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Abstract: In this paper the terms completely prime ideal, prime ideal, m-system. globally idempotent , semi
simple elements of a ternary semigroup are Introduced. It is proved that an ideal A of a ternary semigroup T is
completely prime if and only if T\A is either sub semigroup of T or empty. It is proved that if T is a globally
idempotent ternary semigroup then every maximal ideal of T is a prime ideal of T. In this paper the terms
completely semiprime ideal, semiprime ideal, n-system, d-system and i-system are introduced. It is proved that
the non-empty intersection of any family of a completely prime ideal and prime ideal of a ternary semigroup T is
a completely semiprime ideal of T. It is also proved that an ideal A of a ternary semigroup T is completely
semiprime if and only if T\A is a d-system of T or empty. It is proved that if N is an n-system in a ternary
semigroup T and a€ N, then there exist an m-system M in T such that ac M and M < N. The terms radical,
complete radical of a ternary semigroup are introduced. It is proved that if A and B are any two ideals of a

ternary semigroup T, then i) A — B = A — +/B i) JJABC = \/AﬂBﬂC =JAn+JBNJC

iii) x/\/_= \/K It is also proved that if A is an ideal of ternary semigroup T then \/K =
{(xeT:M(X)NA=D}.
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l. Introduction
The theory of ternary algebraic system was introduced by Lehmer [13] in 1932, but earlier such
structures were studied by Kasner [10] who gave the idea of n-ary algebras . Ternary semigroups are universal
algebras with one associative ternary operation. Anjaneyulu.A [1],[2] initiated the study of ideals in semigroups.
S.Kar and B.K.Maity [9] initiated the study of some ideals of ternary semigroups. Sioson. F. M [18] studied
about Ideal theory in ternary semigroups. lampan . A.[7] gave the idea of Lateral ideals of ternary semigroups.

1. Preliminaries
DEFINITION 2.1 : Let T be a non-empty set. Then T is said to be a ternary semigroup if there exist a mapping

from TXTXT to T which maps (X, Xy X3) —> [Xlxzxs] satisfying the condition

[ [ ] %a%s | =% [X%6% 1% ] = %%, [%X % ]] ¥ %, € T, 1<i<5.

DEFINITION 2.2 : A ternary semigroup T is said to be commutative provided for all a,b,ce T, we have abc =
bca = cab = bac = cba = ach.

DEFINITION 2.3 : An element a of ternary semigroup T is said to be left identity of T provided aat =t for all
teT.

NOTE 2.4 : Left identity element a of a ternary semigroup T is also called as left unital element.
DEFINITION 2.5 : An element a of a ternary semigroup T is said to be a lateral identity of T provided ata =t
forallt eT.

NOTE 2.6 : Lateral identity element a of a ternary semigroup T is also called as lateral unital element.
DEFINITION 2.7 : An element a of a ternary semigroup T is said to be a right identity of T provided
taa=t Vte T.

NOTE 2.8 : Right identity element a of a ternary semigroup T is also called as right unital element.
DEFINITION 2.9 : An element a of a ternary semigroup T is said to be a two sided identity of T provided aat
=taa=tV teT.

NOTE 210 : Two-sided identity element of a ternary semigroup T is also called as
bi-unital element.
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DEFINITION 2.11 : An element a of a ternary semigroup T is said to be an identity provided
aat =taa=ata=tV teT.

NOTE 2.12: An identity element of a ternary semigroup T is also called as unital element.

NOTE 2.13 : An element a of a ternary semigroup T is said to be an identity of T then a is left identity , lateral
identity and right identity of T.

NOTATION 2.14 : Let T be a ternary semigroup. If T has an identity, let T'= T and if T does not have an

identity , let T? be the ternary semigroup T with an identity adjoined usually denoted by the symbol 1.
DEFINITION 2.15 : Let T be ternary semigroup. A non empty subset S of T is said to be a ternary
subsemigroup of T if abc €S for all a,b,c €S.

NOTE 2.16 : A non empty subset S of a ternary semigroup T is a ternary subsemigroup if and only if SSS C S.

DEFINITION 2.17 : Let T be a nonempty set. A nonempty finite sequence aj, a,, ...a8,,1 uUsually written by
juxtaposition a,a,....... a,, , of elements of T is called word over the alphabet T. The set T of all words with

blb2 ..... bzq_1 CC,.....C,,_, is aternary semigroup called the free ternary semigroup over the alphabet T.

DEFINITION 2.18 : A nonempty subset A of a ternary semigroup T is said to be left ideal of Tifb,c € T, a
€ Aiimplies bca € A.

NOTE 2.19 : A nonempty subset A of a ternary semigroup T is said to be a left ideal of T if and only if TTA
c A

DEFINITION 2.20 : A nonempty subset of a ternary semigroup T is said to be a lateral ideal of T if
b,c € T,a e Aimpliesbhac € A.

