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I. Introduction. 
 The notion of a gamma ring was first introduced by N. Nobusawa [6] as a generalization of the concept 

of a classical ring. Barnes [1] generalized the concept of the Nobusawa’s gamma ring which is known as a 

gamma ring and Nobusawa’s gamma ring is known as N-ring (i.e. gamma ring in the sense of Nobusawa) L. 
Luh [5] worked on simple gamma rings and obtained some important properties. I. N. Herstein [3, 4] obtained 

various characterizations of simple rings with involution and also developed some structural results of Lie and 

Jordan rings. Paul and Sabur Uddin [7, 8] worked on Lie and Jordan structure in simple gamma rings and 

obtained some remarkable results.  

 In this paper, we introduce the concept of an involution of a -ring. An example of the involution for a 

-ring is given here. Some characterizations of simple -rings are obtained by means of the involution. Also, we 
develop some properties of Lie and Jordan ideals with involutions. 

 

II. Preliminaries. 
2.1. Definitions. 

Gamma Ring. [1] Let M and  be two additive abelian groups. Suppose that there is a mapping from M    

M  M (sending (x, , y) into xy) such that 

          i)       (x + y) z = xz + yz 

                    x ( + )z = xz + xz 

                    x(y + z) = xy + xz  

          ii)       (xy)z = x(yz),  

 where x, y, zM and  , .  Then M is called a -ring. 

 

Ideal of -rings.   A subset A of the -ring M is a left (right) ideal of M if A is an additive subgroup of M and 

MA = {ca  cM, , aA}(AM) is contained in A. If A is both a left and a right ideal of M, then we say 
that A is an ideal or two sided ideal of M.  

         If A and B are both left (respectively right or two sided) ideals of M, then A + B = {a + b  aA, bB} 
is clearly a left (respectively right or two sided) ideal, called the sum of A and B. We can say every finite sum of 

left (respectively right or two sided) ideal of a -ring is also a left (respectively right or two sided) ideal. 

 

Nilpotent element. Let M be a -ring. An element x of M is called nilpotent if for some , there exists a 

positive integer n = n() such that (x)nx = (xx...x)x = 0. 

 

Nilpotent ideal. An ideal A of a -ring M is called nilpotent if (A)nA = (AA...A)A = 0, where n is the 
least positive integer. 

 

Simple -ring.  A -ring M is called a simple -ring if MM  0 and its ideals are {0} and M. 

 

Centre of a -ring.  Let M be -ring. The centre of M, written as Z is the set of those elements in M that 

commute with every element in M, that is,  Z = {mMmx = xm for all xM and }. 

Jordan Structure. Let M be a-ring. The Jordan structure is defined by- (x, y) = xy + yx for x, yM and 

all . We say that a subset A of M is a Jordan sub--ring of M if A is an additive subgroup such that for a, 

bA and , ab + ba must also be in A.  
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Jordan Ideal. Let A be a Jordan sub--ring of M. The additive subgroup UA is to said to be a Jordan ideal of 

A if whenever uU, aA, and  then (u, a) = ua + au is in U. 

Lie Structure. Let M be a-ring. The Lie structure is defined by- [x, y] = xy - yx for x, yM and for all 

. We say that a subset A of M is a Lie sub--ring of M if A is an additive subgroup such that for a, bA 

and , ab - ba must also be in A.  

Lie Ideal. Let A be a Lie sub--ring of M. The additive subgroup UA is said to be a Lie ideal of A if 

whenever uU, aA, , then [u, a] = ua - au is in U. If A, B are subsets of M, then [A, B] is the 

additive subgroup of M generated by all ab - ba with aA, bB and . If M is non-commutative simple 

-ring of characteristic  2, then the sub--ring generated by [M, M] in M. If U is a Lie ideal of M, let 

T(U)={xM[x, M] U}. 
We need the following theorems for obtaining our results which are appeared in [7, 8]. 

 

2.2 Theorem. Let M be a simple  -ring of characteristic 2 . Then any Lie ideal of M which is also a sub- -

ring of  M  must either be  M itself or contained in the centre  of  M. 

 

2.3 Theorem. Let M be a  -ring and Z is a centre of M. If M is quadratic over Z, then M is at most 4-

dimensional over Z.   

