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Abstract: Shannon inequalities are well known in information theory. In this paper, we have proposed some
generalized inequalities in terms of relative AG divergence of type s and ;(2 _divergence. The result obtained in
particular lead us to some known divergence measure.

Key words: Csiszar’s f- divergence, Relative Arithmetic Geometric divergence, ;(2 divergence, AG divergence
of type s, Triangular discrimination, Information inequalities.

l. Introduction
Let

n

A, :{P =(Py, Pyreeer Py ) Dy > 0,>.p :1},n >2, be the set of complete finite discrete
i=1

probability distributions. There are many information and divergence measures given in the literature on

information theory and statistics. Some of these are symmetric with respect to probability distributions, while

others are not. Throughout this paper it is understood that the probability distributions P, Q € An .
Some divergence measures are as follows.
;(2 -Divergence (Pearson [6]

(11) ZZ(P//Q):i(pi ;'Qi)z :iz_uz_l

and
n o )2 n 2
i1 Pi i1 P
AMS subject classification: 94 A17, 94 A24, 26 D15
Relative Jensen-Shannon divergence (Sibson [8], Sgarro [7])

n 2 p
FIP/Q)=>p I | ——
1.3
() Zﬂ: e+
Relative Arithmetic Geometric Divergence (Taneja [9])

(1.4) G(P//Q)Ziz:,[ pi;qi]'“[pi+qij

2p;

Relative J-divergence (Dragomir et al [5])

(L.9) D(P//Q)=Z:,(pi —qi)ln(Mj

2q;
and
(L6) D(Q// P)= 2(% — P )ln[piz;p_q]

1. Relative JS and AG divergence of type s.
Let us consider the relative JS and AG divergence of type s.
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FG.(P//Q)=][s(s— 1)]_1{Zp [ P ;q j —1] s=0,1

&y (P//Q) PIQ)="p I [ 2P 0
o (P ={F(P = : |, =
. Q Q iZ:;,p. n[pi+qij s
_~ Pi +4q; Pi +4; _
G(P//Q)—;[ > jl[ TP, j s=1

We have the following particular cases of € (P Il Q)
Q. (PIQ)=ZAPIQ)

i) Q,(P/Q)=F(P//Q)
i) Q, (P/ Q)=G(P// Q)

@2 (P1IQ) = £* QU P).

The expression A(P// Q) appearing in part (i) is the well known triangular discrimination, and is given
by

22) AP Q)= Z (pp' +qq)

1. Csiszar’s f- divergence and information inequalities.
In this section we present Csiszar’s f- divergence and bounds on it in terms of measure (2.1).

Given a convex function f :[0,00) — R .The f-divergence measure introduced by Csiszar [1] is given by

31) C, (p,Q)=;qi f (;L

i
where P,( € 9{2 .
The following two theorems are due to Csiszar and Korner [2].
Theorem 3.1: (joint convexity).Let f :[0,00) — R be convex, then the Cf (p, CI) is jointly convex in p

and g, where p,q € R .

Theorem 3.2: (Jensen’s inequality). Let f :[0,00) — R be a convex function. Then for any P, € ERE

n n
with P, = Z p; >0,Q, = Zqi >0 we have the inequality

i=1 i=1

P
c.(p,q)=0Q, f| -n |,
(p.a)=Q [Qn)

The equality sign holds iff
P, _ P> _  _ Pa

% d.  d,
In particular, for all P, Q € A, we have
C,(PI/Q)=r1@

With equality iff P=Q.
In view of Theorems 3.1 and 3.2, we state the following results.
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Result 3.1: Forall P, Q € A |, we note that
i) Q,(P/Q)>0 foranys e R, with equality iff P = Q.

