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Abstract: Recently the unified method for finding traveling wave solutions of non-linear evolution equations 

was proposed by one of the authors a. It was shown that, this method unifies all the methods being used to find 

these solutions. In this paper, we extend this method to find a class of formal exact solutions to Korteweg-de 

Vries (KdV) equation with space dependent coefficients. A new class of multiple-soliton or wave trains is 

obtained. 
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I. Introduction 

               We consider the following evolution equation 
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 where f  is a polynomial in its arguments. When Eq. (1) does not depend explicitly on x  and t , it can be 

reduced to a subclass of ordinary differential equations by using the Lie groups for partial differential equations 

[1] or by using similarity transformations. Among these equations, the traveling wave has the form  
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 which results due to the translation symmetry of (1). The Painleve’ analysis is used to testing the integrability 

of partial differential equations, that was developed in [2]. Auto-B a cklund transformation deals with the exact 

solutions that were obtained for integrable forms of (2) by truncating Painleve’ expansion [3-9]. Recently auto-

B a cklund transformation that was extrapolated in [10-14] and the homogeneous balance method in [15-19] 

assert a solution for evolution equations with variable coefficients in the form   
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 where   is the base function. 

 

II. Extended unified method 
        Explicit solutions of evolution equations of type (2) are, in fact, particular solutions. In this respect, 

these solutions are mapped to other solutions that are given in terms of known elementary or special functions. 

Recently in [20] the class of these solutions was obtained by the generalized mapping method (GMM). This 

method generalizes the results as polynomial or rational function solutions. In the present paper, we extend this 
method to handle equations of type (1). 

 

2.1- Polynomial Solutions 

  In this section, we search for polynomial solutions of equations (2) in 
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Indeed the set S  contains elementary or elliptic functions for some particular values of kpq ,, and 1k . The 

mapping method asserts that there exists a positive integer n  and a mapping  
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Such that   )()( nPuM   and satisfies the properties  
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Thus M is a ring homomorphism that conserves differentiation. By the former conditions, we find that  
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By using the properties of M  and the last results and as ,.....),,,( tuutxff   is a polynomial in its 

arguments, we find that )( fM  is a polynomial and there exists ss 0  such that  )()(
0
sPfM .  

It is worthy to notice that all these polynomials have different coefficients. More simply the mapping 

M assigns to u and f  gives two auxiliary equations, the polynomials )(nP  and )(
0
sP  respectively. In 

case of equations (1) kmmns 0 . The utility of the above presentation helps us to give arguments to the 

statements of the conditions in lemmas 2.1 and 2.2. Also, we think that it allows for constructing more 

generalization and it is more appropriate when (1) is a vector equation. 
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,....,,,  as polynomials in  , so that the function f  is a polynomial in  , 

together with two auxiliary equations. In the applications we may write directly )(),(
0
 sn PfPu  .  

  From the previous analysis we may write 
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 where for instance we assume that kk =1 , so that the auxiliary equations are  
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 together with the compatibility equation  

 .= txxt   (5) 

 We mention that solutions of (4) when exist, are elementary ( 1== qp ). The case of elliptic solutions 

( 2== qp ) will be considered in a future work.  

When substituting from (3) and (4) into (1) we find that it is transformed to 0)()( f

o
sP  that gives rise to  
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 By equating the coefficients of o

i si 0,1,...,=,  to zero, we get a set of 1)( os  algebraic (or differential) 

equations, namely the principle equations, in the functions ii ba ,  and c i . On the other hand the equations that 

result from (5) count: 12 k , 2k . We mention that these later unknown functions count: 32  kn  .  

  In Eq.(1), if x

juu  and u
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 are the highest nonlinear and the highest order derivative terms 

respectively, then we get the balancing condition as 

mkmnknnjso  =1= . Thus by solving for n , we find that it depends on jm,  and k . 

The last result and the number of compatibility equations namely 12 k , 2k  determine if the equations to 

be solved are over-determined or under-determined. The number of the determining equations, balances the 

number of unknowns, is over-determined or is under-determined when the difference, namely 

3)2(1)(21)(  knkkmmn  is 0,>0,  or 0<  respectively. From this last conditions, we 

may determine a consistency condition that will be identified in the lemmas. In what follows necessary 

conditions for the existence of polynomial solutions will be stated. 
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Lemma 2.1. For polynomial-solutions of (1) (as a polynomial in  ) to exist it is necessary that 

(i) )(:=1)/1)(( njkm   is a positive integer  

(ii) mkm  31)(  when the equation (1) in the absence of x , and t  passes the Painleve’ test . 

Otherwise m  is replaced by 2. 

We notice that the first and the second conditions in lemma 2.1 are the balancing and the consistency 

conditions respectively. For details see [20]. 