 

2.4 Theorem. If  M is a simple  -ring and if  U is a Lie ideal of  [ . ]  then either U Z  or 

[ . ]U    except if  M  is of characteristic 2 and is 4-dimensional over Z.  

2.5 Theorem. If  M is a simple non-commutative  -ring then the sub- -ring generated by [ , ]   is  M.  

2.6 Theorem. Let  M be a simple  -ring of characteristic 2  and let  U be a Lie ideal of M. Then either 

U Z  or [ , ]U    . 

2.7 Theorem. If  M is a non-commutative simple  -ring of characteristic 2 , then the  

sub- -ring generated by [ , ]   is M.  

2.8 Theorem. Let M be a  -ring and 0 N  a right ideal of M. Suppose that, given 

, ( ) 0na N and a a     for a fixed integer n; then M has a non-nilpotent ideal.  

2.9 Theorem. Let M be a  -ring having no-non-zero nilpotent ideals in which 2 0x   implies that 0.x   If 

a  commutes with all , , ,a x x a x      then a is in the centre of M.   

 

III. Simple Gamma Rings with Involutions. 

3.1  Involution -ring.  Let M be a  -ring. A mapping I: MM is called an involution if  

            

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

i a b a b

ii a b b a

iii a a

 

     

   

 

 

       for all , ,a b M   . 

If ( ) ,a a  then a is called a symmetric element of  M and if ( ) ,a a   then a called a skew symmetric 

element of  M.  

 

3.2 Example.  Let R be an associative ring with 1 having an involution *. Let  

 M = M1.2(R) and   .,: 21

1.

1.

1

2 















 Znn

n

n

 Then M is a  -ring. Define I : M  M by  

 I ((a , b)) = (a*, b*). Then it is clear that I is an involution on M. 

 

3.3 Theorem. Let M be a simple  -ring with an involution I on M. Define S, the set of all  symmetric elements 

of M by S  ( )x x x    and K, the set of all skew symmetric elements of M by 

 ( )x x x      . Then S and K are respectively Jordan sub- -ring and Lie sub- -ring of M and M 

= S  .  
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Proof . We have I (0) = 0 then 0 S . Let ,a b S , then I(a-b) = I (a)-I(b) = a-b. So a b S  . Hence S in an 

additive subgroup of M. Let  , then ( ) ( ) ( ) ( ) ( ) ( ) ( )a b b a a b b a b a a b                = 

b a a b a b b a      . Thus a b b a S   . Hence S is a Jordan sub- -ring of M. We have  I (0) = 

0 = -0, so 0 .  

Let ,a b , then I(a-b) = I (a)-I(b) = - a + b = -(a-b). Hence a b  . So K is an additive subgroup of M. 

Let  , then  

                                    
( ) ( ) ( )

( ) ( ) ( ) ( )

a b b a a b b a

b a a b

   

 

     

     
 

                

( ) ( ) ( ) ( )

( ). .

b a a b

b a a b

a b b a Thus a b b a K

 

 

   

     

 

    

 

Hence K is a Lie sub- -ring of M. Since 2M is an ideal of  M and M is simple, 2M=M. So for every 

,
2

xx  makes sense and so we can write 
( ) ( )

.
2 2

x x x x
x

   
   

       2( ) 1 1 1 1 ( )
( ) ( ) ( ) ( ) ( ) .

2 2 2 2 2 2

x x x x
Now x x x x x x x x

    
                
 

 

( )
.

2

x x
Hence S

 
  

       2( ) 1 1 1 1 ( )
( ) ( ) ( ) ( ) ( ) .

2 2 2 2 2 2

x x x x
Again x x x x x x x x

    
                  
 

 

Hence 
( )

.
2

x x 
  

There fore 
( ) ( )

.
2 2

x x x x
x S K

   
     Hence M = S + K. 

Let x S K  , then x S and K. So ( )x x   and ( ) .x x    Therefore .x x   This implies that 

2 0. 0.x So x  Thus  0S K  . Hence M S K  .  

      Now we shall determine the nature of S as a Jordan  -ring and that of K as a Lie  -ring.  