iy Q (P Q) A convex function of the pair of distributions (P,Q)e A, x A, and for any
seR.
Proof: Take
[S(s—l)]l[U[uztlj —u—s(l_zu]] s=0,1
3.2)
p.) =25 —un, (U502, s—o |
u—1 (u+1j [u+1), s —1

forall u >0 in (3.1), we get

FG_(P/Q), s=0,1
C,(P/Q)= (P//IQ)={F(P/Q), s=0
G(P/Q), s =
Moreover,
(s—l) [ +1js— +1 1—1[“*1]54 s=0,1
(3.3) 2u 2 ull 2u ’ ’
/ i 1—u . u-—+1 -
¢s(u)_ 2(1+U) In( ou ]' s=0
thoo )
2 2u
and
(3.4) u+1 s = 0,1
¢s//(u): m s =0
1 s =121

2uz(u +1)
I .
Thus we have ¢s (U) >0 for allu > 0, and hence, ¢S (U) is a convex for allu > 0. Also, we have

¢S (1) = 0. In view of theorem 3.1 and 3.2 we have the proof of parts (i) and (ii), respectively.
The following theorem is due to Dragomir [3, 4].

Theorem 3.3: Let T : ‘R+ — R be a differentiable convex function. Then for all P, ge ER:]L , We have the

inequalities

(3.5) r@@E-—ed=c (ha-e, r@=c, (2 p)-c (b
and

(3.6) 0= C,(p,a)—Q, f[Qp:j = ( j o Cf/(p a)

where T/ 2R, —> M isthe derivative of T .

If fis strictly convex then the equalities in (3.5) and (3.6) hold iff p = g.
We can also write

(3.7) o4 (p,Q)=Cf/[%2, pj—Cf / (p,Q)=iZ:,(pi —aq,)f ’[q%‘j'

From the information theoretic point of view we shall use the following proposition.
Proposition 3.1: Let f 1R, — R be differentiable convex. If P,Q €A, , then we can state
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(3.8) O£Cf(P//Q)—f(l)sCf,[%Z//P]—Cf,(P//Q)

with equalities if P = Q.
In view of proposition 3.1, we have the following result.

Result3.2: Let P,Q € A, and S € R. Then
(39) 0< Q(P/IQ) <n(PIQ)

where
US(P//Q)=C¢,S(%2// P]—C¢,S(P//Q)
(3.10)
(sG-S B (B ) [y s a-s)q) s-o0.1
7. (P11 Q)=1D(@Q P)—%A(P//Q), s=0
%[;gz(P//Q)—D(Q// P)]. s—1

The proof is an immediate consequence of the proposition (3.1) by substituting f () by ¢S ()

where ¢5 () is given by (3.2).
The measure (3.10) admits the following particular cases.
. 1
() 7,(P//Q)=D(Q// P)— EA(P Q)
1

iy 1,(P// Q)= E[;(2(F>//Q)— D(Q// P)]

(iii) Uz(P//Q):% 2@ P)+Zn)(%j g

i=1
We state the following corollaries as particular cases of result 3.2.
Corollary 3.1. We have
(3.11) O<F(P/Q)<D(Q/ P)—%A(P//Q)

(3.12) 0<G(P/Q)< %[XZ(P//Q)— D(Q// P)]

(3.13) os%;/(Q// P)<7,(P/IQ).
Proof: (3.11) follows by taking s = 0, (3.12) follows by taking s = 1, (3.13) follows by  taking s =2in (3.9).

Theorem 3.4: Let T i1 < 9?+ —>R bea mapping which is normalized, i.e., f (1) =0 and satisfy the
assumptions:

(i) fis twice differentiable on (r, R), where 0 < T <1< R < o0
(i) there exists the real constants m, M such that m < M and

2-s
(3.14) m < 4x3(xz—j;lj f’(x) < M; Vvxe(r,R), seR

it P, Q € An are discrete probability distributions satisfying the assumption
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Pi
O<r<—<R<w , then we have the inequalities

o F
(3.15) mQ,(P/Q)<C,(PIQ)<MQ (P/Q)
and
(3.16) MGz, (P // Q) — <2 (P // Q)

=p (P/Q)—C (P/Q)
= M@ (P//Q)— D (P //Q))

where QS(P// Q), ol (P// Q) and 7], (P// Q) are as given by (2.1), (3.7) and (3.10) respectively.

