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Abstract : A self- starting hybrid linear multistep method for direct solution of the general second-order initial 

value problem is considered. The continuous method is used to obtain Multiple Finite Difference Methods 

(MFDMs) (each of order 7) which are combined as simultaneous numerical integrators to provide a direct 

solution to IVPs over sub-intervals which do not overlap. The convergence of the MFDMs is discussed by 

conveniently representing the MFDMs as a block method and verifying that the block method is zero-stable and 

consistent. The superiority of the MFDMs over published work is established numerically. 
Keywords: Multiple Finite Difference Methods, Second Order, Boundary Value Problem, Block Methods, 

Multistep Methods 

 

I.  Introduction 
The mathematical formulation of physical phenomena in science and engineering often leads to initial 

value problems of the form: 

      00 ,,,  ayyayyxfy
                             (1)

 

However, only a limited number of analytical methods are available for solving (1) directly without 

reducing to a first order system of initial value problems. Some authors have proposed solution to higher order 

initial value problems of ordinary differential equations using different approaches [1-5]. In particular Awoyemi 

and Idowu [2] developed a class of hybrid collocation method for third order ordinary differential equations. 

Awoyemi[1] derived a p-stable linear multistep method for general third order initial value problems of  

ordinary differential equations which is to be used in form of predictor-corrector forms and like most linear 

multistep methods, they require starting values from Runge-Kutta methods or any other one-step methods. The 
predictors are also developed in the same way as correctors. Moreover, the block methods in Fatunla [3] are 

discrete and are proposed for non-stiff special second order ordinary differential equations in form of a 

predictor- corrector integration process. Also like other linear multistep methods they are usually applied to the 

initial value problems as a single formula but they are not self-starting; and they advance the numerical 

integration of the ordinary differential equations in one-step at a time, which leads to overlapping of the 

piecewise polynomials solution Model. There is the need to develop a method which is self-starting, eliminating 

the use of predictors with better accuracy and efficiency. This study, therefore propose a block hybrid multistep 

method for the direct solution of third order initial value problems of ordinary differential equations. 

Recently, several researches [6-10] proposed LMMs for the direct solution of the general second and 

third order IVPs, which were showed to be zero stable and were implemented without the need for either 

predictors or starting values from other methods. Jator [11] used the LMMs developed for IVPs and additional 
methods obtained from the same continuous k-step LMM to solve third order BVPs with Dirichlet and 

Neumann boundary conditions and also Yahaya and Mohammed [12] developed a 5-step block method for 

special second order ordinary differential equations. We extended their methods into hybrid form by adding one 

off-step point at collocation.  The 5-step block hybrid method is zero-stable, consistent and convergent. 

 

II.      Development Of Methods. 
In this section, our objective is to derive hybrid linear multi-step method (HLMM) of the form 
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Where j , j  and v  are unknown constants and v  is not an integer. We note that k =1, 0j , 0  and 

0  do not both vanish. In order to obtain (2), we proceed by seeking to approximate the exact solution Y(x) of 

the form 
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Where   jlbax ,, are unknown coefficients to be determined and kr 1 , 0s  are the number of 

interpolation and collocation points respectively. We then construct our continuous approximation by imposing 

the following conditions.  

  1...,,2,1,0,   rjyxY jnjn

             (4) 

    
nn fxY                             (5) 

Equation (4) and (5) lead to a system of (r+s) equations which is solved by Cramer’s rule to obtain jl . Our 

continuous approximation is constructed by substituting the values of jl  into equation (3). After some 

manipulation, the continuous method is expressed as 
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Where  xj ,  xj  and  xv  are continuous coefficients. We note that since equation (1) involves first and 

second derivatives, the first  derivative formula 
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Equation (7) is easily obtained from (6) and is then used to provide the first and second derivatives for the 

methods by imposing the condition 

   xzxY 
          (8) 

  0zaY 
         (9) 

 

III. Specification Of The Methods 

Our methods are obtained from section two and expressed in the form of (2) given by 
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with the following specification  
  12...,,1,0,,5,7,2  ixxksr i

i  we also express the 
continuous form as follows: 

