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Abstract: In this paper the terms completely prime ideal, prime ideal, m-system. globally idempotent , semi 

simple elements of a ternary semigroup are Introduced.  It is proved that an ideal A of a ternary semigroup T is 

completely prime if and only if T\A is either sub semigroup of T or empty. It is proved that if T is a globally 

idempotent ternary semigroup then every maximal ideal of T is a prime ideal of T. In this paper the terms 

completely semiprime ideal, semiprime ideal, n-system, d-system and i-system are introduced. It is proved that 

the non-empty intersection of any family of a completely prime ideal and prime ideal of a ternary semigroup T is 

a completely semiprime ideal of T. It is also proved that an ideal A of a ternary semigroup T is completely 

semiprime if and only if T\A is a d-system of T or empty. It is proved that if N is an n-system in a ternary 

semigroup T and aN, then there exist an m-system M in T such that aM and M   N.  The terms radical, 

complete radical of a ternary semigroup are introduced. It is proved that if A and B are any two ideals of a 

ternary semigroup T, then i) A   B   A  B   ii) ABC = A B C  = A  B  C   

iii) A =  A .  It is also proved that if A is an ideal of ternary semigroup T then A  = 

 : ( )x T M x A  . 
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I. Introduction 
 The theory of ternary algebraic system was introduced by Lehmer [13] in 1932, but earlier such 

structures were studied by Kasner [10] who gave the idea of n-ary algebras . Ternary semigroups are universal 

algebras with one associative ternary operation. Anjaneyulu.A [1],[2] initiated the study of ideals in semigroups. 
S.Kar and B.K.Maity [9] initiated the study of some ideals of ternary semigroups. Sioson. F. M [18] studied 

about Ideal theory in  ternary semigroups. Iampan . A.[7] gave the idea of Lateral ideals of ternary semigroups. 

 

II. Preliminaries 
DEFINITION 2.1 : Let T be a non-empty set. Then T is said to be a ternary semigroup if there exist a mapping 

from T×T×T to T which maps ( 1, 2, 3x x x )  1 2 3x x x satisfying the condition 

:      1 2 3 4 5 1 2 3 4 5 1 2 3 4 5x x x x x x x x x x x x x x x              ix    T, 1 5i  .  

DEFINITION 2.2 : A ternary semigroup T is said to be commutative provided for all a,b,c  T, we have abc = 

bca = cab = bac = cba = acb. 

DEFINITION 2.3 : An element a of ternary semigroup T is said to be left identity of T provided aat = t for all 

tT. 

NOTE 2.4 : Left identity element a of a ternary semigroup T is also called as left unital element. 

DEFINITION 2.5 : An element a of a ternary semigroup T is said to be a lateral identity of T provided ata = t 

for all t T. 

NOTE 2.6 : Lateral identity element a of a ternary semigroup T is also called as lateral unital element. 

DEFINITION 2.7 : An element a of a ternary semigroup T is said to be a right identity of T provided  

taa = t  t  T. 
NOTE 2.8 : Right identity element a of a ternary semigroup T is also called as right unital element. 

DEFINITION 2.9 : An element a of a ternary semigroup T is said to be a two sided identity of T provided aat 

= taa = t  tT. 

NOTE 2.10 : Two-sided identity element of a ternary semigroup T is also called as  

bi-unital element. 
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DEFINITION 2.11 : An element a of a ternary semigroup T is said to be an identity provided  

aat = taa = ata = t  tT. 

NOTE 2.12: An identity element of a ternary semigroup T is also called as unital element. 

NOTE 2.13 : An element a of a ternary semigroup T is said to be an identity of T then a is left identity , lateral 

identity and right identity of T. 

NOTATION 2.14 : Let T be a ternary semigroup. If T has an identity, let 
1T = T and if T does not have an 

identity , let 
1T  be the ternary semigroup T with an identity adjoined usually denoted by the symbol 1.   

DEFINITION 2.15 : Let T be ternary semigroup. A non empty subset S of T is said to be a ternary 

subsemigroup of T if  abc S for all a,b,c S. 

NOTE 2.16 : A non empty subset S of a ternary semigroup T is a ternary subsemigroup if and only if SSS   S. 

DEFINITION 2.17 : Let T be a nonempty set. A nonempty finite sequence a1, a2, …a2n-1 usually written by 

juxtaposition 1 2 2 1....... na a a  of elements of T is called word over the alphabet T.  The set T of all words with 

the operation of juxtaposition  (
1 2 2 1..... pa a a 

)( 1 2 2 1..... qb b b  )( 1 2 2 1..... rc c c  )=
1 2 2 1..... pa a a 

 

1 2 2 1..... qb b b  1 2 2 1..... rc c c 
is a ternary semigroup called the free ternary semigroup over the alphabet T. 

DEFINITION 2.18 : A nonempty subset A of a ternary semigroup T is said to be left ideal of T if b, c   T, a 
  A implies bca   A. 
NOTE 2.19 : A  nonempty subset A of a ternary semigroup T is said to be a left ideal of T if and only if TTA 

  A. 

DEFINITION 2.20 : A nonempty subset of a ternary semigroup T is said to be a lateral ideal of T if  

b, c   T , a   A implies bac   A. 

NOTE 2.21 : A nonempty subset of A of a ternary semigroup T is a lateral ideal of T if and only if  

TAT   A. 

DEFINITION 2.22 : A nonempty subset A of a ternary semigroup T is a right ideal of T if b, c   T ,  

a   A implies abc   A  
NOTE 2.23 : A nonempty subset A of a ternary semigroup T is a right ideal of T if and only if ATT   A. 