Proof: Let us consider the functions Fm,s () and FM s () given by

Gy Fu )= f(u)-mg,(u)

and
e Fuu)=Mg(u)-f(u)
respectively, where m, M are as given by (3.14) and the function ¢S () is as given by (3.2).
Since f(u) and ¢s (U) are normalized, then Fm’s () and FM s () are also normalized, i.e.,

Fos (1) =0 and Fy (1) = O .Moreover, the functions f (u) and ¢, (U) are twice differentiable.
Then in view of (3.4), we have

Fns(U)="(u)-mg;(u)
O

40\ 2u
s—2 2-s
)= (St () w)-m o

and

Fur o(u)=Mg! (u)— " (u)
F/ (u)=m-L (“_”j ()

4u\ 2u
s—2 2-s
Fuﬁ',s(u)=4—i3[u2—tl) [M —4u3[u2_:1) f”(u)]zo

forall U € (r,R) and s € R.Then the functions F, () and Fy, ¢ () are convex on(r, R).
According to proposition 3.1, we have

(3.19) C. (PIIQ)=C,(P/IQ)-m Q. (P//IQ)=0
and
(3.20) Ce, . (P/IQ)=MQ (P/Q)-C,(P/Q)=0

Combining (3.19) and (3.20), we have
mQ (P/Q)<C,(P/IQ)<MQ_ (P/Q)
We shall now prove the validity of inequalities (3.16). We have seen above that real mappings
Fos () and Fy, ¢ () defined over R, given by (3.17) and (3.18), respectively are normalized, twice

differentiable and convex related to (r, R).
Applying the r.h.s of the inequalities (3.8), we have
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2
(3.20) C. (P/Q)=cC, [%// PJ—CF, (P/IQ)

and
2
(3.22) C.,.(PIQ)< C., (% / PJ—CFB,“(P//Q)

respectively.
Moreover,

(3.23) Ce, (P/Q)=C,(P/IQ)-mQ (P//Q)
and
(3.24) Ce, (P/IQ)=MQ (P/Q)-C,(P/Q)
In view of (3.21) and (3.23), we have
PZ

C,(P/Q)— MmO (P//Q)=C, '—m¢s’[ Q

// Pj—cf,_m(&, (P//IQ)

Thus,
C,(PIQ)-mQ (P/Q)

scf,[%z// Pj—mC%,[%Z// Pj—Cf,(P//Q)+ mC, (P// Q)

Equivalently,

m[c%,['f; // Pj—C¢S,(P//Q)—QS(P//Q):|

scf,[':('; // P]—Cf,(P//Q)—Cf (P// Q)

This gives,
M7, (P//Q)— 2 (P/ Q)= p (P/Q)—C,(P//Q)
Thus, we have I.h.s of inequalities (3.16).
Again in view of (3.22) and (3.24), we have

M, (P/IQ)-C,(PIQ)=C,, .. [%2// Pj—cm%,f, (P//Q)

Thus,

MQ (P/Q)-C,(P/Q)

=M C¢;(F(; /" Pj—Cf,[T; /" PJ—M c, (PI/Q)+c (P/Q)
This gives,
2
cf,(z /I Pj—Cf,(P//Q)—Cf(P//Q)
P2
<M [C(M(all PJ—C(/),S(P//Q)—QS(P//Q)J

Finally,

pi(PIIQ)—C(P/IQ)<M [, (P//IQ)-,(P/IQ)]

Thus we have r.h.s of the inequalities (3.16).
V. Information inequalities
In this section, we present particular cases of theorem 3.4.