Also, if s S  and k K  then s k k s S   . In studying  -rings with involution I two cases 

immediately present themselves; these depend on the nature of the involution on a certain prescribed subset. The 

definition we are about to give should be made using the centroid rather than the centre, however in the material 

at hand it is the centre, even if it is 0, that plays the crucial role.  

Notation. If A is a subset of M then   will denote the sub- -ring of M generated by A. 

 

3.4 Theorem. Let M be a simple  -ring with involution I of characteristic not 2 and let        S 

 ( )x x x    . Then S , the sub- -ring of M generated by S is M unless M is of dimension 4 or less 

(thus 4 or 1) over its centre.  

Proof. We claim that S is a Lie ideal of M. To see this note first that trivially , .S S S


   
 If k K and 

s S  we want to show that , , ;s k S


    
 to do so, since s  is a sum of monomials from S, we need 

merely do it for monomials 1 2 ....... , .n is s s s s S     But then  

     1 2 1 2 1 1 1...... , , ........ ...... ...... , ....... .......n n i i i ns s s k s k s s s s s k s s
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 1 2 1....... ,n ns s s s k


     which certainly in S . Thus 

, , , ,S S S K S S S K S
   

                   
 and so S  is a Lie ideal of M. By definition it is a sub-

 -ring of M. There fore by Theorem 2.2 we conclude that either S M  or S Z .  

 We consider the second possibility, namely S Z . But then S Z . Given 

, , ,a a s k s S Z k K      hence .a s k   Then ( ) ( ) , .a s a s k k      This implies 

that .a a a s s a s s k k         So .a a s a s a s s k k        Consequently 

2 0,a a s a s s k k        which is to say, M is quadratic over Z. By theorem 2.3, we get that M is at 

most 4-dimensional over Z.  

Related to this theorem is the following remark which holds for simple  -rings of any characteristic which 

have involutions.  

3.5 Theorem. Let M be a simple  -ring with involution I whose centre Z=0 or for which  

dim 4M
Z
 . Then the only element commuting with  ( ) .S x x x liein Z     

 Proof. Let  a commute with all .s S  If the characteristic of M is not 2, by theorem 3.4, 

S   hence a  follows. Thus we may suppose that M is of characteristic 2.  

 Let  , , .m m s s m s S          is clearly a sub- -ring of  M. Given 

,x a  then ( ( )) ( ( )a x x x x a     . This implies that ( ) ( ) .a x a x x a x a         So 

that 2 ( ) ( ) 2 ( ).a x x a a x x a I x a a x              Hence ( ) ( ) .a x x a a x x a          

We want to show that T is a Lie ideal of   M. Given , ,a y s S    then 

( )

2 ( ) sin 2 ( ) 0

( ) ( )

a y y a s a y s y a s

a y s y s a

a y s a s y y s a ce a s y

a y s a s y a s y y s a

      

   

       

       

  

 

     

     

 

 

( ( )) ( )

( ( )) ( )

( ) ( )

2 ( ) ( )

( ) ( ) 2 0

( ( ) ( ))

a y s s y s a y y s a

y s s y a s a y y s a

y s a s y a s a y y s a

y s a s y a s a y

s y a s a y y s a

s y a a y

      

      

       

     

     

  

     

     

     

    

    

   



 

                        ( )s y a a y      

as we have just shown. In other words, T is both a Lie ideal and sub- -ring of  M. By our assumption on dim 

M
Z

we get from Theorems 2.4 and 2.5 that .T Z or T   If   T = M  then S Z which we have seen 

forces dim 4R
Z
 . Thus ,T Z  which is the assertion of the theorem.  

We have already seen in Theorem 3.4 that S   for most simple  -rings. We now wish to establish its 

companion theorem namely, that K   in general. To do so we first show another construction, in most  -

ring with involution I of a Lie ideal of the  -ring.   