DEFINITION 2.24 : A non-empty subset A of a ternary semigroup T is said to be ternary  ideal or simply an 
ideal of T if  b, c   T , a   A implies bca   A, bac A, abc A. 

NOTE 2.25 : A nonempty subset A of a ternary semigroup T is an ideal of T if and only if it is left ideal, lateral 

ideal and right ideal of T. 

DEFINITION 2.26 : An ideal A of a ternary semigroup T is said to be a proper ideal of T if A is different from 

T. 

DEFINITION 2.27 : An ideal A of a ternary semigroup T is said to be a principal ideal provided A is an ideal 

generated by  a  for some a T. It is denoted by J (a) (or) < a >. 

DEFINITION 2.28 : An ideal A of a ternary semigroup T is said to be a maximal left ideal provided A is a 

proper left ideal of T and is not properly contained in any proper left ideal of T. 

DEFINITION 2.29 : An ideal A of a ternary semigroup T is said to be a maximal lateral ideal provided A is a 

proper lateral ideal of T and is not properly contained in any proper lateral ideal of T. 

DEFINITION 2.30 : An ideal A of a ternary semigroup T is said to be a maximal right ideal provided A is a 

proper right ideal of T and is not properly contained in any proper right ideal of T. 

DEFINITION 2.31 : An ideal A of a ternary semigroup T is said to be a maximal two sided ideal provided A is 

a proper two sided ideal of T and is not properly contained in any proper two sided ideal of T. 

DEFINITION 2.32 : An ideal A of a ternary semigroup T is said to be a maximal ideal provided A is a proper 
ideal of T and is not properly contained in any proper ideal of T. 

DEFINITION 2.33 : A left ideal A of a ternary semigroup T is said to be the principal left ideal generated by a 

if A is a left ideal generated by  a  for some a   T. It is denoted by L (a) or < a >l 
. 

THEOREM 2.34 : If T is a ternary semigroup and a T then L (a) = a TTa. 

NOTE 2.35 : if T is ternary semigroup and a T then L(a) = 
1 1T T a . 

DEFINITION 2.36 : A lateral ideal A of a ternary semigroup T is said to be the principal lateral ideal 

generated by a if A is a lateral ideal generated by  a  for some a T. It is denoted by M (a) (or) < a >m.  

THEOREM 2.37 : If T is a ternary semigroup and a T then M (a) = a TaT TTaTT. 

DEFINITION 2.38 : A right ideal A of a ternary semigroup T is said to be a principal right ideal generated by 

a if A is a right ideal generated by  a  for some a T. It is denoted by R (a) (or) < a >r.    
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THEOREM 2.39 : If T is a ternary semigroup and a T then R (a) = a aTT. 

NOTE 2.40 : If T is a ternary semigroup and a T then R (a) = a 
1 1T T   

DEFINITION 2.41 : A two sided ideal A of a ternary semigroup T is said to be the principal two sided ideal 

provided A is a two sided ideal generated by  a  for some  

a T. It is denoted by T (a) (or) < a >t. 

THEOREM 2.42 : If T is a ternary semigroup and a T then T (a) = a TTa aTT TTaTT. 
DEFINITION 2.43 : An ideal A of a ternary semigroup T is said to be a principal ideal provided A is an ideal 

generated by  a  for some a T. It is denoted by J (a) (or) < a >. 

THEOREM 2.44 : If T is a ternary semigroup and a T then  

J (a) = a aTT TTa TaT TTaTT. 

NOTE 2.45 : If T is a ternary semigroup and a T then  

J (a) = a aTT TTa TaT TTaTT = 
1T 1T a

1T 1T . 

 

III. Completely Prime Ideals And Prime Ideals 
DEFINITION 3.1 : An ideal A of a ternary semigroup T is said to be a completely prime ideal of T provided x, 

y, z   T and xyz  A implies either x  A or y A or z A. 

EXAMPLE 3.2 : In the commutative ternary semigroup Z 
 of all negative integers, the ideal P = { 3k : k ∈ 

Z 
} is a completely prime ideal. For x; y; z ∈Z 

, xyz ∈ P ⟺ xyz is divisible by 3 ⟺  x is divisible by 3 or y is 

divisible by 3 or z is divisible by 3 ⟺ x = 3 1k  or y = 3 2k  or z = 3 3k  for 1k ; 2k ; 3k  ∈Z 
⟺  x ∈ P or y ∈ P 

or z ∈ P. 

EXAMPLE 3.3 : In example 3.2., P is a completely prime ideal.  But the ideal Q = { 30k : k ∈ Z 
} is not a 

prime ideal of Z 
, since (-2) (-3) (-5) = -30 ∈  Q but (-2)   Q, (-3)   Q and (-5)   Q. 

THEOREM 3.4 : An ideal A of a ternary semigroup T is completely prime if and only if x1, x2, ….., xn ∈ T, 

n is odd natural number, x1 x2 ….. xn ∈ A ⇒ xi ∈ A for some i = 1, 2, 3, …..n. 

Proof : Suppose that A is a completely prime ideal of T. 

Let x1, x2, ….., xn ∈ T where n is odd natural number and x1 x2 ….. xn ∈ A. 

If n = 1 then clearly x1 ∈ A. 

If n = 3 then x1x2x3 ∈ A ⇒ x1 ∈ A or x2 ∈ A or x3 ∈ A. 