NOTE 2.21 : A nonempty subset of A of a ternary semigroup T is a lateral ideal of T if and only if
TAT C A

DEFINITION 2.22 : A nonempty subset A of a ternary semigroup T is a right ideal of T if b,c € T,
a € Aimpliesabc € A

NOTE 2.23 : A nonempty subset A of a ternary semigroup T is aright ideal of T ifand only if ATT < A.
DEFINITION 2.24 : A non-empty subset A of a ternary semigroup T is said to be ternary ideal or simply an
ideal of Tif b,c € T,a € Aimpliesbca € A, bac €A, abc € A.

NOTE 2.25 : A nonempty subset A of a ternary semigroup T is an ideal of T if and only if it is left ideal, lateral
ideal and right ideal of T.

DEFINITION 2.26 : An ideal A of a ternary semigroup T is said to be a proper ideal of T if A is different from
T.

DEFINITION 2.27 : An ideal A of a ternary semigroup T is said to be a principal ideal provided A is an ideal

generated by {a} for some a € T. Itis denoted by J (a) (or) <a>.

DEFINITION 2.28 : An ideal A of a ternary semigroup T is said to be a maximal left ideal provided A is a
proper left ideal of T and is not properly contained in any proper left ideal of T.

DEFINITION 2.29 : An ideal A of a ternary semigroup T is said to be a maximal lateral ideal provided A is a
proper lateral ideal of T and is not properly contained in any proper lateral ideal of T.

DEFINITION 2.30 : An ideal A of a ternary semigroup T is said to be a maximal right ideal provided A is a
proper right ideal of T and is not properly contained in any proper right ideal of T.

DEFINITION 2.31: An ideal A of a ternary semigroup T is said to be a maximal two sided ideal provided A is
a proper two sided ideal of T and is not properly contained in any proper two sided ideal of T.

DEFINITION 2.32 : An ideal A of a ternary semigroup T is said to be a maximal ideal provided A is a proper
ideal of T and is not properly contained in any proper ideal of T.

DEFINITION 2.33: A left ideal A of a ternary semigroup T is said to be the principal left ideal generated by a

if A is a left ideal generated by {a} for somea € T. Itisdenoted by L (a) or <a>.
THEOREM 2.34: If T isa ternary semigroup and a € T then L (a) =alJ TTa.

NOTE 2.35 : if T is ternary semigroup and a € T then L(a) = T'T"a.
DEFINITION 2.36 : A lateral ideal A of a ternary semigroup T is said to be the principal lateral ideal

generated by a if A is a lateral ideal generated by {a} for some a €T. Itis denoted by M (a) (or) < a >,
THEOREM 2.37 : If T isa ternary semigroup and a € T then M (a) =alJ TaTU TTaTT.

DEFINITION 2.38 : A right ideal A of a ternary semigroup T is said to be a principal right ideal generated by
a if A isaright ideal generated by {a} for some a €T. Itis denoted by R (a) (or) <a >
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THEOREM 2.39 : If T is a ternary semigroup and a € T then R (a) =alJ aTT.

NOTE 2.40 : If T is a ternary semigroup anda € T then R (a) =a T'T"
DEFINITION 2.41 : A two sided ideal A of a ternary semigroup T is said to be the principal two sided ideal

provided A is a two sided ideal generated by {a} for some

a €T. Itisdenoted by T (a) (or) <a >
THEOREM 2.42 : If T is a ternary semigroup and a € T then T (8) =alJ TTalJ aTTU TTaTT.
DEFINITION 2.43 : An ideal A of a ternary semigroup T is said to be a principal ideal provided A is an ideal

generated by {a} for some a €T. Itis denoted by J (a) (or) <a>.

THEOREM 2.44 : If T isa ternary semigroup and a € T then
J@=alaTTUTTal TaTU TTaTT.

NOTE 2.45: If T is a ternary semigroup and a € T then
J@=alUattUTTal TaTUTTaTT=T ' T'aT' T".

I11.  Completely Prime Ideals And Prime Ideals
DEFINITION 3.1 : An ideal A of a ternary semigroup T is said to be a completely prime ideal of T provided x,
y,z € Tandxyz €A implies either xe Aory e Aorz €A

EXAMPLE 3.2 : In the commutative ternary semigroup Z~ of all negative integers, the ideal P = { 3k : k €
Z "} is a completely prime ideal. For x; y; z € Z ™, xyz € P < xyz is divisible by 3 & x is divisible by 3 or y is
divisible by 3 or z is divisible by 3 < x =3k, ory =3k, orz=3k; for k; k,; k; eZ < xePoryeP
orzeP.

EXAMPLE 3.3 : In example 3.2., P is a completely prime ideal. But the ideal Q = { 30k : k € Z~ } is not a

prime ideal of Z~, since (-2) (-3) (-5)=-30 € Qbut (-2) ¢ Q, (-3) ¢ Qand (-5) ¢ Q.

