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Abstract: The Airy stress function for a vertical dip-slip line source buried in a homogeneous, isotropic,
perfectly elastic half-space with rigid boundary is obtained. This Airy stress function is used to derive closed-
form analytical expressions for the stresses and displacements at an arbitrary point of the half-space caused by
vertical dip-slip line source. The variation of the displacements and stress fields with distance from the fault and
depth from the fault is studied numerically.
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I Introduction

Strains and stresses within the Earth constitute important precursors of earthquakes. Therefore, the
determination of the static deformation of an Earth model around surface faults is important for any scheme for
prediction of earthquakes. Static dislocation models are used to analyze the static deformation of the medium
caused by earthquake faults. Steketee (1958a, b) applied the elasticity theory of dislocations in the field of
seismology. For the sake of simplicity, Steketee ignored the curvature of the Earth, its gravity, anisotropy and
non-homogeneity and dealt with a semi-infinite, non-gravitating, isotropic and homogeneous medium.
Homogeneity means that the medium is uniform throughout, whereas isotropy specifies that the elastic
properties of the medium are independent of direction. Maruyama (1964) calculated all the sets of Green’s
functions required for the displacement and stress fields around faults in a half-space. Jungels and Frazier (1973)
described a finite element variational method applied to plain strain analysis. This technique presents a suitable
tool for the analysis of permanent displacements, tilts and strains caused by seismic events. The accuracy of
technique was demonstrated by comparing the numerical results for the static field due to long dislocation in a
homogeneous half-space from closed form analytical solution with those obtained from the finite element
method. Sato (1971) and Sato and Yamashita (1975) derived the expressions for the static surface deformations
due to two-dimensional strike slip and dip-slip faults located along the dipping boundary between the two
different media. Freund and Barnett (1976) gave a two-dimensional analysis of surface deformation due to dip-
slip faulting in a uniform half-space, using the theory of analytic functions of a complex variable.

Singh and Garg (1986) obtained the integral expressions for the Airy stress function in an unbounded
medium due to various two- dimensional seismic sources. Singh et al. (1992) followed a similar procedure to
obtain closed-form analytical expression for the displacements and stresses at any point of either of two
homogeneous, isotropic, perfectly elastic half-spaces in welded contact due to two-dimensional sources. Singh
and Rani (1991) obtained closed-form analytical expressions for the displacements and stresses at any point of a
two-phase medium consisting of a homogeneous, isotropic, perfectly elastic half-space in welded contact with a
homogeneous, orthotropic, perfectly elastic half-space caused by two-dimensional seismic sources located in the
isotropic half-space. Bonafede and Rivalta (1999a) obtained analytical solutions for the elementary tensile
dislocation problem in a layered elastic medium composed of two welded, semi-infinite half-spaces. A plain -
strain configuration was considered and different rigidities and Poisson ratios were assumed for the two half-
spaces. The elementary dislocation problem refers to a dislocation surface over which a jump discontinuity with
constant amplitude (Burgers vector) is prescribed for the displacement field. Similar dislocation models in
homogeneous half-spaces (e.g. Okada, 1992) are often employed to model dyke injection within the crust (e.g.
Bonaccorso and Davis 1993), although a constant-displacement discontinuity, in general, is not the most
realistic description of dyke opening. Bonafede and Rivalta (1999b) obtained the solutions for the displacement
and stress fields produced by a vertical tensile crack, opening under the effect of an assigned overpressure
within it, in the proximity of the welded boundary between two media characterized by different elastic
parameters. Singh et al.(2011) obtained analytical expressions for stresses at an arbitrary point of homogeneous,
isotropic, perfectly elastic half-space with rigid boundary caused by a long tensile fault of finite width.
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Beginning with the expressions obtained by Singh and Garg (1986), we have obtained the integral expressions

for the Airy stress function, displacements and stresses in a homogeneous, isotropic, perfectly elastic half-space
by applying the boundary conditions of rigid boundary at the surface of the half-space. The integrals were then
evaluated analytically, obtaining closed-form expressions for the Airy stress function, the displacements and the
stresses at any point of the half-space caused by two-dimensional buried sources. The expressions for a vertical
dip-slip dislocation follow immediately.

