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I. Introduction 
     Let 
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iinn
 be the set of complete finite discrete 

probability distributions. There are many information and divergence measures given in the literature on 
information theory and statistics. Some of these are symmetric with respect to probability distributions, while 

others are not. Throughout this paper it is understood that the probability distributions nQP , . 

                Some divergence measures are as follows.  

         
2 -Divergence (Pearson [6] 
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           Relative Jensen-Shannon divergence (Sibson [8], Sgarro [7]) 
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          Relative Arithmetic Geometric Divergence (Taneja [9]) 
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          Relative J-divergence (Dragomir et al [5]) 
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II. Relative JS and AG divergence of type s. 
Let us consider the relative JS and AG divergence of type s. 
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(2.1)              
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         We have the following particular cases of  QPs // . 

             (i)    QPQP //
4

1
//1   

          (ii)    QPFQP ////0   

          (iii)    QPGQP ////1   

  (iv)    PQQP //
8

1
// 2

2  . 

        The expression  QP //  appearing in part (i) is the well known triangular discrimination, and is given 

by  

(2.2)               
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III. Csiszar’s f- divergence and information inequalities. 
            In this section we present Csiszar’s f- divergence and bounds on it in terms of measure (2.1). 

Given a convex function ),0[:f .The f-divergence measure introduced by Csiszar [1] is given by 

(3.1)                














n

i i

i
if

q

p
fqqpC

1

,     

where
nqp , . 

                The following two theorems are due to Csiszar and Korner [2]. 

Theorem 3.1: (joint convexity).Let ),0[:f  be convex, then the  qpC f ,  is jointly convex in p 

and q, where
nqp , . 

Theorem 3.2: (Jensen’s inequality). Let ),0[:f  be a convex function. Then for any
nqp , , 

with  
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          In particular, for all nQP , , we have 

                      1// fQPC f     

With equality iff  P = Q. 

          In view of Theorems 3.1 and 3.2, we state the following results. 
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Result 3.1: For all nQP , , we note that 

(i)     0//  QPs  for any s , with equality iff P = Q. 

(ii)  QPs //  A convex function of the pair of distributions   nnQP ,  and for             any

s . 

Proof: Take  

(3.2)               
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for all 0u  in (3.1), we get  
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  Moreover, 
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and  

     (3.4)                      
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         Thus we have   0// us  for all 0u , and hence,  us  is a convex for all 0u . Also, we have

  01 s . In view of theorem 3.1 and 3.2 we have the proof of parts (i) and (ii), respectively. 

         The following theorem is due to Dragomir [3, 4]. 

Theorem 3.3: Let :f  be a differentiable convex function. Then for all
nqp , , we have the 

inequalities 
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where :/f  is the derivative of f .  

        If f is strictly convex then the equalities in (3.5) and (3.6) hold iff p = q. 

We can also write 

(3.7)                   
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       From the information theoretic point of view we shall use the following proposition. 

Proposition 3.1: Let :f  be differentiable convex. If nQP , , then we can state  
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with equalities if P = Q. 

      In view of proposition 3.1, we have the following result. 

Result 3.2: Let nQP ,  and .Rs Then 
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                    The proof is an immediate consequence of the proposition (3.1) by substituting  .f  by  .s , 

where  .s  is given by (3.2). 

          The measure (3.10) admits the following particular cases. 

              (i)       QPPQDQP //
2
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 (ii)        PQDQPQP ////
2

1
// 2
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          We state the following corollaries as particular cases of result 3.2. 

Corollary 3.1. We have   
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Proof: (3.11) follows by taking s = 0, (3.12) follows by taking s = 1, (3.13) follows by      taking s = 2 in (3.9). 

Theorem 3.4: Let  If :  be a mapping which is normalized, i.e.,   01 f  and satisfy the 

assumptions:   

              (i)  f is twice differentiable on (r, R), where  Rr 10 ; 

              (ii) there exists the real constants m, M such that m < M and  
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            If nQP ,  are discrete probability distributions satisfying the assumption 
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where    QPQP fs //,//   and  QPs //  are as given by (2.1), (3.7) and (3.10) respectively.  