THEOREM 3.4 : Anideal A of a ternary semigroup T is completely prime if and only if X3, X2, ceveey X, € T,
n is odd natural number, X; X, ..... X, € A= x; € Afor somei=1,2,3,.....n.

Proof : Suppose that A is a completely prime ideal of T.

Let X1, X, ....., X, € T where n is odd natural number and Xx; X, ..... X, € A.

If n = 1then clearly x; € A.

Ifn=3then XpXox3 EA > X, EAOr X, € Aor xz €A.

If n =5 then X(XoX3XaXs € A = X1XoXs E AOr Xs E Aor Xs € A

> X EAOrxs € AorxgeAorx, € Aorxs €A.

Therefore by induction of n is an odd natural number, then x; x, ..... X, € A

=>x €Aforsomei=1,23,....n.

The converse part is trivial.

THEOREM 3.5 : An ideal A of a ternary semigroup T is completely prime if and only if T\A is either
subsemigroup of T or empty.

Proof : Suppose that A is a completely prime ideal of T and T\A # & .

Leta,b,c € T\A. Thena ¢ A, b € A, c € A. Suppose if possible abc ¢ T\A.

Then abc € A. Since A is completely prime, eithera e Aorb € Aorc €A

It is a contradiction. Therefore abc € T\A. Hence T\A is a subsemigroup of T.

Conversely suppose that T\A is a subsemigroup of T or T\A is empty.

If T\A is empty then A =T and hence A is completely prime.

Assume that T\A is a subsemigroup of T. Leta, b,c € Tand abc €A.

Suppose if possiblea A, b g A,andc g A.

Thena € T\A, b €T\A and ¢ € T\A. Since T\A is a subsemigroup, abc € T\A and hence abc ¢ A. ltisa
contradiction. Hence either ac A or be A or c€ A. Therefore A is a completely prime ideal of T.
DEFINITION 3.6 : An ideal A of a ternary semigroup T is said to be a prime ideal of T provided X,Y,Z are
idealsof Tand XYZ C A = X CAorY CAorZ CA.

THEOREM 3.7 : In a ternary semigroup T, the following conditions are equivalent:

(i) Alis a prime ideal of T.

(i) Fora,b,ceT;<a><b><c>c Aimpliessae Aorbe Aorc eA.

(iii) Fora; b; c e T; T'T"aT' T T T T'T* € A impliesae Aorb e Aorc € A.

Proof : (i) = (ii) : Suppose that A is a prime ideal of T. Then (i) = (ii) is obvious.

(ii) = (iii): Let a, b, ¢ € T such that T'T!aT* T T*T'c T'T* € A
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Now < a > < b > < ¢ > = (T'TaT'T)( T'THT'T)( T'TCT'T) € TTar'Th T'Te T'T' € A
=>a€c€AorbeAorceA.

(iii) = (i): Suppose that a, b, c € T; T'T*aT*T'bT'TcT'T' c A=>a €Aorb €Aor c EA.

Let X, Y, Z be the three ideals of T and XYZ € A.

Suppose if possible X £ A, Y €A, Z <& A

XZEA Y LA ZZA, thereexistsa, b, csuchthat ae Xandag¢ A, beYandb¢ AandceZandc g A. a
eEX,beY,ceZ=abce XYZCA.

Now T'T'aT' T T'TcT'T' € XYZ S A= a€Aor b EAorc €A. Itisa contradiction.

Therefore X € Aor Y € AorZ < Aandhence Aisaprimeideal of T.

THEOREM 3.8 : An ideal A of a ternary semigroup T is prime if and only if Xj, X5, «....y Xn € T, nis odd
natural number, X; X, ..... X, €EA= X;e Aforsomei=1,2,3,.....n.

Proof : Suppose that A is a prime ideal of T.

Let X4, Xo, ....., Xp € T, nis odd natural number and X; X5 ..... X, € A

If n = 1then clearly X; € A.

Ifn=3then X)XoXs S A= X, S AorX, CSAor X3 €A

If n =5 then X;XoXaXaXs € A = X XXz EAor X, €EAor Xs €A

> X eAoar X, e AorXze Aor Xs€Aor Xs €A

Therefore by induction of n is an odd natural number, then X; X, ..... X, € A
=>X;€Aforsomei=1,2,3,....n.

The converse part is trivial.

THEOREM 3.9 : Every completely prime ideal of a ternary semigroup T is a prime ideal of T.

Proof : Suppose that A is a completely prime ideal of a ternary semigroup T.
LetabceTand<a><b><c>c A Thenabc € A. Since A isacompletely prime, eithera € Aorb € A
or c € A. Therefore A isa prime ideal of T.

The following theorem is duo to Kar.S and Maity.B.K. [9].

THEOREM 3.10 : Let T be a commutative ternary semigroup . An ideal P of T is a prime ideal if and
only if P is a completely prime ideal.