If n = 5 then x1x2x3x4x5 ∈ A ⇒ x1x2x3 ∈ A or x4 ∈ A or x5 ∈ A  

⇒ x1 ∈ A or x2 ∈ A or x3 ∈ A or x4 ∈ A or x5 ∈ A. 

Therefore by induction of n is an odd natural number, then x1 x2 ….. xn ∈ A  

⇒ xi ∈ A for some i = 1, 2, 3, …..n. 

The converse part is trivial.  

THEOREM 3.5 : An ideal A of a ternary semigroup T is completely prime if and only if T\A is either 

subsemigroup of T or empty.  

Proof : Suppose that A is a completely prime ideal of T and T\A    .  

Let a, b, c   T\A. Then a A, b A, c A.  Suppose if possible abc   T\A. 

Then abc A. Since A is completely prime, either a A or b A or c A.  
It is a contradiction. Therefore abc T\A.  Hence T\A is a subsemigroup of T. 

Conversely suppose that T\A is a subsemigroup of T or T\A is empty. 

If T\A is empty then A = T and hence A is completely prime. 

Assume that T\A is a subsemigroup of T.  Let a, b, c T and abc  A. 

Suppose if possible a A, b A, and c A. 

Then a T\A, b T\A and c T\A. Since T\A is a subsemigroup, abc   T\A and hence abc ∉ A.  It is a 

contradiction. Hence either aA or bA or cA. Therefore A is a completely prime ideal of T. 

DEFINITION 3.6 : An ideal A of a ternary semigroup T is said to be a prime ideal of T provided X,Y,Z are 

ideals of T and XYZ   A   X A or Y A or Z A. 

THEOREM 3.7 : In a ternary semigroup T, the following conditions are equivalent: 

(i) A is a prime ideal of T. 

(ii) For a, b, c ∈ T; < a > < b > < c > ⊆ A implies a ∈ A or b ∈ A or c ∈ A. 

(iii) For a; b; c ∈ T; T
1
T

1
aT

1
T

1
b T

1
T

1
c T

1
T

1
 ⊆ A  implies a ∈ A or b ∈ A or c ∈ A. 

Proof : (i) ⇒ (ii) : Suppose that A is a prime ideal of T.  Then (i) ⇒ (ii) is obvious. 

(ii) ⇒ (iii): Let a, b, c ∈ T such that T1T1aT1T1b T1T1c T1T1 ⊆ A. 
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Now < a > < b > < c > = (T1T1aT1T1)( T1T1bT1T1)( T1T1cT1T1) ⊆ T1T1aT1T1b T1T1c T1T1 ⊆ A  

⇒ a ∈ A or b ∈ A or c ∈ A.  
(iii) ⇒ (i): Suppose that a, b, c ∈ T; T1T1aT1T1bT1T1cT1T1 ⊆ A ⇒ a ∈A or b ∈A or c ∈A. 

Let X, Y, Z be the three ideals of T and XYZ ⊆ A.   

Suppose if possible X ⊈ A, Y ⊈ A, Z ⊈ A.  

X ⊈ A, Y ⊈ A, Z ⊈ A, there exists a, b, c such that  a ∈ X and a ∉ A,  b ∈ Y and b ∉ A and c ∈ Z and c ∉ A.  a 

∈ X, b ∈ Y, c ∈ Z ⇒ abc∈ XYZ ⊆ A. 

Now T1T1aT1T1bT1T1cT1T1 ⊆ XYZ ⊆ A ⇒ a ∈A or b ∈A or c ∈A.  It is a contradiction.   

Therefore X ⊆ A or Y ⊆ A or Z ⊆ A and hence A is a prime ideal of T. 

THEOREM 3.8 : An ideal A of a ternary semigroup T is prime if and only if X1, X2, ….., Xn ⊆ T, n is odd 

natural number, X1 X2 ….. Xn ⊆ A ⇒ Xi ∈ A for some i = 1, 2, 3, …..n. 
Proof : Suppose that A is a prime ideal of T. 

Let X1, X2, ….., Xn ⊆ T, n is odd natural number and X1 X2 ….. Xn ⊆ A  

If n = 1 then clearly X1 ∈ A. 

If n = 3 then X1X2X3 ⊆ A ⇒ X1 ⊆ A or X2 ⊆ A or X3 ⊆ A. 

If n = 5 then X1X2X3X4X5 ⊆ A ⇒ X1X2X3 ∈ A or X4 ∈ A or X5 ∈ A  

⇒ X1 ∈ A or X2 ∈ A or X3 ∈ A or X4 ∈ A or X5 ∈ A. 

Therefore by induction of n is an odd natural number, then X1 X2 ….. Xn ⊆ A  

⇒ Xi ⊆ A for some i = 1, 2, 3, …..n. 

The converse part is trivial.  

THEOREM 3.9 : Every completely prime ideal of a ternary semigroup T is a prime ideal of T. 

Proof : Suppose that A is a completely prime ideal of a ternary semigroup T.  

Let a,b,cT and < a > < b > < c > ⊆ A.  Then abc   A.  Since A is a completely prime , either a A or b A 

or c A.  Therefore A is a prime ideal of T.  

The following theorem is duo to Kar.S and Maity.B.K. [9]. 

THEOREM 3.10 : Let T be a commutative ternary semigroup . An ideal P of T is a prime ideal if and 

only if P is a completely prime ideal. 
DEFINITION 3.11 : A nonempty subset A of a ternary semigroup T is said to be an  

m-system provided for any a, b, c A implies that T1T1aT1T1bT1T1c T1T1 ∩ A ≠ ∅. 

THEOREM 3.12 : An ideal A of a ternary semigroup T is a prime ideal of T if and only if T\A is an m-

system of T or empty. 