 

3.6 Definition. KK is the additive group generated by all 1 2k k  with 1 2, ,k k K   .  

3.7 Lemma. Let  M  be any  -ring with involution I such that  M =  S+K. Then K K is a Lie ideal of  M.  

 Proof. Let 1 2,k k   and .k K  Then 

1 2 1 2 1 1 2 1 2 2( ) ( ) ( ) ( )k k k k k k k k k k k k k k k k             
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 , , .K K so K K K K K


      On the other hand, if s S  then 

1 2 1 2 1 2 2( ) ( ) ( )k k s s k k k k s s k         1 1 2( ) .k s s k k K K       

Thus , .K K S K K


   Now     , , ,K K M K K K S K K K
 

         , .K K S K K


    Hence 

KK is a Lie ideal of   M.  

 

3.8 Theorem. If  M  is a simple  -ring with involution I of characteristic not 2, then    provided dim 

4.M
Z
  

Proof. Then conditions of Lemma 3.7 hold in  M  hence K K, as a Lie ideal of M. By theorem 2.6 must 

either  ,K K M M


    .or K K Z   Now if  ,K K M M


   then 

,K K K M M M


     
by the theorem 2.7. Suppose then that .K K Z   

If a K  is not invertible then since a K Z   and all the non-zero elements of Z are invertible we must 

have 0a K  . In particular, 0, .a a    If a S  then .a s s a K    Hence 

0 ( ) .a a s s a a a s a s a a s a              There fore 0.a S a   Hence 

( )a a a S K a      0 0 0.a S a a a a          Consequently M a is a nilpotent left 

ideal and so a = 0. Thus 0a   in K forces a to be invertible. If bK and ,a b Z   then we get 

1 (sin ).b Z a Z a ce a a n Z       Thus K Z a  .  

 If sS commutes with a then s a K Z a     forcing .s Z  Now if s S  then 

, ,s a a s t a t Z      in fact .t Z S   Thus ( ) ( ).s s t s a a s s t s         But since 

s s t s S    and commutes with a, so .s s t s Z   Given , , , .x M x s p a s S p Z       Hence  

( ) ( )

( ) ( )

x x s p a s p a

s s s p a p a s p a p a

   

       

  

   
 

       

( )

( ) ( ) ( )

.

s s p s a p a s p a p a

s s p s a p a s p p a a

s s p s a a s p p a a

s s p t a p p n

       

       

      

    

   

   

   

  

 

Now x x t x s s p t a p p n t x             

                         

( )

.

s s p t a p p n t s p a

s s p t a p p n t s t p a

s s p t a p p n t s p t a

s s t s p p n

      

       

       

   

    

    

    

  

 

Since as we have seen ,s s t s Z   we must have .x x t x Z    In this way  M has been shown to be 

quadratic over Z. By theorem 2.3,  M  must be at most 4-dimenional over Z. This proves the theorem.  

 We now prepare to study the Jordan structure of S. We begin with  

 

3.9 Theorem. If 0U   is a Jordan ideal of S then for , , ,u U m s M   

3 3( ) ( ) ( ) ( ) .m u u s s u u m U         

 Proof. Then proof will consist of breaking m and s into their symmetric and skew symmetric parts and 

verifying that in these special instances the theorem holds. We do this in the sequence of three lemmas.  

 

3.10 Lemma. If ,x y S  and u U  then , .x u y y u x U        

Proof.    2 ( ) ( )x u x x x u u x x u u x x x x u u x x                 . Since 

, .x x S x x u u x x U        Again since ,x u u x U    
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  ( ) ( ) .so is x x u u x x u u x x U            Thus 2 .x u x U    But we have 2S = S, so we get 

.x u x U    Now Linearizing on x we get .x u y U    Similarly we get .y u x U   Thus 

.x u y y u x U      

 

3.11 Lemma. If ,s S k K   and x U  then ,s u u k k u u s U         .  

Proof. Since u k k u   is in S, ( ) ( )u u k k u u u u k k u u k k u u               is in U. Being 

a Jordan ideal of S, ( ) ( ) .s u u k k u u u u k k u u s U              That is,  

(1) 

( ) ( )s u u k k u u u u k k u u s s u u k k u u s s k u u u u k s                              

is in U.  

Consider 

(2) 

( ) ( ) .k u u s s u u u u s s u u k k u u s s u u k k s u u u u s k                             

Adding (1) and (2) the right sides add up to ( ) ( )u u k s s k k s s k u u           which, since 

,k s s k K    we have seen must be in U. Therefore the sum of the left sides must be in U; since the left 

side of (1) is already in U we get that of (2) must also be in U. Now subtract (1) from (2); doing so we stay in U. 