DEFINITION 3.11 : A nonempty subset A of a ternary semigroup T is said to be an
m-system provided for any a, b, ¢ € A implies that T*T*aT'*T*bT'T'c T'T* N A # 0.

THEOREM 3.12 : An ideal A of a ternary semigroup T is a prime ideal of T if and only if T\A is an m-
system of T or empty.

Proof : Suppose that A is a prime ideal of a ternary semigroup T and T\A # & .

Leta,b,c €eT\A.Thena g A, b ¢Aandc g A.

Suppose if possible T'T'aT'T*bT'T'c T'T' N T\A = @.

TTarThT' Te T' T N TWA =9 = T'TaT' ThT' T T'T' c A

Since Ais prime, eithera e Aorb e Aorc €A.

It is a contradiction. Therefore T'T*aT T bT'T'c T*'T' N T\A # @.

Hence T\A is an m-system.

Conversely suppose that T\A is either an m-system of Tor T\A =(J.

If VA = J, then T = A and hence A is a prime ideal of T.

Assume that T\A isan m-system of T. Leta,b,c e Tand<a><b><c>C A

Suppose if possible ag A, b Aand c& A. Then a, b, c € T\A. Sine T\A is an m-system,

= TTarThT T e T' T NTA £0= T'TaT' ThT' Te T'T' A

= <a><h><c> ZA. Itisa contradiction.

Thereforea e Aorb € Aorc € A. Hence A is a prime ideal of T.

DEFINITION 3. 13 : An ideal A of a ternary semigroup T is called a globally idempotent ideal if A" = A for
all odd natural number n.

DEFINITION 3.14 : A ternary semigroup T is said to be a globally idempotent ternary semigroup
if T"=T for all odd natural number n.

THEOREM 3.15 : If T is a globally idempotent ternary semigroup then every maximal ideal of T is a
prime ideal of T.

Proof : Let M be a maximal ideal of T. Let A, B, C be three ideals of T such that

ABC < M. Suppose if possible A €M, B€ M, CZ M.

NowA ¢ M = MUAisanidealof TandMc MUA cT.
Since M is a maximal, M JUA =T.
SimilaslyBg¢M = MUB=T,c¢M=> MUC=T.
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NowT=TTT=MUA)(MUB)(MUC)cM =T cM. ThusM=T.
It is a contradiction. Therefore either A —Mor B —Mor C — M. Hence M is a prime.
DEFINITION 3.16 : An element a of a ternary semigroup T is said to be semisimple if n is odd natural number

thena € <a>"ie. <a>" =<a>.

DEFINITION 3.17 : A ternary semigroup T is called semisimple ternary semigroup provided every element in
T is semisimple.

THEOREM 3.18 : If T is a globally idempotent ternary semigroup having maximal ideals then T contains
semisimple elements.

Proof : Suppose that T is a globally idempotent ternary semigroup having maximal ideals.

Let M be a maximal ideal of T. Then by theorem 3.15., M is prime.

Nowifa€e TWthen<a>¢ Mand<a>"¢ M. ThenT=Mu<a>=Mu<a>".

Therefore a € < a >" and hence < a > = < a >". Thus a is a semisimple element. Therefore T contains
semisimple elements.

IV.  Completely Semiprime Ideals And Semiprime Ideals
DEFINITION 4.1 : An ideal A of a ternary semigroup T is said to be a completely semiprime ideal provided x

eT, X" € A for some odd natural number n >1 implies x € A.
EXAMPLE 4.2 : In commutative ternary semigroup Z ~ of all negative integers, the ideal Q = {6k: k€ Z }isa
semiprime ideal. Forx € Z™, x* € Q & x®is divisible by 6 < x is divisible by 6 < x = 6k, fork, €Z~ < x €
Q.
THEOREM 4.3 : An ideal A of a ternary semigroup T is completely semiprime ifand only if x € T, X’ € A
implies x € A.
Proof : Suppose that A is a completely semiprime ideal of T.
Thenclearlyx €T, ¥ € A= x € A.
Conversely suppose that x € T, x> € A = x € A.
We prove that x €T, X" € A, for some odd natural number n > 1= x € A—(1),
by induction on n. Clearly (1) is true for n = 3. Assume that (1) is true for n = k. i.e., X€A = x € A for some
odd natural number k > 3.
Suppose that x**?e A. Then X2 A = x> X2 X e A = x* e A=(x*)°e A = x*e A = x € A. Therefore
X'e A =x€eA
By induction, X" € A for some natural number n, n> 1 implies x € A.
Therefore A is completely semiprime.
THEOREM 4.4 : If A is a completely semiprime ideal of a ternary semigroup T, then x,y,z€ T, xyz € A
implies that xyTTz< Aand xTTyz € A.
Proof : Let A be a completely semiprime ideal of a semigroup T. Letx,y,z € T, xyz € A.
Now xyz € A= (zxy)® = (2xy)(zxy)( zxy) = z(xyz)(xyz) Xy € A.
(zxy)® € A, A is completely semiprime implies zxy € A.
Let s, t € T. Consider (xystz)®= (xystz)(xystz) (xystz) = xyst(zxy)st(zxy)sty € A.
(xystz)* € A, A is completely semiprime implies xystz €A.
Therefore x,y, z€ T,xyze A= xystze Aforall s,te T = xyTTz S A
Now xyz € A= (yzx)® = (yzx)(yzx)(yzx) = yz(xyz)(xyz)x € A.
(y2x)* € A, A is completely semiprime implies = yzx € A.
Lets, t € T. Consider (xstyz)® = (xstyz)( xstyz)( xstyz) = xst(yzx)st(yzx)styz € A.
(xstyz)® € A, A is completely semiprime implies xstyz € A.
Therefore x,y,z€ T, xstyz € Aforall s,t e T = xTTyz € A
COROLLARY 4.5: If an ideal A of a ternary semigroup T is completely semiprime then x, y, z € T, xyze
A=<Xx><y><z>CA.
THEOREM 4.6 : Every completely prime ideal of a ternary semigroup T is a completely semiprime ideal
of T.
Proof : Let A be a completely prime ideal of a ternary semigroup T. Suppose that