Proof : Suppose that A is a prime ideal of a ternary semigroup T and T\A    . 

Let a, b ,c T\A . Then a A , b A and c A.   

Suppose if possible T1T1aT1T1bT1T1c T1T1 ∩ T\A = ∅. 

 T1T1aT1T1bT1T1c T1T1 ∩ T\A = ∅ ⇒ T1T1aT1T1bT1T1c T1T1 ⊆ A.   

Since A is prime, either a A or b A or c A. 

It is a contradiction. Therefore T1T1aT1T1bT1T1c T1T1 ∩ T\A ≠ ∅. 

Hence T\A is an m-system.  

Conversely suppose that T\A is either an m-system of T or T\A = .   

If T\A =  , then T = A and hence A is a prime ideal of T.   

Assume that T\A is an m-system of T. Let a, b, c T and < a > < b > < c > ⊆ A. 

Suppose if possible aA, bA and cA. Then a, b, c T\A.  Sine T\A is an m-system, 

⇒ T1T1aT1T1bT1T1c T1T1 ∩ T\A ≠ ∅  T1T1aT1T1bT1T1c T1T1 ⊈A  

  <a><b><c>  ⊈A.  It is a contradiction.  

Therefore a A or b A or c A. Hence A is a prime ideal of T. 

DEFINITION 3. 13 : An ideal A of a ternary semigroup T is called a globally idempotent ideal if An = A for 
all odd natural number n. 
DEFINITION 3.14 : A ternary semigroup T is said to be a globally idempotent ternary semigroup  

if  Tn = T for all odd natural number n.  

THEOREM 3.15 : If T is a globally idempotent ternary semigroup then every maximal ideal of T is a 

prime ideal of T. 
Proof : Let M be a maximal ideal of T. Let A, B, C be three ideals of T such that  

ABC   M. Suppose if possible A ⊈M, B⊈ M , C⊈ M.  

Now A ⊈ M   M A is an ideal of T and M ⊂ M A T.  

Since M is a maximal, M  A = T.  

Similarly B ⊈ M   M  B = T, C ⊈ M  M  C = T.  
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Now T = TTT = (M A ) ( M  B ) ( M  C ) M T M. Thus M = T. 

It is a contradiction. Therefore either A M or B M or C M. Hence M is a prime. 

DEFINITION 3.16 : An element a of a ternary semigroup T is said to be semisimple if n is odd natural number 

then a  na   i.e. 
na   = < a >. 

DEFINITION 3.17 : A ternary semigroup T is called semisimple  ternary semigroup provided every element in 

T is semisimple. 

THEOREM 3.18 : If T is a globally idempotent ternary semigroup having maximal ideals then T contains 

semisimple elements. 

Proof : Suppose that T is a globally idempotent ternary semigroup having maximal ideals. 

Let M be a maximal ideal of T.  Then by theorem 3.15., M is prime. 

Now if a ∈ T\M then < a >⊈ M and < a >n ⊈ M.   Then T = M ∪ < a > = M ∪ < a >n.   

Therefore a ∈ < a >n and hence < a > = < a >n.  Thus a is a semisimple element.  Therefore T contains 

semisimple elements. 

 

IV. Completely Semiprime Ideals And Semiprime Ideals  
DEFINITION 4.1 : An ideal A of a ternary semigroup T is said to be a completely semiprime ideal  provided x 

T, 
nx A for some odd natural number n >1 implies x A. 

EXAMPLE 4.2 : In commutative ternary semigroup Z – of all negative integers, the ideal Q = {6k : k ∈ Z - } is a 

semiprime ideal.  For x ∈ Z - ,   x3 ∈ Q ⟺ x3 is divisible by 6 ⟺ x is divisible by 6 ⟺ x = 6k1 for k1 ∈ Z -  ⟺ x ∈ 

Q. 

THEOREM 4.3 : An ideal A of a ternary semigroup T is completely semiprime if and only if x ∈ T, x
3
 ∈ A 

implies x ∈ A. 

Proof : Suppose that A is a completely semiprime ideal of T.  

Then clearly x ∈ T,  x3 ∈ A ⟹ x ∈ A. 

Conversely suppose that x ∈ T, x3 ∈ A ⟹ x ∈ A.  

We prove that x ∈T,  xn ∈ A, for some odd natural number n > 1⟹ x ∈ A⟶(1),  

by induction on n.   Clearly (1) is true for n = 3. Assume that (1) is true for n = k. i.e., xk∈A ⟹ x ∈ A for some 

odd natural number k > 3. 

 Suppose that xk+2∈ A. Then xk+2∈ A ⟹ xk+2.xk+2. xk-4 ∈ A ⟹ x3k∈ A⟹(xk)3 ∈ A ⟹ xk∈ A ⟹ x ∈ A.   Therefore 

xk∈ A ⟹ x ∈ A. 

  By induction, xn ∈ A for some natural number n, n > 1 implies x ∈ A. 

  Therefore A is completely semiprime. 

THEOREM 4.4 : If A is a completely semiprime ideal of a ternary semigroup T, then x, y, z ∈ T, xyz ∈ A 

implies that xyTTz ⊆ A and xTTyz ⊆ A. 

Proof : Let A be a completely semiprime ideal of a semigroup T. Let x, y, z ∈ T, xyz ∈ A. 

Now xyz ∈ A⟹ (zxy)3 = (zxy)( zxy)( zxy) = z(xyz)(xyz) xy ∈ A. 

 (zxy)3  ∈ A, A is completely semiprime implies zxy ∈ A. 