:
𝑌(𝑥) =  4 −

𝑥−𝑥𝑛

ℎ
 𝑦𝑛+3 +  −3 +

𝑥−𝑥𝑛
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 𝑦𝑛+4 +  

493
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ℎ −

27271

90720
ℎ 𝑥 − 𝑥𝑛  +

1

2
 𝑥 − 𝑥𝑛  

2 −
451

1080

 𝑥−𝑥𝑛  3

ℎ
+

257312960𝑥−𝑥𝑛4ℎ2−9160𝑥−𝑥𝑛5ℎ3+616480𝑥−𝑥𝑛6ℎ4−1315120𝑥−𝑥𝑛7ℎ5+130240𝑥−𝑥𝑛8ℎ6𝑓𝑛+31392
940ℎ2−5248935280ℎ𝑥−𝑥𝑛+1514𝑥−𝑥𝑛3ℎ−271336𝑥−𝑥𝑛4ℎ2+9473360𝑥−𝑥𝑛5ℎ3−671260𝑥−𝑥𝑛6ℎ4+37
7056𝑥−𝑥𝑛7ℎ5−14704𝑥−𝑥𝑛8ℎ6𝑓𝑛+1+267140ℎ2−2980ℎ𝑥−𝑥𝑛−32𝑥−𝑥𝑛3ℎ+361240𝑥−𝑥𝑛4ℎ2−149240𝑥
−𝑥𝑛5ℎ3+47360𝑥−𝑥𝑛6ℎ4−172𝑥−𝑥𝑛7ℎ5+11680𝑥−𝑥𝑛8ℎ6𝑓𝑛+2+859315ℎ2−60013780ℎ𝑥−𝑥𝑛+53𝑥−𝑥𝑛3
ℎ−391216𝑥−𝑥𝑛4ℎ2+199240𝑥−𝑥𝑛5ℎ3−103540𝑥−𝑥𝑛6ℎ4+11504𝑥−𝑥𝑛7ℎ5−11008𝑥−𝑥𝑛8ℎ6𝑓𝑛+3+1698
40 ℎ2+653310080ℎ𝑥−𝑥𝑛−158𝑥−𝑥𝑛3ℎ+20396𝑥−𝑥𝑛4ℎ2−491480 
𝑥−𝑥𝑛5ℎ3+181720𝑥−𝑥𝑛6ℎ4−311008𝑥−𝑥𝑛7ℎ5+1672𝑥−𝑥𝑛8ℎ6𝑓𝑛+4+3526615 
ℎ2−1050419845ℎ𝑥−𝑥𝑛+256189𝑥−𝑥𝑛3ℎ 
−43842835𝑥−𝑥𝑛4ℎ2+1621𝑥−𝑥𝑛5ℎ3−5442835𝑥−𝑥𝑛6ℎ4+321323𝑥−𝑥𝑛7ℎ5−86615𝑥−𝑥𝑛8ℎ6𝑓𝑛+92+−3
140ℎ2+67560ℎ𝑥−𝑥𝑛−310𝑥−𝑥𝑛3ℎ 
+83240𝑥−𝑥𝑛4ℎ2−83480𝑥−𝑥𝑛5ℎ3+245𝑥−𝑥𝑛6ℎ4−295040𝑥−𝑥𝑛7ℎ5+13360𝑥−𝑥𝑛8ℎ6𝑓𝑛+5  

            (11) 
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, The MFDMs are obtained by evaluating (11) at 
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 In particular, to start the initial value problem for n = 0, we obtain the following equations from (9):
  

𝑧𝑛 = −
1

635040

1

ℎ
  635040𝑦𝑛+3 − 635040𝑦𝑛+4 + 190897ℎ2𝑓𝑛 + 944802ℎ2𝑓𝑛+1 + 230202ℎ2𝑓𝑛+2 +

1008168ℎ2𝑓𝑛+3−411579ℎ2𝑓𝑛+4+336128ℎ2𝑓𝑛+92−75978ℎ2𝑓𝑛+5

       (17)
 

   

 
It is worth noting that the derivatives are provided as follows: 

𝑧𝑛+1 = −
1

90720

1

ℎ
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  2903040𝑦𝑛+3 + 2903040𝑦𝑛+4 + 1517ℎ2𝑓𝑛 − 13977ℎ2𝑓𝑛+1 + 68202ℎ2𝑓𝑛+2