The result on the right is 2( )s u u k k u u s U       . Since 2S = S this gives 

s u u k k u u s U        for all , , ,s S k K u U     , which is the desired result.  

3.12 Lemma. If  ,a b K  and u U  then 
3 3( ) ( ) , .a u u b b u u a U          

Proof. Since , .b K so b u u u u b U       Thus 2( )b u u u u b    .U  

2 ( 4 )Since K K and so K K   this gives us ( ) ( ) .b u u u u b b u u u u b U             

But expanding we have  

( ) ( ) ( ) ( )b u u u u b b u u u u b b u u b u u                 ( ) ( )b u u u u b         

                                                                  ( ) ( ) ( ) ( )u u b b u u u u b u u b            

                                                            
3( )b u u b u u b u u b u u b b u u                

           u u b u u b      

                                                            ( ) ( ) ( ) ( )b u u b u u u u b u u b            

                                                                  
3( ) ( ) ( ) ( ) .u u b b u u b u u b          

Now  ( ) ( ) ( ) ( )b u u b u u u u b u u b          is in U, since 2b u u b S and u u U     . By 

Lemma 3.10 since 2 , 4 , ( ) ( ) ( ) .u u U u u b b u u U so u u b b u u U              The upshot of 

all this is that 
3( ) .b u u b U     Linearizing on b we get 

3( ) .a u u b U     Similarly we get 

3( ) .b u u a U    Thus 
3 3( ) ( ) .a u u b b u u a U        

 Proof of theorem 3.9. Given , ,u U m s M   then 0 1 0 1,m m m s s s     with 

0 0 1 1, , , , .m s S m s K   Thus 

3 3

3 3

0 1 0 1 0 1 0 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m u u s s u u m

m m u u s s s s u ua m m

     

    

  

       
3 3

0 1 0 1 0 1 0 1( ) ( ) ( ) ( ( ) ( )) ( ) ( ( ) ( ))m m u u s s s s u u m m                

3 3

0 1 0 1 0 1 0 1( ) ( ) ( ) ( ) ( ) ( )m m u u s s s s u u m m          
3 3 3 3

0 0 0 0 0 1 1 0

3 3 3 3

1 0 0 1 1 1 1 1

( ) ( ) ( ( ) ( ) )

( ( ) ( ) ) ( ( ) ( ) ).

m u u s s u u m m u u s s u u m

m u u s s m u m m u u s s u u m

           

         

   

   
 

Since 
34( )u u U   and since we have seen the factor 4 can be eliminated we obtain the desired theorem as a 

combination of the three Lammas 3.10, 3.11 and 3.12.  
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 We are in a position to prove the basic  

3.13 Theorem. The only Jordan ideals of   S  are 0  and  S  that is,  S is a simple Jordan  -ring.  

 Proof. Let 0U   be a Jordan ideal of   S. If u U  then we have seen that 
3 3( ) ( ) ( ) ( )m u u t t u u m U        for all m, t .M  If 

3( ) 0u u   then M 3( )u u M M    

and so, given x M then 
3( ) .i ix m u u t    But then 

3( ) ( ) ( ) ( )i ix t u u m      . Hence 

3( ) ( ( ) ( ) ( ) ( ))i i i ix x m u u t t u u m           is in U. Since ( )x x   covers S as x  runs over  M  

we get that  U = S. Thus if U S  we must assume that 
3( ) 0u u   for all .u U  Given 

0 1 0 1, , ,u U m m m m S m K      we have  

   0 1 0 12 ( ) 2 ( ) ( )u u m m u u u u m m m m u u                    

                                       0 1 0 12 2 2( ( ) ( ))u u m u u m m m u u            

                                       

0 1 0 1

0 1 0 1

0 0 1 1

2 2 2( )

2 2 2 2

2( ) 2( ) is in U. 

u u m u u m m m u u

u u m u u m m u u m u u

u u m m u u u u m m u u

     

       

       

   

   

   

 

Since    
33( ) 0, 4 ( ( ) ) ( ) 0.u u u u m m u u u u m m u u                We get 