4.1 Information bounds in terms of relative Arithmetic Geometric divergence.
In theorem (3.4) substituting s = 1, we have the following proposition

Proposition 4.1: Let f :1 <R, — R be a mapping which is normalized, i.e., f (1) = 0 and satisfies the
assumption:
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(i) fis twice differentiable on (r,R), where 0 < r <1< R < o0;
(i) there exists the real constants m, M such that m< M and

X+1
ms4x3(2—)f”(x)£M vV xe(r,R) , seR
X
If P,Q = A, are discrete probability distributions satisfying the  assumption

O<r< P < R < oo, then we have the inequalities
q;
(4.2) mG(P/Q)<C,(P/Q)<MG(P//Q)
and
(4.3) m[% 2 (PI/IQ)— % DQ/P)—G(P/ Q)j
=p (P/Q)—C,(P/Q)
=M [%;(Z(P// Q)—% D@/ P)—G(P// Q))
where G(P /! Q),;(Z(P /! Q), D(Q /i P) and p; (P //Q)are as given by (1.4), (1.1), (1.6), and (3.7)
respectively.

Result 4.1: Let P,Qe A, and Se€R. Let there exists r, R such that < R and O0<r < P <R<ow:;
oF

Vie {1,2,..., n}, then the proposition 4.1 yields

(4.4) [r;rlj G(PIQ)<0.(P/Q)< [Rz—'F:lj G(P/Q) ,s=1

45 R-+1)°" r+1)\"" .
(4.5) [—2Rj G(P//Q)sQS(P//Q)g(er G(P//Q) ;s=1

r+1

(4.6) [ZrJSIB"Z(P”Q)_;D(Q 4 P)‘G(F’”Qﬂ

<n,(PIQ)-Q,(P/IQ)

R+1\'1 , 1 .

(4.7)
R+1)"'[1 , 1
(H) [Eg (P Q)—E D(Q//I P)— G(P//Q)}
<n,(P1IQ)-,(P/Q)
< (%j 7 [%;{Z(P//Q)—%D(Q// P)—G(P//Q)} 's>1
Proof: Let us consider T (U) = ¢_(U), where ¢, (U) is given by (3.2).
According to expression (3.4), we have

s—2
1 (u+l
1
u)=—| —
4 () 4u3( 2u j
Let us define the function g :[r,R] — R such that

au)=au’( L2 ot W)
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g(u)= [u +1js_1

2u
Then
( s—1
R +1 s <1
(4.8) 2R
supg(u)= -
ue[r,R] r +1
;s=>1
(=)
and
( s—1
(4.9) [rztlj s =1
' inf g(u) = -
uel[r,R]
( R —|—1j s=>1
2R

where r and R are defined above.
Thus in view of (4.7), (4.8) and (4.1), we have inequalities (4.3) and (4.4). Again, in view of (4.7), (4.8)
and (4.2), we have inequalities (4.5) and (4.6).
In view of result 4.2, we obtain the following corollary.

Corollary 4.1: under the conditions of result 4.1, we have

2r \? 1 2R \°
(4.9) [HJ G(P//Q)SZA(P//Q)S(—j G(P// Q).

(4.10) [rZr jG(P Q)< F(PIIQ)< [Z—leG(P /1 Q)

R +
+1 R+1

R+1 1 r+1
(4.12) [WJG(P//Q)ng Q/ P)s( > jG(P//Q)
(4.12)
2r WL 2(pro)-Ltp@uP)-c(PIQ)
[ j[i" Q)-5Db@ - Q}

r+1

<D(Q/ P)—%A(P/IQ)— F(P/Q)

- [EJEZZ(P /" Q)—% D/ P)—G(P /I Q)}

R+1
(4.13)
[ Rz;;l)[%;gz(lz’ 7 Q)—% D(Q/P)—G(P// Q)]

gnz(P//Q)—%;gz(Q// P)

< [rz—tlj[%xz(P//Q)—% D(Q// P)—G(P//Q)j

Proof: (4.9) follows by taking s= -1, (4.10) follows by taking s= 0, in (4.3), (4.11) follows by taking s= 2 in
(4.4). (4.12) follows by taking s= 0 in (4.5). (4.13) follows by taking s= 2 in (4.6). While for s= 1 we have
equality sign.