1. Theory
Let the Cartesian co-ordinates be denoted by (X, Y,z) = (X, X,,X;) with Z - axis vertical. Consider a

two-dimensional approximation in which the displacement components U,,U, and U, are independent of X so

that &/ Ox =0. Under this assumption, the plane strain problem (U, = 0) can be solved in terms of the Airy
stress function U such that

. o°U . o°U - o°u @
22 azz ! 23 8yaz ! 33 ayz
vivAU =o. @

where p;are the components of stress. As shown by Singh and Garg (1986), the Airy stress function U0 for a

line source parallel to the X -axis passing through the point (0, 0, h) in an infinite medium can be expressed in
the form

Uo = T[(Lo +Mgk|z—hf)sinky +(P, +Quk|z —h|)cos ky]k’le‘k‘z‘h‘dk )
0

where the source coefficients LO, I\/IO, Poand Q0 are independent of k. Singh and Garg (1986) have obtained
these source coefficients for various seismic sources.

For a line source parallel to the X -axis acting at the point (0, 0, h) of the half-space z > 0, a suitable
solution of the biharmonic equation (2) is of the form

U=U, +_|.[(L+ Mkz)sinky + (P +Qkz) cosky |k ‘e *dk (4)
0

where U, is given by the equation (3) and L,M,P and Q are unknowns to be determined from the boundary
conditions. From the equations (1) and (4), the stresses and the displacements are found to be

0

P = [ [ (Lo —=2My +Mok|z—h[) e+ (L-2M + Mkz)e™ Jsinky k dk

0
J[(P~2Q +QJz—hl) ™+ (P-2Q + Qkz)e = Joosky k ok ©
0
Pzs :T[i(l—o—Mo+Mok|z_h|) e 4 (L—M + Mkz)e ™ Joosky k dk
0
+T[¢(Po ~Q, +Quk|zh|) oKz +(P_Q+Qk2)e‘“]sinky » (6)
0
P :_T[(Lo + M0k|Z—h|) a +(L+ Mkz)e*kZ]sinky Kk dk
| @)

_T[(PO +Qpk|z—hl) e (P +QkZ)e‘kZ]cos ky k dk

0
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where the upper sign is for zZ > h and the lower sign for Z <hand a = .
A+2u

We assume that the surface of the half-space z > Qs with rigid boundary. Therefore, the boundary conditions
are

u,=u;=0at z=0 (10)
It is noticed that Ly, M, Pyand Q, have different values for z>hand z<h. Let L',M~,P and Q" be,

respectively, the values of Ly, M, Pyand Q, for z<h.
Equations (8) and (9) using boundary conditions of equation (10) yield

L=—% {L —3[1—1]M + Mkh} et
2—a a a

M :%[2L*-M*+2M*kh] gt (11)

et

Q=5 a[zp ~-Q +2Qkh]e*

Puttlng the values of L,M,P and Q in equations (4) to (9), we get the Airy stress function, the stresses and the

displacements at any point of the half-space in the form of integrals. These integrals can be evaluated by using
standard integral transforms given in Appendix. The final results are given below where we have used the
notations

R:=y*+(z—h)*>, RZ=y*+(z+h)*, z=h (12)
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1. Dip-Slip Dislocation
The field due to a line dip-slip fault of arbitrary dip can be expressed in terms of the fields due to a
vertical dip-slip fault and a dip-slip on a 45° dipping fault:

17)

U = 2dods| U 5, 35 €05 20 +U gy SN 25 | (19)

V. Vertical Dip-Slip Dislocation
From equation (19), the double couple (23) + (32) of moment D,, is equivalent to a vertical dip-slip
line source such that

D,, = ubds (20)
where b is the slip. Therefore, from Appendix Il, the source coefficients for a vertical dip-slip line source are
given by

L=R=Q=0 M= iau—bds

g (1)
L =P =Q =0, M = - %P%

T

On putting the values of source coefficients from equation (21) into equations (13) - (18), the results for the Airy
stress function, the stresses and the displacements for a vertical dip-slip are found to be:

Uzaybds{y(z;h)JrZ(a—l) tan‘l( y j{ o )y(z;h)_[ a j4hyz(i+h)} 22)
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V. Numerical Results

R6
We study numerically the stress and the displacement field at any point of the uniform isotropic
perfectly elastic half-space caused by a vertical dip-slip line source. We define the following dimensionless
quantities

y z
Y ==, Z=— 28
. . (28)
: : . . . . bds
where h is the distance of the line source from the interface. The displacements are calculated in units of —
zh
bd
and # , Where b is the slip and ds is the width of the fault. Let the dimensionless stresses and displacements
T

be denoted by U, and P;. Then,

o bdsU | _ pbds

P
U= (29)