Let s, t ∈ T.  Consider (xystz)3 = (xystz)(xystz) (xystz) = xyst(zxy)st(zxy)sty ∈ A. 

 (xystz)3 ∈ A, A is completely semiprime implies xystz ∈A. 

 Therefore x, y, z ∈ T, xyz ∈ A ⟹ xystz ∈ A for all s, t ∈ T ⟹ xyTTz ⊆ A. 

Now xyz ∈ A⟹ (yzx)
3
 = (yzx)(yzx)(yzx) = yz(xyz)(xyz)x ∈ A. 

(yzx)3 ∈ A, A is completely semiprime implies ⇒ yzx ∈ A. 

Let s, t ∈ T.  Consider (xstyz)3 = (xstyz)( xstyz)( xstyz) = xst(yzx)st(yzx)styz ∈ A. 

(xstyz)3 ∈ A, A is completely semiprime implies xstyz ∈ A. 

Therefore x, y, z ∈ T, xstyz ∈ A for all s, t ∈ T ⇒ xTTyz ⊆ A. 

COROLLARY  4.5 : If an ideal A of a ternary semigroup T is completely semiprime then x,  y, z ∈ T, xyz∈ 

A ⟹ < x > < y > < z > ⊆ A. 

THEOREM 4.6 : Every completely prime ideal  of a ternary semigroup T is a completely semiprime ideal  

of T. 
Proof : Let A be a completely prime ideal  of a ternary semigroup T. Suppose that  

x T and 
3x A. Since A is a completely prime ideal of T, x A.   

Therefore T is a completely semiprime ideal. 

THEOREM 4.7 : Let A be a prime ideal of a ternary semigroup T.  If A is completely semiprime ideal of 

T then A is completely prime. 
Proof : Let x, y, z ∈ T and xyz ∈ A.  Since A is completely semiprime, by theorem 4.4.,  

xyz ∈ A ⇒ xyT
1
T

1z ⊆ A, xT
1
T

1yz ⊆ A ⇒ TxyTTzT ⊆ TAT ⊆ A ⇒ < x >< y >< z > ⊆ A 

⇒ x ∈ A or y ∈ A or z ∈ A and hence A is completely prime. 
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THEOREM 4.8 : The nonempty intersection of any family of a completely prime ideal of a ternary 

semigroup T is a completely semiprime ideal of T. 

Proof : Let  A 
 be a family of a completely prime ideals of T such that A



  .  

It is clear that A



  is an ideal.  Let a T and a3 A



 .  Then 
3a  A  for all .  

Since A  is completely prime, a  A  for all  and hence a  A



 .  

Therefore A



  is a completely semiprime ideal of T. 

DEFINITION 4.9 : Let T be a ternary semigroup. A non-empty subset A of T is said to be a d-system of T if  a 

  A   na   A for all odd natural number n. 

THEOREM 4.10 : An ideal A of a ternary semigroup T is completely semiprime if and only if T\A is a d-

system of T or empty. 

Proof : Suppose that A is a completely semiprime ideal of T and T\A  . 

Let a T\A . Then a   A. Suppose if possible 
na T\A for some odd natural number n. 

Then 
na  A . Since A is a completely semiprime ideal then a A. 

It is a contradiction. Therefore 
na   T\A and hence T\A is a d-system . 

Conversely suppose that T\A is a d-system of T or T\A is empty.  

If T\A is empty then T = A and hence A is completely semiprime.  

Assume that T\A is a d-system of T. Let a T and 
na A .  

Suppose if possible a   A.  Then a T\A. 

Since T\A is a d-system, 
na   T\A. It is a contradiction. Hence aA.  

Thus A is a completely semiprime ideal of T . 

DEFINITION 4.11 : An ideal A of a ternary semigroup T is said to be semiprime ideal provided X is an ideal 

of T and Xn  A for some odd natural number n implies X ⊆ A. 

THEOREM 4.12 : An ideal A of a ternary semigroup T is semiprime if and only if X is an ideal of T, X
3
 ⊆ 

A implies X ⊆ A. 

Proof : Suppose that A is a semiprime ideal.  Then clearly X3 ⊆ A ⇒ X ⊆ A. 

Conversely suppose that X is an ideal of T, X3 ⊆ A ⇒ X ⊆ A. 

We prove that Xn ⊆ A, for some odd natural number n  ⇒ X ⊆ A ⟶ (1), by induction on n.   Since X3 ⊆ A ⇒ X 

⊆ A, (1) is true for n = 3. 

Assume that Xk ⊆ A for some odd natural number k, 1 ≤ k < n ⇒ X ⊆ A. 

Now Xk + 2 ⊆ A ⇒ Xk + 2.Xk + 2.Xk – 4 ⊆ A ⇒ X3k ⊆ A ⇒ (Xk)3 ⊆ A ⇒ Xk ⊆ A ⇒ X ⊆ A  

by assumption.  By induction Xn ⊆ A for some odd natural number n ⇒ X ⊆ A.   

Therefore A is semiprime. 

THEOREM 4.13 : Every prime ideal of a ternary semigroup is semiprime. 

Proof : Suppose that A is a prime ideal of a ternary semigroup T.  Let X be an ideal of T such that X3 ⊆ A.  

Since A is prime, X ⊆ A.  Hence A is semiprime.   

THEOREM 4.14 : If A is an ideal of a ternary semigroup T then the following are equivalent. 

