑ j cij xj. Then x= ∑yj = 

∑j (∑ i cij)xj and by Lemma (3.1),  we get x = ∑ ci1
n

 x, where ci1
nare idempotents. Since the elements of DL are 

linearly ordered, let cj1
n

 be the largest. Then x= cj1
n

 x.  By using incline properties (2.1) and (2.2),                     x 

= ∑yi => x≥ yj and yi = ∑cij xj => x ≥ yj ≥ cj1
nx = x. Hence , x=yj. 

 

Theorem 3.1 

 Let £ be an incline whose idempotent elements are all linearly ordered then any finite subspace of DLn 

has a unique standard basis. 

Proof 

 Let   {x1, x2…………. xk}   and  {y1, y2……… yj  } be the distinct standard basis of a finite subspace of 

DLn. For any xi, we have xi =  ∑cikyk for some cij. Then by Lemma (3.2) , xi = cikyk  for some k. In the same 

manner, yk = dkj xj for some j. If i≠j, then xi would be dependent. Hence, xi = cikyk = cikdkixi by Lemma (3.1),                  

cik
n dkj

n xi = xi. This proves the uniqueness of the standard basis. 

Remark 3.1 

 In the above Theorem (3.1), the condition that any subspace of DL
n
 is essential. This is illustrated in 

the following example. 

 

Example 3.1 

 Let us consider the incline £= { 0,a,b,c,d,1}, lattice ordered by the following Hasse graph. 

 Define £ x £ -> £ as follows       

     d if x,y   {1,b,c,d} 
 xy =  

  0 otherwise     

 

 

 
 

 In this finite incline, the only idempotent elements are 0 and d and they are comparable. Since 0 = α.d 

and d = β.d for α, β  £ ; (d) is the unique standard basis for DL = {0,d}. Here, (d) is not a basis for the 
subincline I = {0,a,b,d,1}. 

 For instance, b  I, b ≠ αd for all α  £, therefore b cannot be expressed as a linear combination of the 
elements of £.  

 This contradicts the Theorem (2.4.4) of [1]. 

 

Remark 3.2 

 Further, in a regular incline £ by proposition (2.1) each element of £ is idempotent, hence DL = £. And 

by proposition (2.2), every commutative regular incline is a distributive lattice. Hence we deduce the following 

as special cases of Theorem (3.1).  

 

Corollary 3.1 

 Every finite subspace of a regular incline whose elements are all linearly ordered has a unique standard 
basis. 

Corollary 3.2 

 Every finite subspace of a distributive lattice whose elements are all linearly ordered has a unique 

standard basis. 

Remark 3.3 

 For a fuzzy algebra with support [0,1] under the operation max-min          (or min-max) the elements 

are all idempotents and linearly ordered. Hence Theorem (3.1) reduces to the result of Kim and Roush [3] (P.8, 

[4]) 

Corollary 3.3 

 Any finitely generated subspace of a fuzzy algebra has a unique standard basis. 

 
 

 

1 
a c b 
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IV. Standard linear combination of incline vectors 
 In this section, we exhibit that each incline vector has a unique decomposition as a linear combination 

of the standard basis of a finitely generated subspace of a vector space over a regular incline whose elements are 

all linearly ordered. 

 For x,y  £, if x ≤ y for all y  £  then x is called the least element and denoted as 0. If x ≥ y for all y  £ 

then x is called the greatest element and denoted as 1. 

 

Lemma 4.1 

 For a regular incline £, the greatest element 1 coincides with the multiplicative identity of £. 

Proof 

 Let a  £, then a is idempotent. By incline property (2.1),                                           a = a2 = a.a ≤ a.1 ≤ 

a => a = a.1. Similarly, a = a2  = a.a ≤ 1.a ≤ a => a = 1 a. Thus,         a.1 = 1.a = a for all a  £. Hence 1 is the 
multiplicative identity of £. 

 In this section, to determine the standard linear combination of incline vector we shall make use of the 

following result found in [6]. 

 

Lemma 4.2 

Let xA =b be the incline relational equation with x = [xj/ jε Nm], b = [bk/kε Nn] and A = (aij) ε £mn  such 

that A*k and bk are comparable for each k. Then Ω (A,b) ≠ φ if and only if x  = [x 𝑗 /𝑗𝜀Nm] defined as    x j = min σ 

(ajk, bk)    

Where σ (ajk, bk) =  
𝑏𝑘 𝑖𝑓 a𝑗𝑘 > 𝑏𝑘

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

is the maximum solution. 