x €eTand X® €A. Since Aisa completely prime ideal of T, x € A.

Therefore T is a completely semiprime ideal.

THEOREM 4.7 : Let A be a prime ideal of a ternary semigroup T. If A is completely semiprime ideal of
T then A is completely prime.

Proof : Let x, y, z € T and xyz € A. Since A is completely semiprime, by theorem 4.4,
xyzEA=xyT'TZC A XT' Ty zC A= Ty TTZ TS TATC A= <x><y><z>C A

=>x€Aory € AorzeAandhence A is completely prime.
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THEOREM 4.8 : The nonempty intersection of any family of a completely prime ideal of a ternary
semigroup T is a completely semiprime ideal of T.

Proof : Let {A,} _ bea family of a completely prime ideals of T such that ﬂ A =D.

aeA

It is clear that ﬂ A, isanideal. Leta €T and a’e ﬂ A, . Then a’e A, foralla eA.

aeA aeA

Since A, is completely prime,a € A, forall & € Aandhencea ﬂ A, .

aeA

Therefore ﬂ A, isacompletely semiprime ideal of T.
acA

DEFINITION 4.9 : Let T be a ternary semigroup. A non-empty subset A of T is said to be a d-system of T if a

e A = a" e A for all odd natural number n.

THEOREM 4.10 : An ideal A of a ternary semigroup T is completely semiprime if and only if T\A is a d-
system of T or empty.

Proof : Suppose that A is a completely semiprime ideal of T and T\A = .

Leta €e TVA. Thena ¢ A. Suppose if possible " ¢ T\A for some odd natural number n.
Then @" €A . Since A is a completely semiprime ideal then a € A.

It is a contradiction. Therefore a" € T\A and hence T\A is a d-system .
Conversely suppose that T\A is a d-system of T or T\A is empty.
If T\A is empty then T = A and hence A is completely semiprime.

Assume that T\A is a d-system of T. Leta € Tand 2" €A.
Suppose if possible a ¢ A. Thena € T\A.

Since T\A is a d-system, &@" € T\A. It is a contradiction. Hence ac A.

Thus A is a completely semiprime ideal of T .

DEFINITION 4.11 : An ideal A of a ternary semigroup T is said to be semiprime ideal provided X is an ideal
of T and X" A for some odd natural number n implies X € A.

THEOREM 4.12 : Anideal A of a ternary semigroup T is semiprime if and only if X is an ideal of T, X* <
A implies X € A.

Proof : Suppose that A is a semiprime ideal. Then clearly X* € A= X C A

Conversely suppose that X is an ideal of T, X € A = X C A.

We prove that X" € A, for some odd natural number n = X € A — (1), by induction on n. Since X A= X
c A, (1) istrue forn=3.

Assume that X¥ € A for some odd natural number k, 1 <k <n= X C A.

Now XK *2c A= X 2X*2xk- 4 cAasXx* cA=s X cA=>XcA=>XCA
by assumption. By induction X" € A for some odd natural number n = X € A,

Therefore A is semiprime.

THEOREM 4.13 : Every prime ideal of a ternary semigroup is semiprime.

Proof : Suppose that A is a prime ideal of a ternary semigroup T. Let X be an ideal of T such that X3 € A.
Since A is prime, X € A. Hence A is semiprime.

THEOREM 4.14 : If A is an ideal of a ternary semigroup T then the following are equivalent.

1. Ais a semiprime ideal.

2.ForaceT;<a>c Aimpliesa € A.

3.Forac T; T'TlaT'T!aT'T!aT T € A implies a € A.

Proof : (i) = (ii) : Suppose that A is a semiprime ideal of T. Then (i) = (ii) is obvious.

