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Abstract: This study adopted and analyzed a SEIV (Susceptible, Exposed, Infected, and Vaccinated) 

vaccination model with general non-linear incidence rate and waning preventive vaccine. Thereafter the Basic 

Reproduction Number of the disease free equilibrium was found and simulated, it was found to be globally 

asymptotically stable. The epidemic free equilibrium was also found, analyzed using the Bellman and Cooke’s 

Theorem. The result of the analyses was simulated using MATLAB and found that it is Stable on probability 

points of the vaccine waning period from 1.0 down to 0.3 and unstable on the points 0.2 and 0.1. Which is 

logical, that is, as the vaccine efficacy decreases so does the stability of the model. 

Keywords: Basic Reproductive Number, Disease Free Equilibrium, Epidemic Free Equilibrium, Stability, 

Vaccine. 

 

I. Introduction 
 One of the primary reasons of studying infectious diseases is to improve control and ultimately 

eradicate the infection from the population. Models can be powerful tools in this approach, allowing us to 

optimize the use of limited resources or simply to target control measures more efficiently. Several forms of 

control form measures exist all operate by reducing the average amount of transmission between infectious and 

susceptible individuals. Which control strategy (or mixture of strategies) is used will depend on the disease, the 

host and the scale of the epidemic. The practice of vaccination began with Edward Jenner in 1796 who 

developed vaccines against smallpox – which remains the only disease to date that has been eradicated world-

wide. Vaccination acts by stimulating a host immune response, such that immunized individuals are protected 

against infection. In 1988, the World Health Organization (WHO) resolved to use similar campaigns to eradicate 

polio world-wide by 2005- this is still ongoing work although much progress has been made to date. [7]. It may 
be noted that the outbreak of infectious diseases cause mortality of millions of people as well as expenditure of 

enormous amount of money in health care and disease control, it is, therefore, essential that adequate attention 

must be paid to stop the spread of such diseases by taking control measures, vaccination is an important control 

measure to reduce the spread of such diseases [1]. 

 Various modelling studies have been made to study the role of vaccination on the spread of infectious 

diseases in a population. Among the uncountable literature on vaccination models are [1-5, 8-11] 

 Naresh et al. [1] proposed and analyzed a non-linear mathematical for the spread of carrier dependent 

infectious diseases in a population with variable sized structure including the role of vaccination. Farrington [2] 

analyzed the impact of vaccination programme on the transmission potential of the infection in large population 

and derived relation between vaccine efficacy against transmission, vaccine coverage and reproductive number. 

Gumel and Moghadas [3] proposed a model for the dynamic of an infectious disease in the presence of a 
preventive vaccine considering non-linear incidence rate and found the optimal vaccination threshold needed for 

disease control and eradication. Kribs-Zaleta and Valasco-Hanandez [4] presented a simple two dimensional SIS 

model with vaccination exhibiting backward bifurcation. Shulgin et al. [5] studied a simple SIR epidemic model 

with pulse vaccination and shows that pulse vaccination leads to epidemic eradication if certain conditions 

regarding the magnitude of vaccination proportion and on the period of pulse are satisfied. Jianwen and Ping [8] 

established an SVEIR epidemic model with non-linear incidence rate under the assumption that vaccinated 

individuals have partial immunity; they obtained the basic reproductive number, they proved the global 

asymptotical stability of the disease free equilibrium by Ruth Hurwitz criterion and they obtained the sufficient 

condition for the global asymptotical stability of the endemic equilibrium. De La Sen et al. [9] presented a linear 

vaccination for a SEIR propagation disease model. They used a state observer to estimate the true various partial 

populations of Susceptible, Infected, Infectious and Immune which are assumed to be unknown. De La Sen et al. 

[10] also proposed a disease free and endemic equilibrium points of SVEIRS epidemic models. Arino et. al [11] 
proposed a model that looks at the interplay of vaccination strategy together with vaccine efficacy and waning, 

in particular, it shows that a backward bifurcation leading to bistability can occur. Under mild parameter 

constraints, compound matrices are used to show that each orbit limits to an equilibrium. In case of bistability, 

the global result requires novel approach since there is no compact absorbing set. Naresh et. al, [1] extended a 
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paper presented by Singh et. al, [12]  Gosh et-al [13] by incorporating the effect of vaccine on the spread of 

carrier infectious diseases and assuming a generalized logistic model governing the growth of carrier population. 

They used a more realistic standard action type interaction for direct contacts between susceptible and infective 
instead of simple mass action. 