Proof: Let us consider the functions  .,smF  and  .,sMF  given by  

(3.17)                  umufuF ssm ,   

and  

(3.18)                  ufuMuF ssM  ,            

respectively, where m, M are as given by (3.14) and the function  .s is as given by (3.2). 

           Since  uf  and  us  are normalized, then  .,smF  and  .,sMF  are also normalized, i.e., 

  01, smF  and   01, sMF .Moreover, the functions  uf  and  us  are twice differentiable. 

        Then in view of (3.4), we have  
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for all  Rru ,  and Rs .Then the functions  .,smF  and  .,sMF  are convex on  Rr, .  

According to proposition 3.1, we have  

(3.19)                   0//////
,

 QPmQPCQPC sfF sm

 

and  

(3.20)                   0//////
,

 QPCQPMQPC fsF sM

           

 Combining (3.19) and (3.20), we have  

                        QPMQPCQPm sfs //////      

                  We shall now prove the validity of inequalities (3.16). We have seen above that real mappings 

 .,smF  and  .,sMF  defined over R  given by (3.17) and (3.18), respectively are normalized, twice 

differentiable and convex related to (r, R). 

        Applying the r.h.s of the inequalities (3.8), we have 
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This gives,  
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Thus, we have l.h.s of inequalities (3.16). 

         Again in view of (3.22) and (3.24), we have 
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Finally,  

                           QPQPMQPCQP ssff ////////      

Thus we have r.h.s of the inequalities (3.16). 

IV. Information inequalities  
            In this section, we present particular cases of theorem 3.4. 

 

4.1   Information bounds in terms of relative Arithmetic Geometric divergence. 

             In theorem (3.4) substituting s = 1, we have the following proposition 

Proposition 4.1: Let  If :   be a mapping which is normalized, i.e.,   01 f  and satisfies the 

assumption: 
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 (i) f is twice differentiable on  Rr, , where  Rr 10 ; 

 (ii) there exists the real constants m, M such that m< M and  
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Proof: Let us consider    uuf s , where  us  is given by (3.2).    

According to expression (3.4), we have  
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where r and R are defined above. 

        Thus in view of (4.7), (4.8) and (4.1), we have inequalities (4.3) and (4.4). Again, in view of (4.7), (4.8) 

and (4.2), we have inequalities (4.5) and (4.6). 

         In view of result 4.2, we obtain the following corollary. 

 

Corollary 4.1: under the conditions of result 4.1, we have  
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Proof:  (4.9) follows by taking s= -1, (4.10) follows by taking s= 0, in (4.3), (4.11) follows by taking s= 2 in 

(4.4). (4.12) follows by taking s= 0 in (4.5). (4.13) follows by taking s= 2 in (4.6). While for s= 1 we have 

equality sign. 

 

4.2 Information bounds in terms of  
2  divergence. 

         In theorem (3.4) substituting s = 2, we have the following proposition 

Proposition 4.2: Let  If :  be a mapping which is normalized, i.e.,   01 f  and satisfies 

the assumptions 

                  (i)  f is twice differentiable on  Rr, , where  Rr 10 ; 

     (ii) there exists the real constants m, M such that m< M and 
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Proof:  Let us consider    uuf s  , where  us  is given by (3.2). 

       According to expression (3.4), we have 
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where r and R, are defined above. 

    Thus in view of (4.20), (4.21) and (4.14), we have inequalities (4.16) and (4.17). 

 Again in view of (4.20), (4.21) and (4.15), we have inequalities (4.18) and (4.19). 

            In view of result 4.2, we obtain the following corollaries. 

 

Corollary 4.2: under the conditions of result 4.2, we have 
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Proof: (4.22) follows by taking s=-1, (4.23) follows by taking s= 0, (4.24) follows by taking s= 1 in (4.16). 

(4.25) follows by taking s= 1 and (4.26) follows by taking s= 2 in (4.18). While for s= 2, we have equality sign. 
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