(ii) = (iii): Let a € T such that T'T*aT'T'a T'T'a T*T' c A.

Now < a>* = (T'T T TH)( T T aT' T ( T'T'aT'TY) € T'TaT ' TlaT' T'aT' T' c A= a € A.

(iii) = (i): Suppose thata € T; T'T'aT'T'aT'T'aT'T' C A= a €A.

Let X be the an ideals of T and X* € A.

Suppose if possible X £ A.

X & Athereexistsasuchthat a€ Xandag A. ae X=a’e X3 c A

Now T*T!aT'T!aT'T!aT'T' € X® € A = a €A. ltisa contradiction.

Therefore X € A and hence A is a semiprime ideal of T.
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THEOREM 4.15 : Every completely semiprime ideal of a ternary semigroup T is a semiprime ideal of T.
Proof : Suppose that A is a completely semiprime ideal of a ternary semigroup T.

Leta €T and <a>"c A for some odd natural number n.

Now aaa....a(nodd terms)e<a">c<a>"Cc A=>a"€eA=>a€eA><a>CA

Therefore A is a semiprime ideal of T.

THEOREM 4.16 : Let T be a commutative ternary semigroup. An ideal A of T is completely semiprime if
and only if it is semiprime.

Proof : Suppose that A is a completely semiprime ideal of T. By theorem 4.14, A is a semiprime ideal of T.
Conversely suppose that A is a semiprime ideal of T.

Letxe T and X" € A for some odd natural number n.

Now X" €A = <x>"C A => <x>C A=xE€EA. Since A is semiprime.

Therefore A is a completely semiprime ideal of T.

THEOREM 4.17 : The nonempty intersection of any family of prime ideals of a ternary semigroup T is a
semiprime ideal of T.

Proof : Let {A,} _ be a family of prime ideals of T such that ﬂ A, =D . It is clear that ﬂ A isan

aeA aeA

ideal. Leta €T, <a> < [ ] A, then<a>' c A forall z € A.

acA

Since A,is a prime, < a >c A, for all €A and hence ac A for all aeA.

Soae ﬂ A, . Therefore ﬂ A, isasemiprime ideal of T.
aeA aeA
DEFINITION 4.18 : A non-empty subset A of a ternary semigroup T is said to be an
n-system provided for any a € A implies that T T*aT'T*aT'T'aT'T* N A # 0.
THEOREM 4.19 : Every m-system in a ternary semigroup T is an n-system.
Proof : Let A be m-system of a ternary semigroup T. Let a €A. Since A is m-system,
a €A, T'TaT'T'aT'T'aT'T' N A # @. Therefore A is an n-system of T.
THEOREM 4.20 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if T\Q is an n-
system of T (or) empty.
Proof : Suppose that A is a semiprime ideal of a ternary semigroup T and T\A = J.
Leta e T\A. Thena ¢ A.
Suppose if possible T'T*aT'T*aT'T'aT'T* N T\A = 0.
T TaT' TaT' TaT' T' N T\A = ¢ = T'TaT ' T'aT' T!aT'T' c A,
Since A is semiprime, either a € A.
It is a contradiction. Therefore T'T*aT*T!aT'T'aT'T' N T\A # @.
Hence T\A is an n-system.
Conversely suppose that T\A is either an n-system or T\A = (J.

If VA = J then T = A and hence A is a semiprime ideal.

Assume that T\Aisan n-system of T. Leta e Tand<a>Cc A

Leta € T\A, T\Aisan n-system of T = T'T*aT' T'aT'T*aT T N T\A # 0.

Suppose if possible a¢ A. Then a€ T\A. Since T\A is an m-system.

Then T'T'aT' T'aT'T'aT'T' cTVA= T'T!aT' T'aT'T'aT'T' €A = <a > ZA.

It is a contradiction. Therefore a € A. Hence A is a semiprime ideal of T.

THEOREM 4.21 : If N is an n-system in a ternary semigroup T and a € N, then there exist an m-system
M in T suchthata e Mand M CN.

Proof : We construct a subset M of N as follows:
Define @, = a, Since @, €N and N is an n-system, (T'T'a, T'T"a, T'T'a, T'T} N N #0.

Let &, € (T'T'a,T'T'a, T' T, T'T)NN. Since @, €N and N is an n-system, (T*T'a,T'T'a, T'T'a, T'T' )N N

# (J and so on.
In general, if @has been defined with @ €N, choose @, as an element of

(T'T',T' T2, T' T8, T'T) N N. Let M= {@,8,....8 &,....| . Nowae M and MCN.
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We now show that M is an m-system.
Let & a;, ac€ M (fori< j<k).
Then @, € T'TaT' TaT TaT'T  T'TaT TaT' TaT'T"
cT' T aT TaT' TaT' T c T'TaT' TaT' TaT T
= a,, =T TaT TaT' T'aT'T" But a,,, €M,s0 &, = T'TaT TaT' TaT'T'N M,
Therefore M is an m-system.