 

II. The Mathematical Model 
 This mathematical model is a review of Li-Ming Cai and Xue-Zhi Li [6] vaccination model. We 

adopted the model and carried out a different analysis to test for the epidemic free equilibrium of the model. We 

still considered the four compartmental model which consists of the Susceptible Individuals (S), Exposed 

individuals infected but not infectious (E), Infected individuals (I) and Vaccinated individuals (V) With general 

non-linear incidence rate and waning preventive vaccine. 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

Fig 1. The Model Diagram 
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 Where  is the recruitment of individuals, that includes new born and immigrants into the susceptible 

population.   is the fraction of the recruited individuals who are vaccinated,   is the rate at which susceptible 

individuals becomes infected,   is the natural death rate,   is the rate at which exposed individuals becomes 

infectious 
 
is the rate at which infectious individuals are treated or recovered and  is the rate at which 

vaccine wanes. 

They considered a non-linear incidence rate of the form
( ) ( )

( )

S t I t

I




. If ( ) 1I  , then the incidence rate is 

bilinear. Let the function ( )I satisfy (0) 1  and (0) 0,  which implies that ( ) 1.I  then 
1

( )I
 will be 

used to measure the psychological or inhibition effect of behavioural changes of the susceptible individuals 

when there is an increase in the number of infectious individuals. When the rate of infection is high, measures 

are put in place to reduce contact such as quarantine or protective measures by susceptible individuals thus the 

effective contacts between infected individuals and susceptible individuals decrease when the rate of infection is 

at high infective levels due to the quarantine of infected individuals or due to the protection measures by the 

susceptible individuals. [6] 

 
To obtain the total population 
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Using        V t S t E t I t



    to eliminate  V t  

Equation (1.1), (1.2), (1.3) (1.4)and becomes 
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Which reduces it to a three dimensional model. The total population 1N  becomes 1N S E I    
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From the above equation it can be seen that in the absence of the disease i.e. 0I   this implies 0I 
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The spread of the disease in population will reduce 1N , this implies that. 
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Thus the new positively invariant region would be  
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III. Existence And Stability Of Equilibria 

 The existence and stability of equilibrium of models in equations (1.5), (1.6), (1.7)and are discussed, 

at equilibrium the model becomes 
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From these equations it can be seen that to have a diseases free equilibrium i.e. 0I  which implies 0I   From 

equation (1.9)  
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From equation (1.10) 0I   
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The disease free equilibrium of equations (1.9), (1.10), (1.11)and  is 

 

 

1
,0,0oP

  

  

    
  
  

 
The other equilibrium points from (1.10), (1.11)and are as follows 

From (1.10) we have  
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From equation (1.11)  we have 

  I
E

 




           (0.12) 

Substituting E in S above to have  
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Substituting equations (1.12) (1.13)and into equation (1.9)  
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It can be easily seen that the function  H I is negative for large positive I . Next, the sign of its derivatives were 

determined as: 
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The compution of  the Basic Reproduction 
 
Number of the disease free equilibrium is given in table 1 below. 
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Table 1: Basic Reproductive Number of the Disease Free Equilibrium 
              

o  Remark 

0.2 0.1 0.2 0.5 1.0 0.1 0.1 0.0468 Globally Asymptotically Stable  

0.2 0.2 0.2 0.5 0.9 0.1 0.2 0.1403 Globally Asymptotically Stable  

0.2 0.3 0.2 0.5 0.8 0.1 0.3 0.2520 Globally Asymptotically Stable  

0.2 0.4 0.2 0.5 0.7 0.1 0.4 0.3725 Globally Asymptotically Stable  

0.2 0.5 0.2 0.5 0.6 0.1 0.5 0.4974 Globally Asymptotically Stable  

0.2 0.6 0.2 0.5 0.5 0.1 0.6 0.6245 Globally Asymptotically Stable  

0.2 0.7 0.2 0.5 0.4 0.1 0.7 0.7519 Globally Asymptotically Stable  

0.2 0.8 0.2 0.5 0.3 0.1 0.8 0.8777 Globally Asymptotically Stable  

0.2 0.9 0.2 0.5 0.2 0.1 0.9 0.9944 Globally Asymptotically Stable  

0.2 1.0 0.2 0.5 0.1 0.1 1.0 1.1111 Unstable 
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IV. Stability Analysis Of The Equilibrium States 

Using the Jacobian determinant of the system of equations, we have 
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At zero equilibrium state (S,E,I,V)=(0,0,0,0). We have  
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The zero equilibrium state is stable. 