− 425706𝑓𝑛+3 − 2137383ℎ2𝑓𝑛+4 − 382976ℎ2𝑓
𝑛+

9

2
− 12717ℎ2𝑓𝑛+5  

𝑧𝑛+5 =
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ℎ
  211680𝑦𝑛+3 − 211680𝑦𝑛+4 + 224ℎ2𝑓𝑛 − 1941ℎ2𝑓𝑛+1 + 8484ℎ2𝑓𝑛+2 − 40194𝑓𝑛+3

− 124068ℎ2𝑓𝑛+4 − 122624ℎ2𝑓
𝑛+

9

2
− 37401ℎ2𝑓𝑛+5  
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IV. Analysis And Implementation Of The Method 

Following Fatunla [13] and Lambert [4] we define the local truncation error associated with the 

conventional form of (2) to be the linear difference operator 

        vnv

k

j

jj fhjhxyhjhxyhxyL 
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0

22;

     

 (18) 
Assuming that y(x) is sufficiently differentiable, we can expand the terms in (18) as a Taylor series about the 

point x to obtain the expression 

       ...,...,; 10  xyhCyhCxyChxyL qq
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Where the constant coefficients ,...1,0, qCq   are given as follows:  ,...1,0, qCq  
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According to Henrici [14], we say that the method (5) has order p if 

0,0... 2110   PPP CCCCC  

Our calculations reveal that the methods (12) to (16) have order p = 7 and error constants given
 
by the vector 

T

C 









423360

797
,

169344

31
,

282240

31
,

846720

229
9  

In order to analyze the methods for zero-stability, we normalize (12) to (17) and write them as a block method 

given by the matrix difference equation 

  FBFBhYAYA 1

1

021

1

0              (20) 

Where     ,....,,...,, 3311

T

nn

T

nn yyYyyY   

    ,..5,0...,,...,, 3311   nandffFffF
T

nn

T

nn 

       and matrices A0 and A1 are defined as follows:  

A0 is an identity matrix of dimension 6 





























100000

010000

001000

000100

000010

000001

0A

, 




























100000

100000

100000

100000

100000

100000

1A

 

It is worth noting that zero-stability is concerned with the stability of the difference system in the limit as h 

tends to zero. Thus, as 0h  , the method (20) tends to the difference system 

01

1

0   YAYA  Whose first characteristic polynomial  R  is given by 

     1det 510  RRARAR
           

(21)
 

Following Fatunla [13], the block method (20) is zero-stable, since from (21), 

  kjRSatisfyR j ,...,110   and for those roots with jR =1, the multiplicity does not exceed 2. 

The block method (20) is consistent as it has order 1P . According to Henrici [14], we can safely assert the 

convergence of the block method (20). 
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It is vital to note that the main method given by (10) can be used as a numerical integrator directly and singly in 

the conventional way on overlapping sub-intervals. However, our method is implemented more efficiently by 

combining methods (12) to (16), each of order seven with relatively small error constants, as simultaneous 
integrators for IVPs without looking for any other methods to provide the starting values. We proceed by 

explicitly obtaining initial conditions at 5,...,5,0,5  Nnxn  using the computed values

    5555 ,   nnnn zxzyxy  over sub-intervals    Nn xxxx ,...,, 550   which do not overlap (see [10]). For 

instance,  Tyyyyyn 54321 ,,,,,0  are simultaneously obtained over the sub-interval  50 , xx  as y0 is 

known from the IVP, for  Tyyyyyn 109876 ,,,,,5   are simultaneously obtained over the sub-interval

 105 , xx , as y5 is known from the previous block, and so on. Hence, the sub-intervals do not over-lap and the 

solutions obtained in this manner are more accurate that those obtained in the conventional way. 

 

V. Numerical Examples 

In this section, we have tested the performance of the method on three problems by considering  

nonlinear IVPs (Examples 4.1), linear non-homogeneous ODE (Example 4.2), mildly stiff problem (Example 

4.3). For each example, we find absolute errors of the approximate solution. 
 