V.  Prime Radical And Completely Prime Radical
NOTATION 5.1 : If Aisan ideal of a ternary semigroup T, then we associate the following four types of sets.

A = The intersection of all completely prime ideals of T containing A.

A, ={xeT: X" €A for some odd natural numbers n}

A, = The intersection of all prime ideals of T containing A.

A, ={xeT:<X >" < A for some odd natural number n}

THEOREM 5.2 : If Ais an ideal of a ternary semigroup T,thenAc A, c Ac A, c A.
Proof :i)A < A,: Letx e A. Then<x>c Aandhencex € A,

Therefore A = A,

i) A, < A;:Letx € A,. Then < x>" C A for some odd natural number n.

Let P be any prime ideal of T containing A.

Then < X >" < A for some odd natural number n = < X >" < P.
Since P is prime , < x> P and hence xeP.

Since this is true for all prime ideals of P containing A, xe A,. Therefore A, = A,

iii) A, A, :Letx € A,. Suppose if possible X & A,.

Then X" ¢ A for all odd natural number n.

Consider Q = U X" for all odd natural number n, and x € T.

Leta,b,c €Q.Thena= (X)",b= (X)°,c= (X)' for some odd natural numbers r, s, t.
Therefore abc = (X)" (X)° (X)' = X" € Q and hence Q is a subsemigroup of T.

By theorem 3.5, P = T\Q is a completely prime ideal of Tand X ¢ P.

By theorem 3.9, P is a prime ideal of Tand X & P. Therefore X & A,. Itisa contradiction.
Therefore x € A, and hence A, A, .

iv) A, c A :Letx € A,. Nowx € A, = X" € A for some odd natural number n.

Let P be any completely prime ideal of T containing A.

Then X"€ A <P = X"€ P =xeP. Therefore xe A . Therefore A, < A.

HenceAc A, c AAc A cCA.

THEOREM 5.3 : Ais an ideal of a commutative ternary semigroup T, then A=A, =A,= A,
Proof : By theorem5.2, A = A, < A, < A, < A Bytheorem 3.10, in a commutative ternary semigroup T,
an ideal A is a prime ideal if A is completely prime ideal.

So A = A,. By theorem 4.16, in a commutative ternary semigroup T an ideal A is semiprime if and only if A
is completely semiprime ideal.

So A,= Ajandhence A=A, =A=A,.

NOTE 5.4 : In an arbitrary ternary semigroup A # A, # A, # A,.
EXAMPLE 5.5 : Let T be the free ternary semigroup generated by a, b, c.

Itis clear that A =T a’ T is an ideal of T. Since a° € Ta’T, we have ae A, .
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Evidently (abc)" & Ta®T for all odd natural numbers n and thus abc ¢ A, .
Thus A, isnotan ideal of T. Therefore A # A, and A, # A,.

DEFINITION 5.6 : If A is an ideal of a ternary semigroup T , then the intersection of all prime ideals of T

containing A is called prime radical or simply radical of A and it is denoted by x/K or rad A.

DEFINITION 5.7: If A is an ideal of a ternary semigroup T , then the intersection of all completely prime
ideals of T containing A is called completely prime radical or simply complete radical of A and it is denoted by
c.rad A.

NOTE 5.8: If Ais an ideal of a ternary semigroup T, then rad A= A, and c.rad A= A .

THEOREM 5.9: If ac /A, then there exist a positive integer n such that a" € A for some odd natural
number n € N.

Proof : By theorem 5.2, A, — A, and henceae JA= AcCA.

Therefore " € A for some odd natural number n € N.

THEOREM 510 : If A is an ideal of a commutative ternary semigroup T, then
rad A =c.rad A.

proof : By theorem 5.3, rad A =c.rad A.

THEOREM 5.11 : If A'is an ideal of a ternary semigroup T then c.rad A is a completely semiprime ideal
of T.

proof : By theorem 4.6, c.rad A is a completely semiprime ideal of T.

THEOREM 5.12 : If A, B and C are any three ideals of a ternary semigroup T , then

) AcB= JAcB

ii) ifAC B C Bthen JABC = JANBNC =+ANVBNC

iii) VVA = VA,

proof : i) Suppose that AC B. If P is a prime ideal containing B then P is a prime ideal containing A. Therefore
JAcB.

ii) Let P be a prime ideal containing ABC. Then ABCSP = AcCPorBSPorCcP
= A B(C cP. Therefore P is a prime ideal containing A [1B[) C.

Therefore rad( A(1B(1C ) € rad(ABC).

Now let P be a prime ideal containing A(1B(C .

Then ANBNCcP =ABCc A(NB(1C cP= ABCcP.

Hence P is a prime ideal containing ABC. Therefore rad (ABC) < rad( A(1B()C).
Therefore rad(ABC) = rad( A(1BC).