    
4

0u u m u u m       for all .u U and m M   By theorem 2.8 we conclude that 0u u   

for all .u U  Linearizing we get that 0u v v u    for all , .u v U  Given , .s S v u s s u U      

Hence 0 ( ) ( )u v v u u u s s u u s s u u u u s u s u                    

2u s u s u u u s u u u s s u u              2 ,u s u   since 0.u u   Thus 0u s u    for 

all u U  and .s S  Given k K  then .k u k S    Hence 0.u k u k u      For any 

0 1,m M m m m    with 0 1, ,m S m K   then  

0 1 0 1( ) ( )u m u m u u m m u m m u           

                       

0 1 0 1

0 1 0 1

0 0 0 1 1 0 1 1

( ) ( )

( ) ( )

0.

u m u u m u m m u

u m u u m u m u m u

u m u m u u m u m u u m u m u u m u m u

     

      

               

  

  

   



 

There fore 0u m u m u m m      . Thus 0.u m u m u m       Hence   
2

( ) 0.u m u m     

By Theorem 2.8, we conclude that   u = 0. We have prove that  U = 0 or  U = S. Hence the theorem is proved.  

Having determined the Jordan structure of S we now want to determine the Lie structure of  K . We begin with 

the very easy 

3.14 Lemma. If  U is a Lie ideal of   K and if ,u U  s S  then ( ) ( ) , .u u s s u u U        

 Proof. To see the result merely note that u s s u K    and 

( ) ( ) ( ) ( ) .u u s s u u u u s s u u s s u u U                

3.15 Definition. If   U  is  a Lie ideal of  K  then   ( ) , .U x K x U


      

Clearly  T (U) is a Lie ideal of  K  and contains  U. We  want a closer tie-in between U and T(U).  

3.16 Lemma. If  U is a Lie  ideal of  K  then , ,u v w U implies ( )u v u T U    and 

( ), .u v w w v u U        

 Proof. Consider  , ;u v u K for k K 


  

( ) ( )u v u k k u v u u v u k k u v v u k k u v u v u k u u k u v                             

                                       ( ) ( ( ))u v u k v u k v u k v u k u              

                                        ( ) ( ) .v u k u u k u v        
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Since ( )v u k v u k     is in  K, so its commutator with u is in  U. Since 

 , ( ) ( ) .u k u K v u k u u k u v U           In all we have shown that  ,u v u K U 

  and so 

( ).u v u U    Linearizing on  U  we obtain ( ).u v w w v u U       

We proceed to prove  

3.17 Theorem. If  U is a Lie ideal of K then for all 

, , ( ) ( ) ( ) ( )u v U u u v v u u m m u u v v u u T U               for all , .m M     

 Proof. We write m s k   with ,s S k K  . Then 

1.       ( )u u v v u u s s u u v v u u u u s s u u v v u u s s u u                           

    .u u v s s v v s s v u u            By Lemma 3.14, ,u u s s u u U      so 

    u u s s u u v v u u s s u u             is in U.  Also, since ,v s s v S    by Lemma 3.14 

again     u u v s s v v s s v u u           is in U. Being in  U  these are certainly in  T(U). Hence 

( ) ( )u u v v u u s s u u v v u u            is in T(U).  

2.    u u v v u u k k u u v v u u             

 )()(})()( kuuuukkuuuukuukkvvkkuu   

)sin,14.3()(mod)()( SvkkvceLemmabyUvkuuuukkuuuukv    

)(mod))()(())()(( Uvkuukuukuukkuukuukuukv    

   ( ) ( ) ( ) ( )v k u u k u u k u u k k u u k u u k u u k v                       

   

 

2 ( ( ) ) mod

2( ( ) ( ) ) mod .

v u k u u k k u u k u v U

v u k u u k k u u k u v U

       

       

  

   
 

But by Lemma 3.14, since , ( ) ( )k u u k U v u u k k u u k k u u v               is in T(U). Then 

upshot of all this is that      .u u v v u u k k u u v v u u U              

Hence ( ) ( ) ( )u u v v u u m m u u v v u u             

 

 

       

( ) ( ) ( )

( ) ( ) ( )