1. A is a semiprime ideal. 

2. For a ∈ T; < a >
3
 ⊆ A implies a ∈ A. 

3. For a ∈ T; T
1
T

1
aT

1
T

1
aT

1
T

1
aT

1
T

1
 ⊆ A implies a ∈ A. 

Proof : (i) ⇒ (ii) : Suppose that A is a semiprime ideal of T.  Then (i) ⇒ (ii) is obvious. 

(ii) ⇒ (iii): Let a ∈ T such that T1T1aT1T1a T1T1a T1T1 ⊆ A. 

Now < a >3 = (T1T1aT1T1)( T1T1aT1T1)( T1T1aT1T1) ⊆ T1T1aT1T1aT1T1aT1T1 ⊆ A ⇒ a ∈ A.  

(iii) ⇒ (i): Suppose that a ∈ T; T1T1aT1T1aT1T1aT1T1 ⊆ A ⇒ a ∈A. 

Let X be the an ideals of T and X3 ⊆ A.   

Suppose if possible X ⊈ A.  

X ⊈ A there exists a such that  a ∈ X and a ∉ A.  a ∈ X ⇒ a3 ∈ X3 ⊆ A. 

Now T
1
T

1aT
1
T

1aT
1
T

1aT
1
T

1
 ⊆ X

3
 ⊆ A ⇒ a ∈A.  It is a contradiction.   

Therefore X ⊆ A and hence A is a semiprime ideal of T. 
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THEOREM 4.15 : Every completely semiprime ideal of a ternary semigroup T is a semiprime ideal of T. 

Proof : Suppose that A is a completely semiprime ideal of a ternary semigroup T. 

Let a T and <a>n  A for some odd natural number n.  

Now aaa…..a(n odd terms)< an > ⊆ <a>n   A ⇒ an ∈ A ⇒ a ∈ A ⇒ < a > ⊆ A.  

Therefore A is a semiprime ideal of T.  

THEOREM 4.16 : Let T be a commutative ternary semigroup. An ideal A of T is completely semiprime if 

and only if it is semiprime. 
Proof : Suppose that A is a completely semiprime ideal of T. By theorem 4.14, A is a semiprime ideal of T.  

Conversely suppose that A is a semiprime ideal of T. 

Let xT and 
nx A for some odd natural number n.   

Now 
nx A    < x >n ⊆ A   < x > ⊆ A ⇒ x ∈ A. Since A is semiprime.  

Therefore A is a completely semiprime ideal of T. 

THEOREM 4.17 : The nonempty intersection of any family of prime ideals of a ternary semigroup T is a 

semiprime ideal of T.  

Proof : Let  A 
 be a family of prime ideals of T such that A



  . It is clear that  A



  is an 

ideal. Let a T,  < a >
3
   A



  then < a >
3
  A for all  . 

Since A is a prime, < a > A  for all   and hence a A for all  .   

So a A



 . Therefore  A



  is a semiprime ideal of T. 

DEFINITION 4.18 : A non-empty subset A of a ternary semigroup T is said to be an  

n-system provided for any a A implies that T1T1aT1T1aT1T1aT1T1 ∩ A ≠ ∅. 

THEOREM 4.19 : Every m-system in a ternary semigroup T is an n-system. 
Proof : Let A be m-system of a ternary semigroup T. Let a A. Since A is m-system,    

a A,  T1T1aT1T1aT1T1aT1T1 ∩ A ≠ ∅. Therefore A is an n-system of T.  

THEOREM 4.20 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if T\Q is an n-

system of T (or) empty. 

Proof : Suppose that A is a semiprime ideal of a ternary semigroup T and T\A   .   

Let a T\A . Then a A.   

Suppose if possible T1T1aT1T1aT1T1aT1T1 ∩ T\A = ∅. 

 T1T1aT1T1aT1T1aT1T1 ∩ T\A = ∅ ⇒ T1T1aT1T1aT1T1aT1T1 ⊆ A.   

Since A is semiprime, either a A. 

It is a contradiction. Therefore T1T1aT1T1aT1T1aT1T1 ∩ T\A ≠ ∅. 

Hence T\A is an n-system. 

Conversely suppose that T\A is either an n-system or T\A =  .  

If T\A =   then T = A  and hence A is a semiprime ideal.  

Assume that T\A is an n-system of T.  Let a T and < a > ⊆ A. 

Let a T\A, T\A is an n-system of T  ⇒ T1T1aT1T1aT1T1aT1T1 ∩ T\A ≠ ∅. 

Suppose if possible aA. Then aT\A. Since T\A is an m-system.  

Then T1T1aT1T1aT1T1aT1T1 ⊆T\A  T1T1aT1T1aT1T1aT1T1 ⊈A   < a > ⊈A.   

It is a contradiction.  Therefore a A. Hence A is a semiprime ideal of T. 

THEOREM 4.21 : If N is an n-system in a ternary semigroup T and a N, then there exist an m-system 

M in T such that a M and M N. 

Proof : We construct a subset M of N as follows:   

Define 1a = a, Since 1a N and N is an n-system, (T1T1a1T
1T1a1T

1T1a1T
1T1

) ∩ N ≠∅. 

Let 2a   (T1T1a1T
1T1a1T

1T1a1T
1T1)∩N.  Since 2a N and N is an n-system, (T1T1a2T

1T1a2T
1T1a2T

1T1 )∩ N 

  and so on.  

In general, if ia has been defined with ia N, choose 1ia  as an element of  

(T1T1a2T
1T1a2T

1T1a2T
1T1) ∩ N.  Let M =  1 2 , 1, ..... ....i ia a a a  . Now aM and MN.  
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We now show that M is an m-system.  