Since A(1B(1C #9, itis clear that A N Bisan ideal in T. Letx € y/A(1BNC .
Then there exists a odd natural number n € N such that x" € A(1B(1C.

Therefore x” € A, x" € Band x" € C. It follows that x € \/K x € i/Band x € \/6 Therefore x
evANVBNA/C.

Consequently, x € \/Kﬂ\/gﬂ\/Eimplies that there exists odd natural numbers n, m, p € N such that
x"€ A, x"eBandx” e C. Clearly, x""™ € ANBNC.

Thusx € y/ANBNC . Therefore if A N B N C# then JANBNC =+ANVBNC .

iii) \/K = The intersection of all prime ideals of T containing A.

Now \/K = The intersection of all prime ideals of T containing \/K
= The intersection of all prime ideals of T containing A = \/K

Therefore x/\/K = \/K .

THEOREM 5.13 : If A'is an ideal of a ternary semigroup T then \/K is a semiprime ideal of T.
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proof : By theorem 4.17 , \/K is a semiprime ideal of T.

THEOREM 5.14 : An ideal Q of ternary semigroup T is a semiprime ideal of T if and only if \/6 =Q.

Proof : Suppose that Q is a semiprime ideal. Clearly Q € Q.

Suppose if possible VQ & Q.

LetaeVQanda¢ Q. Nowa & Q = a € S\Q and Q is semiprime. By theorem 4.20,

S\Q is an n-system. By theorem 4.21, there exists an m-system M such thata € M € S\Q.

Q < S\M and now S\M is a prime ideal of S, a ¢ S\M. It is a contradiction.

Therefore VQ € Q. Hence VQ = Q.

Conversely suppose that Q is an ideal of S such that VQ = Q.

By corollary 5.13, VQ is a semiprime ideal of S. Therefore Q is semiprime.

COROLLARY 5.15 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if Q is the
intersection of all prime ideal of S contains Q.

Proof : By theorem 5.14., Q is semiprime iff Q is the intersection of all prime ideals of T contains Q.
COROLLARY 5.16 : If A'is an ideal of a ternary semi group T, then A is the smallest semiprime ideal of
T containing A.

Proof : We have that VA is the intersection of all prime ideals containing A in T.

Since intersection of prime ideals is semiprime, we have VA is semiprime.

Further, let Q be any semiprime ideal containing A, i.e. A € Q. So VA € Q.

Since Q is semiprime, By theorem 5.14, VQ = Q. Therefore VA € Q.

Hence VA is the smallest semiprime ideal of S containing A.

THEOREM 5.16 : If P is a prime ideal of a ternary semigroup T, then W = P for all odd natural
numbersn € N.

Proof : We use induction on n to prove +/P" = P.

First we prove that VP =P .sincePisa prime ideal, P < JP cP= JP=P.

Assume that\/a = P for odd natural number k such that 1<Kk <n.
Now P¥2 =\P*P.P =P* NP NP =VPNVPNVP =P =P.

Therefore /P2 = P . By induction /P" = P for all odd natural number ne N.
THEOREM 5.17: In a ternary semigroup T with identity there is a unique maximal ideal M such that
«f(M )" = M for all odd natural numbersn € N.

Proof: Since T contains identity, T is a globally idempotent ternary semigroup.
Since M is a maximal ideal of T, by theorem 3.15 M is prime.

By theorem 5.16, /(M )" = M for all odd natural numbers n.
Theorem 5.18: If A is an ideal of a ternary semigroup T then \/K={x € T : every
m-system of T containing x meets A }i.e., JA = {(XeT:M(X)NA=}.

Proof: Suppose that x € \/K . Let M be an m-system containing x.
Then T\M is a prime ideal of Tand x ¢ TW. If M [} A= & then A = T\M.

Since T\M is a prime ideal containing A, \/K c T\M and hence x € T\M.
It is a contradiction. Therefore M(x)(1A = . Hencexe {xeT :M(x)A=}.
Conversely suppose that x € {X eT:-M(X)NA= @} .

Suppose if possible x ¢ \/K Then there exists a prime ideal P containing A such that x ¢ P.
Now T\Pis an m-systemandx € TP. Ac P = TPNA=T = x ¢ {xeT:M(X)NA=J}.

It is a contradiction. Therefore x € \/K . Thus x/K = {X eT:M(X)NA= @} .
VI.  Conclusion

Anjaneyulu. A initiated the study of pseudo symmetric ideals in semigroups, Madhusudhana Rao. D,
Anjaneyulu. A. and Gangadhara Rao. A. initiated the the study of theory of T'-ideals in I'-semigroups and V. B.
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Subrahmanyeswara Rao Seetamraju, Anjaneyulu and Madhusudhana Rao initiated the study of theory of ideals
in partially ordered I'-semigroups and hence the study of ideals in semigroups, I'-semigroups and partially
ordered I"-semigorups creates a platform for the ideals in ternary semigroups.
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