{ } { }

( ).

u u v v u u s k s k u u v v u u

u u v v u u s k s k u u v v u u

u u v v u u s s u u v v u u u u v v u u k k u u v v u u

is in U

         

         

                   

      

     

       



 

3.18 Theorem. If  M  is simple and dim 4M
Z
  and if  U  is a Lie ideal of  K then either 

 ,U K K or u u v v u u   


   for all , .u v U  

 Proof. Let a u u v v u u     , where ,u v U . By theorem 3.17, ( ) ( )a m m a U    for 

all m M ,  . If 1k K  then 1 1( ( ) ) ( ( ) ) ( ).b a m m a k k a m m a U U             

Since 1 1 1 1( ) ( ) ( ) ,b a m k m k a m a k k a m            so 1 1( ) ( )m a k k a m U       for 

all 1, .m M k K   We continue in this vein, let 2 .k K  Then      

1 1 2 2 1 1( ( ) ) ( ( ) ) ( )m a k k a m k k m a k k a m U                

Hence 1 2 1 2 1 2 2 1( ) ( ( ) ) ( ) ( ) ( ).m a k k m a k k k a m k m k a k U                    

Since 1 2 2 1( ) ( ) ( )k a m k m k a k U       , we obtain 

1 2 1 2( ) ( ( ) ) ( )m a k k m a k k U         . Continuing we get by induction that for all k K , 

( ) ( ( ) ) ( )m a k m a k U        . Since dim 4M
Z
 , by theorem 3.8, K M . Then 
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( ) ( )m a t m a t U      for all ,m t . Now a   is an ideal of   M, if 0,a   then 

M aM=M But for any , , ( ) ( )i i i ix x m a t so x m a t         ( )i im a t    

( ) ( ) ( ) ( ) ( ),sin ( ) .i i i it a m t a m ce a a              

Hence ( ) ( ) ( ( )) ( ).i i i i i i i ix x m a t m a t m a t m a t U                  

Since ( )x x  sweeps out  K  and we have that if 0a   then  ( ) .U K   From the definition of  T(U) this 

says that  ,U K K


 .  

3.19 Theorem. If  M is simple, dim 4M
Z
  and if U is a Lie ideal of  K such that [ , ]K K U   then given 

, , .u U u u Z     

Proof. Since u u v v u u     by theorem 3.18, u u  is in the centre of ,U   

the sub- -ring generated by U. However u u s s u u U      for s S  and 

( ) ( )u u k k u u u u k k u u k k u u U                for ,k S thus u u  commutes with all 

( ) ( ) , ,u u s k s k u u s S k K        , that is with all ,u u m m u u     for all m M . Since 

the characteristic is not 2, by theorem 2.9 that this forces u u  to be in Z.  

 

3.20 Corollary. If [ , ]K K U  , then u v v u Z    for all ,u v U  and  .  

 

3.21 Theorem. If  M is simple, dim 4M
Z
  and U is a Lie ideal of  K such that u u U  ,  implies 

0,u u   then U = 0. 

Proof. On linearizing 0u u   we get 0u v v u    for all ,u v U . Thus u v v u   . So 

0u u v v u u      . Given ,u U k K   then 

2 ( ) ( ) (sin 0).u k u u k u k u u u u k u k u u k k u u u u k k u ce u u                        

Hence .u k u U    But then 0.v u k u v      Since u v v u   , we arrive at 0u v u v   . 

Now ( ) ( ) ( ) ,u v v u v u u v           that is, u v  , thus for s S , s u v s     and so 

0u v s u v s u v u v u v           . Given ,m S  , , ,m s k s S k K     whence 

0.u v m u v m u v        The right ideal u v   is such that every element in it has cube 0. By 

theorem 2.8 this forces 0u v   for all , .u v U But then for , ( ) 0k u u k k u     , leaving us with 

0.u u   As above we then get 0u s u s u      for s S  and so u  is a nil right ideal, where 

every element has cube 0. The outcome of this is that  u = 0  that is,  U = 0.  

Combining theorems 3.19 and 3.21 we have  

 

3.22 Theorem. If M is simple and Z = 0 then any non-zero Lie ideal U of K must contain[ , ]  .  
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