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Abstract: In this paper we extend theorem of existence and uniqueness of fractional differential equations to n 

system of fractional differential equations. 

 

I. Introduction 
Fractional differential equation is a generalization of ordinary differential equations and integrations to 

arbitrary non integer order. For the past three centuries this subject has been dealt with by mathematicians and in 

the last years this essential to under stand the solution of many application in various fields of sciences like 

physics and engineering [1,2], chemistry and computer hard disc by control by [3,4], also nuclear energy science 

by [5,6] and dynamic systems [7]. This study is deals with existence and uniqueness of solutions for n system of 

fractional differential order equation of the form ),())(()()(  axxyfxy 
 with 

  )()1( xy ,  is some constant and |y(x)| <exp ( c-1|x|)constant, choosing λ such that 
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c
e and f(y(x)) be a continuous function on [a,∞), 0<≤1, γ be positive constant, gc[a,∞) 

such that |g(x)|≤|x|+c, x[a,∞). 
 

II. Preliminaries 
In this section, we introduce notation, definitions and preliminary facts which are used through out this 

paper. 

Definition (2-1) ([8]): Let A={F:F:[a,∞)Rn→R be continuous function} 
Such that F(x,y)=(F1(x,y), F2(x,y), …, Fn(x,y))T, where y=(y1,y2, …, yn) and T is the transpose of (F1, F2, …, Fn). 

Let the norm |||| on A be defined by  )((
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i xyFxyF , provided that this norm exists for some γ>0. 

 

Definition (2.2) ([8]): 

a- Let f be a lebesgue- measurable function define ae on [a,b]. if >0 then we define 
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b- If R, f is define ae on [a,b], we define 
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Lemma (2.1)([9]): Let 0<≤1 and f, g be a continuous function on (a,∞), where aR and such that 

Sup{|f(g(x))|:x(a,∞)}=M<∞. Define 
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  for all x>a and  is some constant. Then f 

c(a,∞). 
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Lemma (2.2) ([8]): Suppose that G is a banach space and let TL(G) such that ||T||<1. then I-T is regular and 
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Lemma (2.3)([9]): Let us define F(x)=(x-a)1-f(x) on (a,∞), where f defined in Lemma (2.1) and 0<≤1. then 

Fc[a,∞). 
 

Lemma (2.4) ([8]): Let , γ R, γ>-1. If x>a then 
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Lemma (2.5) ([9]): If 0<≤1 and f(x) is continuous on (a,b], |f(x)|≤M for all x(a,b] (where MR+, M>0). 

Then )(xffII
x

a

x

a

 
 for all x(a,b]. 

 

III. Main Results 
In this section we prove the existence and uniqueness solution of a system of fractional differential equations. 

Theorem (3): Let 0<≤1 and γ be a positive constant. Let g(x)=(g1(x), g2(x), …, gn(x))T, x[a,∞), where gi are 

continuous on [a,∞), i=1, 2, …, n and |g(x)|= 
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ig and  |g(x)|≤x+c           … (3.1) 

where c is a positive constant. Let fi=(f1, f2, …, fn)
T such that fic [a,∞) and Sup{|f(x)|:x [a,∞)}=M<∞. Choose 

λ such that 
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c
e . Then there exists a continuous vector function y(x)=(y1(x), y2(x), …, yn(x))T, 

x( a,∞) such that 

y()(x)=λf(y(x)), x(a,∞) with y(-1)(a)=, where =(1, 2, …, n)
T is some constant vector and satisfies 

|y(x)|<exp(c-1|x|)constant. 
 

Proof  

Let (A,||||) be the space defined in definition (2.1), [a, a+h] be compact subinterval of [a,∞). Consider 
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 , if follows from Lemma (2.1) that y(a,∞). 
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Let F(x)=(x-a)1- y(x), x(a,∞) …(3.3), where y given in (3.2) and define F(x, y(t))=(x-a)1-f(y(t)), a ≤t<x<∞   

…(3.4), then from Lemma (2.3) we have Fc[a,∞).  
 

Now define an operator k on A as 
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and so from definition (1.2), we have 
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Thus by using (3.1) we have 
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Then from [10] we have 
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Then from (3.6) and (3.7) we have 

xc eeFxkF
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Thus         )8.3())(( 
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Hence 
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eFxkFe ))((  and so by definition (2.1) we get 

cceFxkF  ))((  and hence 

cek                  …(3.9) 

Now for |λ|<||k||-1 we obtain ||λk||=|λ| ||k|| <||k||-1 ||k||=1 and this implies that on using Lemma (2.2) {I-λk}-1 exists. 

Also from (3.3) we have 
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Now (3.5) and (3.10) imply that 

F(x)=b+λkF(x), and so 

F{I-λk}=b and therefore 

F(x)={I-λk}-1(b) where I is the identity operator and hence F(x) exists and is the unique solution of 
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Now by simple calculation one can show that 
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 the solution F of (3.10) exists and satisfies 

F(x) = b + λ kF(x)    …(3.11) 

Again from (3.3) we have 
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and by using (3.3), it follows that 
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Therefore by definition (2.2) (a) we get 
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But from Lemma (2.4) we have 
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Then using definition (2.2)(b) we get 
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Further more from (3.12) we have 
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It follows from Lemma (2.4) that 
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Now from (3.11) we have 

|F(x)|≤ b+|λ| |kF(x)| and from (3.8) get  
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Thus by using (3.3) we obtain 
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and so the solution function satisfies 

  constantexp)( 1   xxcxy  

 

IV. Conclusion 
In this study we prove the existence and uniqueness of solution for system of fractional differential 

equations using (theorem (1)) and (theorem (2)) in [9]. The solution obtained can used to solve many problems 

in the mathematic and other sciences such as mechanics engineering, chemistry, physics, etc. 
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