Let 
,i ja a , ak   M (for i  j ≤ k).   

Then 
1ka    T1T1akT

1T1akT
1T1akT

1T1
    T1T1ajT

1T1ajT
1T1ajT

1T1  

                             ⊆ T1T1aiT
1T1aiT

1T1aiT
1T1 ⊆ T1T1aiT

1T1ajT
1T1akT

1T1 

 1ka 
 = T1T1aiT

1T1ajT
1T1akT

1T1.  But 
1ka 
M, so 

1ka 
 = T1T1aiT

1T1ajT
1T1akT

1T1∩ M,  

Therefore M is an m-system. 

 
V. Prime Radical And Completely Prime Radical 

NOTATION 5.1 : If A is an ideal of a ternary semigroup T, then we associate the following four types of sets. 

1A  = The intersection of all completely prime ideals of T containing A. 

2A  = {xT: xn A for some odd natural numbers n} 

3A  = The intersection of all prime ideals of T containing A. 

4A  = {xT:
nx  A for some odd natural number n} 

THEOREM 5.2 : If A is an ideal of a ternary semigroup T, then A   
4A  3A  2A  1A . 

Proof : i) A  4A : Let x A . Then < x >A and hence x  4A  

Therefore A   4A  

ii) 4A  3A : Let x  4A . Then 
nx  A for some  odd natural number n. 

 Let P be any prime ideal of T containing A. 

Then 
nx  A for some odd natural number n  nx    P.   

Since P is prime , < x >   P and hence xP.  

Since this is true for all prime ideals of P containing A,  x 3A . Therefore 4A  3A  

iii) 3A  2A  : Let x  3A . Suppose if possible 2x A .  

Then 
nx ∉ A  for all odd natural number n.   

Consider Q =  nx  for all odd natural number n, and x T. 

Let a, b, c Q . Then a = ( )rx , b = ( )sx , c = ( )tx  for some odd natural numbers r, s, t. 

Therefore abc = ( )rx ( )sx  ( )tx  = 
r s tx Q    and hence Q is a subsemigroup of T. 

By theorem 3.5, P = T\Q is a completely prime ideal of T and x P .    

By theorem 3.9, P is a prime ideal of T and x P . Therefore 3x A .  It is a contradiction.  

Therefore x  2A  and hence 3A  2A . 

iv) 2A  1A  : Let x  2A .   Now x  2A   nx ∈ A for some odd natural number n. 

Let P be any completely prime ideal of T containing A. 

Then 
nx ∈ A  P  nx ∈ P  xP. Therefore x 1A  . Therefore 2A  1A .   

Hence A   4A  3A  2A  1A . 

THEOREM 5.3 : A is an ideal of a commutative ternary semigroup T, then 1A = 2A = 3A = 4A  

Proof : By theorem5.2,  A   4A  3A  2A  1A .  By theorem 3.10, in a commutative ternary semigroup T, 

an ideal A is a prime ideal if A is completely prime ideal.   

So 1A  = 3A . By theorem 4.16, in a commutative ternary semigroup T an ideal A is semiprime if and only if A 

is completely semiprime ideal.  

So 4A = 2A and hence 1A = 2A = 3A = 4A . 

NOTE 5.4 : In an arbitrary ternary semigroup 1A  2A  3A  4A . 

EXAMPLE 5.5 : Let T be the free ternary semigroup generated by a, b, c.  

It is clear that A = T
3a T is an ideal of T.  Since 

5a T
3a T, we have a 2A .  
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Evidently  
n

abc T
3a T for all odd natural numbers n and thus abc  2A .  

Thus 
2A is not an ideal of T. Therefore 

1A   
2A  and 

2A   
3A . 

 

DEFINITION 5.6 : If A is an ideal of a ternary semigroup T , then the intersection of all prime ideals of T 

containing A is called prime radical or simply radical of A and it is denoted by A or rad A. 

DEFINITION  5.7: If A is an ideal of a ternary semigroup T , then the intersection of all completely prime 

ideals of T containing A is called completely prime radical or simply complete radical of A and it is denoted by 

c.rad A. 

NOTE 5.8: If A is an ideal of a ternary semigroup T , then rad A = 
3A  and  c.rad A = 

1A . 

THEOREM 5.9: If a A , then there exist a positive integer n such that 
na A for some odd natural 

number n ∈ N. 

Proof : By theorem 5.2, 
3A  2A  and hence a A =

3A  2A .   

Therefore 
na A for some odd natural number n N. 

THEOREM 5.10 : If A is an ideal of a commutative ternary semigroup T, then  

rad A = c.rad A. 

proof : By theorem 5.3, rad A = c.rad A. 

THEOREM 5.11 : If A is an ideal of a ternary semigroup T then c.rad A is a completely semiprime ideal 

of T. 

proof : By theorem 4.6, c.rad A is a completely semiprime ideal of T. 

THEOREM 5.12 : If A, B and C are any three ideals of a ternary semigroup T , then 

i)   A   B   A  B   

ii)  if A ∩ B∩ C ∩ ∅ then ABC  A B C A B C     

 iii) A =  A . 

proof : i) Suppose that AB. If P is a prime ideal containing B then P is a prime ideal containing A. Therefore 

A  B . 

ii) Let P be a prime ideal containing ABC.  Then ABC ⊆ P   A ⊆ P or B ⊆ P or C ⊆ P  

 A B C   ⊆P. Therefore  P is a prime ideal containing A  B  C.   

Therefore rad( A B C  ) ⊆  rad(ABC).   

Now let P be a prime ideal containing A B C  .   