Theorem 4.1  

 Let £ be an incline, S be a finitely generated subspace of £n and let {c1,c2,…….. cn} be the standard 

basis for S. For x  S and cj = {cj1, cj2, … cjk, … cjn}, if cjk and xk are comparable for each j = 1 to n and each k. 
Then x can be expressed uniquely as a linear combination of the standard basis vectors. 

Proof  

 Since {c1,c2,………cn} is a standard basis for S, x is a linear combination of the standard basis vectors. 

 Let x =  𝛽𝑛
𝑗=1 j cj  Where 𝛽j  £. 

In this expression, the coefficients 𝛽j‟s are  not unique. If we write this in the matrix form as  x = (𝛽1, 

𝛽2, …….. 𝛽n) C, where C is the matrix whose rows are the basis vectors, then x = P C has a solution, that is,  
(C,x) ≠ Φ since the kth column of C=C*k, is comparable with the kth component of x for each k; by using 

Lemma (4.2), it follows that this equation has a unique maximum solution             x = (𝑝1, 𝑝2,……… 𝑝n ) (say). 

Then x =  𝑝𝑛
𝑗=1 jcj where 𝑝j  £ is the unique representation of the vector x,we call this representation as the 

standard linear combination of the vector x  £n.  

Remark 4.1  

In the above Theorem (4.1), the condition that the kth column of C whose rows are the basis vectors 

and the kth component of x to be comparable is essential in determining the standard linear combination of 

incline vector is illustrated in the following. 

Example 4.1 

 Let us consider the set D = {a,b,c} and the incline £ = (P (D), ,), where P (D) is the power set of D 

with set inclusion “” as the order relation “≤”. 
 Here, £ is a commutative regular incline hence by proposition (2.2), £ is a distributive lattice whose 

elements are all idempotents; but elements are not comparable. For instance, {a}, {b} and {c} are not 

comparable. 
 Consider the set S = ({a}, {b}, {c}). In S each element cannot be expressed as  a linear combination of 

the remaining elements. Hence S is the  smallest linearly independent set and <S> = £. Every element of  £ can 

be expressed as a linear combination of the basis vectors. For {a}  £, {a} = α {a} + β {b} +  {c}, α is any 

subset of D containing {a}, β is any subset of D not containing {b} and is any subset of D not containing {c}. 
Thus {a} = α {a}. Hence S is the  unique standard basis for £. 

  Any element x ≠ D  £ can be expressed as x = α {a} + β{b} + {c} for  suitable  choice of α, β,   £. 

However, this expression is not unique in the sense that the coefficients of α, β and  are not uniquely 
determined by x, since the kth component of x is not comparable with the kth column of C = {a} 

             {b} 

  

              {c} 
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 In this incline, x =  D = {a,b,c} is the only element of £ which is comparable with the column matrix C.  

Hence, by Theorem (4.1), D is the only element in this incline which has the standard linear combination. We 

can find the standard linear combination of the element D  £, by determining the maximum solution of the 
incline relational equation yC=x. From Lemma (4.2), the maximum solution ŷ= (ŷ1,ŷ2, ŷ3

ˆ) is determined by ŷj  = 
𝑚𝑖𝑛
𝑘 𝐾

σ (cjk, xk). Here, x = D = {a,b,c} is the greatest element of £  under the set inclusion as order relation; c11 = 

{a},  c21 = {b} and c31 = {c}, therefore, ŷ1 =  σ (c11,x)=1, , ŷ2 =  σ (c21,x)=1, and   ŷ3 =  σ (c31,x)=1. Hence, ŷ = 

(1,1,1) = (D,D,D).  Thus D = D {a} + D {b} + D {c} is the standard linear combination of the element D  £. 

 

V. Conclusion 
 We have discussed the uniqueness of the standard basis and standard linear combination of incline 

vectors. In a finitely generated subspace £n of a regular incline whose elements are all linearly ordered, the  

comparability condition automatically holds, hence we conclude that each vector in a regular incline whose 

elements are all linearly ordered has a standard linear combination. The main results in the present paper are the 

generalization of the results found in [2] and [3]. 
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