Example 4.1 We consider the equation 

     

 
 
 

















x

x
xySolutionExact

yyyxy

2

2
ln

2

1
1:

2

1
0,10

2

 

It is obvious that, our method performs better than those given in Awoyemi [3,4] despite the fact that we used a 

larger step size h = 0.05. Hence, for this example, our method is clearly superior. The details of the numerical 

results at some selected points are given in Table 4.1 

 
Table 4.1 

x Awoyemi [1] Order 

p = 6 

h = 0.003125 

Awoyemi and 

Kayode[2] Order p 

= 8  

h = 0.003125 

Jator[6] Order  

p = 6  

h = 0.05 

Our Methods Order 

p=7 

h = 0.05 

0.1 0.26075 ×10−9 0.66391×10−13 0.71629 × 10−11 0 

0.2 1.98167 ×10−9 0.20012 ×10−9 0.15091. × 10−10 0 

0.3 6.50741 ×10−9 1.72007 ×10−9 0.45286 × 10−10 0 

0.4 15.5924 ×10−9 5.89464 ×10−9 1.08084 × 10−10 0 

0.5 31.5045 ×10−9 14.4347 ×10−9 1.78186 × 10−10 0 

0.6 56.3746 ×10−9 41.8664 ×10−9 4.44344 × 10−10 0 

0.7 96.1640 ×10−9 53.1096 ×10−9 7.44460 × 10−10 0 

0.8 156.868 ×10
−9

 91.1317 ×10
−9

 15.0098 × 10
−10

 0 

0.9 248.698×10−9 149.242 ×10−9 37.5797 × 10−10 0 

1.0 387.984×10−9 237.189 ×10−9 47.4108 × 10−10 0 

 

Example 4.2 We consider the non-homogeneous ODE given by 

   

  322

3

8

1

16

3

32

3
2sin

64

3
2cos2:

40,2084

xxxxxexySolutionExact

yyxyyy

x 










 

Although the numerical results of this problem were not compared with another method, the results were 
compared with the theoretical solution as shown in Table 4.2. 
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Table 4.2 

Exact solution 
Y(x) 

Numerical 
solution Y(x) Present Error 

Error by Jator [7] 

2 2 0 0.00000×10
−6

 

2.394112577 2.39411253 4.69999999E-08 5.10704×10
−6

 

2.748141333 2.748141222 1.11000000E-07 14.9586×10
−6

 

3.00786694 3.007866777 1.63000000E-07 27.8532×10
−6

 

3.101762405 3.101762202 2.03000000E-07 42.8908×10
−6

 

2.939543102 2.939542877 2.25000000E-07 67.0307×10
−6

 

 

Example 4.3. We consider the mildly stiff IVP 

   

  xexySolutionExact

yyyyy





:

10,10010001001
 

Although the numerical results for this problem were not compared with another method, the results were 
compared with the theoretical solution as shown in Table 4.3. 

 

Table 4.3 

x Y(x)-Exact Y-Numerical Error 

0 1.000000000 1.000000000 0 

0.1 0.9048374180 0.9048374180 0 

0.2 0.8187307531 0.8187307531 0 

0.3 0.7408182207 0.7408182207 0 

0.4 0.6703200460 0.6703200460 0 

0.5 0.6065306597 0.6065306597 0 

0.6 0.5488116361 0.5488116361 0 

0.7 0.4965853038 0.4965853038 0 

0.8 0.4493289641 0.4493289641 0 

0.9 0.4065696597 0.4065696597 0 

1.0 0.3678794412 0.3678794412 0 

 

VI. Conclusion 

We have derived a five-step continuous HLMM from which MFDMs are obtained and applied to solve 

 yxfy ,   without first adapting the ODE to an equivalent first order system or reducing it to an initial-

value problem. The MFDMs are applied as simultaneous numerical integrators over sub-intervals which do not 

overlap and hence they are more accurate than SFDMs which are generally applied as single formulas over 

overlapping intervals. We have shown that the methods are zero stable, convergent and which make them 

suitable candidates for computing solutions on wider intervals. In addition to providing additional methods and 
derivatives, the continuous HLMM can be used to obtain global error estimates. Our future research will be 

focused on adapting the MFDMs to solve third order partial differential equations. 
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