Using the Jacobian determinant 
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Then applying the Bellman and Cooke’s Theorem. We let iq   
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 (0.14) 

Resolving equation (1.16) into real and imaginary parts, we’ll obtain 

     H q F q iG q   

 
 

            

  
 

 
    

     
 

4 2

I

I
F q q q

S

I

I S I S

I I I I


              




    



   
           

   

  
              

   
  
      
   

              
                          
               

(0.15) 

 
 

     

 
        

 

   
 

 
 

3 I
G q iq

I

I S

I I
iq

S I

I I


      



 
             

 

 
        

 

  
           

   

      
                 

      
  

      
              

       

(0.16) 

 
 

         

     
 

3' 4 2

I

I
F q q q

S

I


          




        



  
           

  
   

  
          

  

(0.17) 



A SEIV Vaccination Model with General Non-Linear Incidence Rate and Waning Preventive  

www.iosrjournals.org                                                              50 | Page 

 
 

     

 
        

 

   
 

 
 

23
I

G q q
I

I S

I I

S I

I I


      



 
             

 

 
        

 

  
            

   

      
                 

      
  

      
              

       

           (0.18) 

When 0q   

 
 

    
     

 0F
I S I S

I I I I

   
           

   


             
                        

             

      (0.19) 

 0 0G   (0.20) 
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Substituting    F 0  and G 0   into the conditions Stated in the Bellman and Cooke’s Theorem 

   0 ' 0 0J F G   

Hence the condition holds for 0J   

Substitute equation (1.13, 1.15 and 1.16) into F(0) and G’(0) and then computed J with MATLAB. We have the 

table below. 

Table 2: The Result of the Stability Analysis of the Epidemic Free Equilibrium 
              J  Remark 

0.2 0.1 0.2 0.5 1.0 0.1 0.1 2.1763 Stable  

0.2 0.2 0.2 0.5 0.9 0.1 0.2 0.6623 Stable 

0.2 0.3 0.2 0.5 0.8 0.1 0.3 0.2825 Stable 

0.2 0.4 0.2 0.5 0.7 0.1 0.4 0.1230 Stable 

0.2 0.5 0.2 0.5 0.6 0.1 0.5 0.0470 Stable 

0.2 0.6 0.2 0.5 0.5 0.1 0.6 0.0124 Stable 

0.2 0.7 0.2 0.5 0.4 0.1 0.7 0.0089 Stable 

0.2 0.8 0.2 0.5 0.3 0.1 0.8 0.0021 Stable 

0.2 0.9 0.2 0.5 0.2 0.1 0.9 -0.24225e-4 Unstable 

0.2 1.0 0.2 0.5 0.1 0.1 1.0 -1.3261 e-5 Unstable 

 

V. Conclusion 
 This paper is on a vaccination model with nonlinear incidence rate and vaccination waning period, the 

basic reproduction number o of the disease free equilibrium was analyzed, the result shows that the disease 

free equilibrium is globally asymptotically stable, when the recruitment of individuals into the susceptible class

  is a constant 0.2, the natural death rate   is a constant 0.2, the contact rate at which susceptible becomes 

infected  varies from 0.1 to 1.0, the rate at which infected individuals recover or are treated is a constant 0.5, 

the fraction of recruited that are vaccinated  is a constant 0.1, the rate at which exposed individuals becomes 

infectious varies from 0.1 – 1.0 and  the vaccination waning period varies from 1.0 - 0.2 and unstable at the 

point 0.1. This conclusion was reached based on a theorem which states that: If 1o   then the disease-free 

equilibrium oP  is globally asymptotically stable, if 1,o oP   is stable, if 1,o oP   is unstable.  

 The epidemic free equilibrium was also analyzed using the same conditions as the disease free 

equilibrium, it was found to be stable, on the probability points of the disease waning periods from 1.0 down to 
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0.3 and unstable on points 0.2 and 0.1. Which is logical, that is, when the vaccine efficacy reduces we expect 

that the stability of the model should reduce. The need for this paper is based on the fact that the work of L-M. 

Cai and X- Z. Li. [6] was not simulated which make it hard to see the application interpretation of the model, 
but when simulated numerically we are able to see how variations in rate of the variables affect the outcome of 

the results. From the outcome of this paper, it is therefore recommended that people should be vaccinated before 

the disease wane out and that more research should be done on how to increases the disease waning period, so as 

to prolong the effectiveness of the vaccines.  
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