Then A B C  ⊆ P ABC ⊆ A B C   ⊆ P  ABC ⊆ P. 

Hence P is a prime ideal containing ABC.   Therefore rad (ABC) ⊆ rad( A B C  ).  

Therefore rad(ABC) = rad( A B C  ).  

Since A B C  ≠ ∅, it is clear that A ∩ B is an ideal in T.  Let x ∈ A B C  .   

Then there exists a odd natural number n ∈ N such that xn ∈ A B C  .   

Therefore xn ∈ A, xn ∈ B and  xn ∈ C.  It follows that x ∈ A ,  x ∈ B and  x ∈ C .  Therefore x 

∈ A B C  .   

Consequently, x ∈ A B C  implies that there exists odd natural numbers n, m, p ∈ N such that  

xn ∈ A, xm ∈ B and xp ∈ C.  Clearly, xnmp ∈ A ∩ B ∩ C.   

Thus x ∈ A B C  .  Therefore if A ∩ B ∩ C ≠ ∅ then A B C A B C    . 

 iii) A = The intersection of all prime ideals of T containing A.  

Now A = The intersection of all prime ideals of T containing A . 

                   = The intersection of all prime ideals of T containing A = A  

Therefore A =  A . 

THEOREM 5.13 : If A is an ideal of a ternary semigroup T then A  is a semiprime ideal of T. 
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proof : By theorem 4.17 , A  is a semiprime ideal of T. 

THEOREM 5.14 : An ideal Q of ternary semigroup T is a semiprime ideal of T if and only if Q    =Q. 

Proof :  Suppose that Q is a semiprime ideal.  Clearly Q ⊆ √Q.   

Suppose if possible √Q ⊈ Q. 

Let a ∈ √Q and a ∉ Q.  Now a ∉ Q ⇒ a ∈ S\Q and Q is semiprime. By theorem 4.20,  

S\Q is an n-system. By theorem 4.21, there exists an m-system M such that a ∈ M ⊆ S\Q.    

Q   S\M and now S\M is a prime ideal of S, a S\M.  It is a contradiction.   

Therefore √Q  ⊆ Q.  Hence √Q = Q. 

Conversely suppose that Q is an ideal of S such that √Q = Q.   

By corollary 5.13, √Q is a semiprime ideal of S.   Therefore Q is semiprime. 

COROLLARY 5.15 : An ideal Q of a ternary semigroup T is a semiprime ideal if and only if Q is the 

intersection of all prime ideal of S contains Q. 

Proof : By theorem 5.14., Q is semiprime iff Q is the intersection of all prime ideals of T contains Q. 

COROLLARY 5.16 : If A is an ideal of a ternary semi group T, then A is the smallest semiprime ideal of 

T containing A. 
Proof : We have that √A is the intersection of all prime ideals containing A in T.  

Since intersection of prime ideals is semiprime, we have √A is semiprime.   

Further, let Q be any semiprime ideal containing A, i.e. A ⊆ Q.  So √A ⊆ √Q.   

Since Q is semiprime, By theorem 5.14, √Q = Q.  Therefore √A ⊆ Q.   

Hence √A  is the smallest semiprime ideal of S containing A. 

THEOREM 5.16 : If P is a prime ideal of a ternary semigroup T, then  ( )nP  = P for all odd natural 

numbers n   N. 

Proof : We use induction on n to prove 
nP = P.  

First we prove that PP  . Since P is a prime ideal, PPP   PP  .  

Assume that PPk   for odd natural number k  such that k1 < n.  

Now 
2 . .k k kP P P P P P P P P P P P         .   

Therefore 
2kP P  .  By induction 

nP = P for all odd natural number nN. 

THEOREM 5.17: In a ternary semigroup T with identity there is a unique maximal ideal M such that 

( )nM = M for all odd natural numbers n   N. 

Proof: Since T contains identity, T is a globally idempotent ternary semigroup. 

Since M is a maximal ideal of T, by theorem 3.15 M is prime.  

By theorem 5.16, ( )nM = M for all odd natural numbers n. 

Theorem 5.18: If A is an ideal  of a ternary semigroup T then A ={x ∈ T : every  

m-system of T containing x meets A } i.e., A  = { : ( )x T M x A  }. 

Proof: Suppose that x   A .  Let M be an m-system containing x.  

Then T\M is a prime ideal of T and x   T\M.  If M   A =   then A   T\M.   

Since T\M is a prime ideal containing A, A   T\M and hence x ∈ T\M.  

It is a contradiction.  Therefore M(x) A  .  Hence x  : ( )x T M x A  .  

Conversely suppose that x   : ( )x T M x A  .  

Suppose if possible x  A . Then there exists a prime ideal P containing A such that x   P.   

Now T\P is an m-system and x    T\P.   A   P   T\P A =   x   : ( )x T M x A  . 

It is a contradiction.  Therefore x   A . Thus A  =  : ( )x T M x A  . 

 

VI. Conclusion 
 Anjaneyulu. A initiated the study of pseudo symmetric ideals in semigroups, Madhusudhana Rao. D, 

Anjaneyulu. A. and Gangadhara Rao. A. initiated the the study of theory of Γ-ideals in Γ-semigroups and V. B. 
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Subrahmanyeswara Rao Seetamraju, Anjaneyulu and Madhusudhana Rao initiated the study of theory of ideals 

in partially ordered Γ-semigroups and hence the study of ideals in semigroups, Γ-semigroups and partially 

ordered Γ-semigorups creates a platform for the ideals in ternary semigroups.  
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