 

  2.2 – The rational function solutions  

  Here, also we search for solution of equation (1) in )(RC S
. For rational function solutions of equation (1), we 

consider the space of functions 

},)(/)(,{ SQPvv rnR    and )(rQ  has no zeros in RK  . The definitions in the above 

and the GMM for rational function solutions assert that there exists a mapping  
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The properties of these mapping are the same properties of the mapping )(uM  in section 2.1. By bearing in 

mind these properties and from equations (4) and (5), we find that  
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So that the Eq. (1) is transformed to 0)(
1

RsP . Equivalently, the last identity becomes 
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In (8), by equating the coefficients of 10,1,...,=, sii  to zero, we get a set of 1)( 1 s  equations that 

determine the functions iii cba ,,  and id . We mention that these later functions count 32  rkn  . By 

using the same assumptions on Eq. (1), as in section 2.1, the balancing condition is  
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 Now by solving (9) for n , we find that it depends on jm, , r  and k  and, in both two cases, we get the same 

equation for rn  . Hereafter, we distinguish between the two cases mentioned in (9). From the last results and 

when 1< mj , the number of the determining equations, balances the number of unknowns, is over-

determined or is under-determined when the difference, namely  

3)2(1)(21)(  rknkrmmkmn
 
is 0<0,>0, or  respectively. 

 But when 1> mj  this difference is  

3)2(1)(21)))((1(  rknkmjrrmmkmn . From these last conditions, we may 

determine the consistency condition that will be identified in the following Lemma. 

Lemma 2.2. For solitary wave-rational solutions of Eq. (2) to exist it is necessary that 

(i) )(:=1)/1)(( rnjkm   is an integer  

(ii) 1<,31)(1)(  mjmmkmr  or  

1>2,21)(2)(  mjkmkjr , in the case when Eq. (1) passes the Painleve’ test.  

Otherwise 2,21)(1)(  kmkmr 1< mj  or 1>2,21)(2)(  mjkmkjr . 
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For details see [20]. 

 

III.      Exact solutions of space dependent KdV equation 
  Here, we extend the unified method to the variable coefficient KdV equation  
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 where f  and g  are arbitrary functions in x . For 0<x , the solutions of Eq. (10) hold if we replace x  by 

x  and assuming that )(=)( xfxf   and )(=)( xgxg  . We mention that Eq. (10) describes the 

propagation of waves in a medium with space dependent dispersion and conviction. In fact, differential 

equations with variable coefficients may be of practical interests. Some exact solutions were obtained in 

Nirmala and Vedan [21] and E. Fan [12] when the coefficients in Eq. (10) are time dependent, namely )(tf  

and )(tg . In these works, solutions were obtained when )(=)( tgctf , where c  is a constant.  

 

3.1  The polynomial function solutions 
              In what follows we shall derive a polynomial solution of equation Eq. (10In lemma 2.1, the consistency 

condition holds when k =2,3 but it does not hold when k≥4. So that, only the cases k=2,3 will be considered. 

When k=2, n=2, by substituting into (3), (4) and (10), we get six principle equations. We mention that 

calculations are carried out by using MATHEMATICA where standard functions in calculus and algebra 

were only needed. The steps of computations are as follows; 
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 together with explicit equations for ),(2 txb , ),(1 txb  and ),(0 txb  (they are too lengthy to written here) 

where 
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Step 2. We consider the compatibility equations that result from txxt  =  and they are given formally 

by;  
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 To simplify the computations, we make the transformations  
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where  ),(),,( 10 txCtxC  are arbitrary functions. To evaluate ),(0 txa  the following steps are used. 

i- Solve the last equation in (12) for xa0  

ii- Eliminate xxxxx aa 00 ,  

iii- Substitute in the middle equation in (12) to get ),(0 txa  

iv- Calculate xa0  from the last step and identify it by xa0  from step (i), we get an equation in ,..., 00 xCC . 

As the computations are too lengthy in the general case, we consider a power law functions 
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v- Solve the equation that result from (iv) in xC0  

vi- Substitute into the first equation in (12) and solve for tC0 . Thus (12) solved completely. 

vii- Calculate txC0  from (vi) and balance it with xtC0  from (v), we get the following algebraic 

equations 
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In what follows we find the solution of Eq. (10): 
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 By substituting from (17), into (3) we get a solution of (10) as  
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 It is worth noticing that one can verify that the solution given by (18) satisfies (10). 
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 also the auxiliary equations (3) solve to  
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 and we get the solution of Eq. (10) as  
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 When 1,= m  we get the following results  
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               Case (2): when 
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 Again, the solutions (20) or (22) or (24) verify Eq. (10). 

  

IV. Conclusions   
               In this paper, we suggested an extended unified method for finding exact solutions to evolution 

equations with variable coefficients. A wide class of exact solutions to KdV equation with Space dependent 
coefficients is obtained. The method and the solutions that we obtained here are completely new and we can use 

this method to find exact solutions of coupled evolution equations. But in this case we think that parallel 

computations should be used. 
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