4.2 Information bounds in terms of ;(2 divergence.
In theorem (3.4) substituting s = 2, we have the following proposition
Proposition 4.2: Let f : 1 <R, — R be a mapping which is normalized, i.e., f(l) =0 and satisfies
the assumptions
(i) fis twice differentiable on (r, R), where 0 < r <1< R < o0;
(i) there exists the real constants m, M such that m< M and
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m<4x® f’(x)<M, vxe(r,R) ,
If P,Q < A, arediscrete probability distributions satisfying the assumption

O<r< P < R < oo, then we have the inequalities
q;

e 52'QIP)<C,(PIQ)< T £QIP)

and
(.19 m[nz(P//Q)—éz%Q//P)jSpf(P//Q)—cf(Pllq)sM(nz(Pﬂq)—%zZ(Q//P)]

where )(Z(P /l Q) and p; (P //Q) are as given by (1.2), (3.7) respectively.

Also nZ(P//Q)—l{IZ(Q// P)+ i{%)qu

8 =

Result 4.2: Let P,QeA, and.SeR Let there exists r, R such that r<R and

O<r< P <R<oo; Vi 6{1,2,..., n},then the proposition 4.2 yields

s—2 s—2

(4.16) %[rz—*rlj 22(QIP)<Q,(PIIQ)< %(Rz—;lj 22(QUP) ;s<2
s—2 s—2

@.17) %(Rz—:elj 22QIP)<Q.(PIIQ)< %[%) 22(QIIP) ;522

(4.18)
(2] | nero-Lar@ue)]

2r
<n,(P/IQ)-Q,(P/Q)

S(Rz_:el] [nz(P//Q)—%xz(Q// P)} 1s<2

[R”jsz[nz(P//Q)—éxz(Q// P)}

2R
<n.(PIQ)-Q.(P/IQ)

r+1\"? 1, _
g[er [UZ(P//Q)—SJ( (Q//P)} 1s>2

Proof: Let us consider f(U) = ¢, (u) , where &, (U) is given by (3.2).
According to expression (3.4), we have

1 (u+1)""
1/
u)= .
o= ()
Let us define the function g :[r,R] — R such that

g(u) = 4u’g’ (u)
g(u) = [u +1j52

2u

(4.19)

Then
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R+1\7?
(4.20) 2; is=2
supg(u) = .
uel[r, R] r +1
[ >r j ;s =2
and
r+1\°7 ]
(4.21) [ or j  s=2
inf g(u) =
uelr, R] R4+1 s—2
>R ; s=2

where r and R, are defined above.
Thus in view of (4.20), (4.21) and (4.14), we have inequalities (4.16) and (4.17).
Again in view of (4.20), (4.21) and (4.15), we have inequalities (4.18) and (4.19).
In view of result 4.2, we obtain the following corollaries.

Corollary 4.2: under the conditions of result 4.2, we have

(4.22) =(= +1j 22(Q/ P) = ZA(P Q)= —( szl) x2(Q// P)
(4.23) 1 2r V. 1 2R\
8(r+1 x2(Q// P)< F(P//Q)s8 = 1) % @/ P)
(4.24) 52 — = 2
8 r+1 (/77 P) S(P/ Q) 8(R+1 xr2(@@/7 P)
(4.25)

[r+1j |:772(P//Q)__ (@ P)]
=D/ P)=ZAPHQ—F(PIQ)

. = (Rz__rfljz[nz(l: 1 Q)f%ZZ(Q P P)]

[ - )[UZ(P//Q)—%ZZ(Q// P)]

r+1

=2k (Pr)- D@/ P)-G(P/Q)
(2= rerer Eeiane]

R +
Proof: (4.22) follows by taking s=-1, (4.23) follows by taking s= 0, (4.24) follows by taking s= 1 in (4.16).
(4.25) follows by taking s= 1 and (4.26) follows by taking s= 2 in (4.18). While for s= 2, we have equality sign.
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