U] 7Z'h 2

From equations (22) - (27) and (28) and (29), we get the following expressions for the dimensionless stresses
and displacements for a vertical dip-slip line source:

o _2 6Y(L-Z) 8Y(L-2)° TY(1+Z) Y(3+Z) 4Y(3+Z)(1+Z) 24YZ(1+Z)_48YZ(1+Z)3
Zo3l A AP 2B* B* B B B® (30)

2[1 81-2)" 81-2)' 51+Z) 5 3(+2)° 6Z 4(1+Z)“+482(1+Z)2_482(1+Z)41

=—|—=- + +— -—+
o3l A A° 2B* 48> B* B B® B® B® (31)
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where A =Y? +(Z -1)?, B?=Y?+(Z +2)*

VI. Discussion
Figures 1.1 - 1.3 show the variation of dimensionless stresses P,, , P,; and P,, at the interface with the

horizontal distance from the fault. Figure 1.1 shows the variation of normal stress P,, with distance from the
fault at z = 2h, 2.5h and 3h respectively. Moreover, P,,tends to zero as y approaches to infinity. Figure 1.2
shows the variation of the dimensionless shear stress P,, with the horizontal distance from the fault at z = 2h,

2.5h and 3h respectively. Aty = 0, P,, attains its maximum value for z = 2h and minimum value at z = 3h. P,
approaches to zero as y approaches to infinity. Figure 1.3 shows the variation of the dimensionless normal stress
P,; with y at z = 2h, 2.5h and 3h. It is observed that P,; is zero at y = 0 and also tends to zero as y approaches

to infinity. Figure 1.4 — 1.5 shows the variation of dimensionless displacements U, and U, at the interface
with the horizontal distance from the fault. The variation of U, and U, for z = 3h is smooth, but for z = 2h, has

sharp maxima and minima. It is noticed that the displacements U, and U, approaches to zero as y approaches
to infinity.

Figure 1.6 shows the variation of dimensionless stresses P,,at the interface with the depth at two
epicentral locations at y = 2h, 2.5h and 3h respectively. It is observed that for y = 3h , the variation is smooth
but for y = 2h, P,, varies strongly in the range 0 < z < 2h . Moreover it tends to zero as z approaches to infinity.

Figure 1.7 shows the variation of the dimensionless shear stress P,; with the depth at y = 2h, 2.5h and 3h
respectively. The variation of P,, for y =2h depends strongly on z whereas for y = 2.5h and y = 3h, the variation
of stress component P, is smooth. P,; tends to zero as z approaches to infinity. Figure 1.8 shows the variation
of the dimensionless normal stress P,; with z at y = 2h, 2.5h and 3h. For y = 2h, P,; attains the maximum
value. The variation is significant in the range 0 < z < 2h. P,, tends to zero as z approaches to infinity. Figure
1.9 and Figure 1.10 shows the variation of dimensionless displacements U, and U, with the depth at y = 2h,
2.5h, 3h from the fault. The variation of U, and U, for y = 3h is smooth, but for y = 2h, has sharp maxima and
minima. U, and U, approache to zero as z approaches to infinity.
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Fig. 1.1 Variation of dimensionless normal stress P, with the distance from the fault

23

) \\ﬁ
o0.2f E |
o4 - £ i
L

z=2h

0.6 z=2.5n| ]|
z=3h

os ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

o 1 2 3 4 5 6 7 8 9 10

DIMENSIONLESS DISTANCE FROM THE FAULT

Fig. 1.2 Variation of dimensionless shear stress P,z with the distance from the fault
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Fig. 1.5 Variation of dimensionless displacement U; with the distance from the fault
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Fig. 1.8 Variation of dimensionless normal stress P33 with the depth from the fault
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Source coefficients for various sources. The upper sign is for z > h and the lower sign for z < h.
[a=(+w)/(A+2u)]

Source Lo Mo Po Qo
F F
Single Couple (23) 72 ta -2 0 0
27 27
H F32 F32
Single Couple (32) +—== ta—= 0 0
27 27
Double Couple (23) + (32) 0 i% D,, 0 0
Fa3=F3 =Dy
R23

Centre of rotation (32) - (23) =

Fos=Fz =R
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Dipole (22) 0 0 (-a)z ~2F,

27 27
Dipole (33) 0 0 (1—05)i iFa.s

27 27
Centre of dilatation (22) + (33) 0 0 l-a) S 0

T
F2=F;=Co
a .

Double Couple (33) - (22) 0 0 0 ~ D,,
Fu=Fu=D 5
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