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Abstract : Many cell types encode signals in the frequency component of calcium oscillations. In non-excitable 

cells calcium oscillations are induced by calcium influx from inositol trisphosphate receptors (IP3R) or/and 

ryanodine receptors (RyR). The frequency of Calcium oscillations induced in such cases is primarily by the way 

intracellular stores like endoplasmic reticulum, sarco-endoplasmic reticulum are refilled. Sarco-endoplasmic 

reticulum calcium ATPase (SERCA) is the major pathway by which this refilling process is effected.  Most of the 

mathematical models proposed thus far used Michaelis-Menten kinetics to formulate SERCA pump. In this 

paper more emphasis has been given over the mathematical formulation of SERCA pump. In particular reverse 

quasi steady-state approximation (rQSSA) is used to formulate SERCA pump. Comprehensive comparative 

analysis is performed with the previous SERCA pump formulation. An apparent increase in frequency and 

amplitude of calcium oscillation is observed. 
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I. Introduction 
Calcium (Ca2+) ions play a pivotal role in a number of cell processes like synaptic plasticity, muscle 

contraction, secretion, etc. Cells are known to encode signals in the frequency of Ca2+ oscillations while 

avoiding its toxic higher concentrations. In non-excitable cells Ca2+ oscillations are induced by an agonist 

binding to its receptor which can cause via G-protein link to phospholipaseC (PLC) the cleavage of 

phosphotidylinositol (4,5)-bisphosphate (PIP2) into inositol triphosphate (IP3) and water soluble diacylglycerol 

(DAG). This IP3 is free to diffuse inside the cytosol and binds with IP3R causing an efflux of Ca2+ from IP3R 
located at the ER surface. Since we know that higher concentration of Ca2+ is known to be toxic for the cell thus 

their exist Ca2+ pump which transports Ca2+ ions back inside ER and outside the cell. 

Ca2+ pump or  Ca2+-ATPases constitute a large family of proteins that fall into two distinct groups, the 

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and the plasma membrane Ca2+-ATPase (PMCA). As we 

know that, Ca2+ ions are transported from cytosol to ER through the SERCA pump, to accomplish this 

transportation these Ca2+ ions bound to pump proteins on the cytosolic side of the membrane and the protein 

undergoes a change in conformation. This change in conformation is done by the energy released from the 

conversion of ATP to ADP. 

 
Fig. 1 Ca2+

 transport in a non-excitable cell (see [1]) 

 

Moreover mathematically SERCA pump is modeled using Hill equation with a Hill coefficient of ‘n’ and is of 

the form  
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where Vm is the maximum pumping rate, Km is Michaelis-Menten constant and [Ca2+] is the calcium 

concentration. The Hill equation governing SERCA pump formulation is based on standard quasi steady state 
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approximation (sQSSA). The hypothesis of sQSSA is based on the assumption that the substrate concentration 

[S] has to greatly exceed that of the enzyme [E], (first discussed by Laidler [2]) i.e. 
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where [E0] and [S0] are the initial concentrations of enzyme and substrate respectively. By means of simulation 
modeling on a digital computer, and by considering the time-dependent process, Stayton and Fromm found that 

sQSSA is generally hold for substrate-enzyme ratios greater than 100 [3]. Later, a more general condition was 

given for the validity of sQSSA [4], [5], which states that 
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Condition (3) is stronger than (2) and guaranties the validity of sQSSA. For the basic enzyme reaction, condition 

(3) is usually satisfied in most in vitro assays. Assumption (3) is intended to guarantee that significant fraction 

of the substrate do not bound to the enzyme during the assay and thus the formation of the enzyme-substrate 

complex does not diminish significantly the concentration of the substrate [4],  [6], [7], [8]. However, the 

sQSSA condition breaks down in biological (i.e. in vivo) conditions as intra-cellular concentrations of enzyme 

are usually higher or at least of the same magnitude as their substrates [9]. Consequently, a significant fraction 

of S can be bound as enzyme-substrate complexes. Furthermore, high affinity of an enzyme for a substrate may 

lead to binding of a significant proportion of substrate to the enzyme. To utilize the full potential of the enzyme, 
substrate concentration within the cells are in the neighborhood of their Km values (these values range from 

about 10-6 to 10-2 M) [8], [10], [11], [12]. 

Therefore when enzyme concentration is high in comparison to substrate the methods based on sQSSA 

are not expected to be valid. Segel and Slemrod proposed a reverse quasi steady state approximation (rQSSA) in 

which the substrate S is in a QSS with respect to the enzyme–substrate complex [5]. Recently Schnell and Maini 

discussed the validity of rQSSA and derived the solution for it [13]. In the present work we have modeled 

SERCA pump using rQSSA and studied its impact over cytosolic Ca2+ oscillations. 

 

II. Mathematical Model 
Present mathematical model is for a non-excitable cell exhibiting cytosolic Ca2+ oscillations. The 

mathematical model governing Ca2+ oscillations is based on early remarkable work of De Young and Keizer 

[14], Keizer and De Young [15] which was simplified by Jafri and Keizer [16]. Although the work is based on 

the work presented by Jafri and Keizer [16], it contains a number of modifications and advancements to their 

theory as per the arguments given in the previous section (see fig. 1). It should be pointed out that in fig. 1 RyR 

is also present but it has not been incorporated in the mathematical model to keep the model simple. The whole 

cell model comprises of a number of components which are elaborated below. 

 

2.1 SERCA PUMP 

SERCA pump is a p-type ATPase expressed in most cell types. The mechanism of CA2+ ion regulation 

by SERCA pump can be framed with the help of following bimolecular reaction.  
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In this reaction first reaction is representing the formation of enzyme calcium ion complex E(Ca2+)2 from two 

ions of Ca2+ and enzyme in the cytosolic side. This reaction is reversible with forward and reverse rate constants 

k1 and k-1 respectively. The second reaction irreversibly yields two ions of Ca2+ in the ER side and enzyme 

becomes free with a rate constant k2. Applying law of mass action governing (4) we get the following system of 

nonlinear differential equations, 
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and the enzyme substrate conservation law 

 
2

0 2[ ] [ ] [ ( ) ]E E E Ca    (8) 

where, [E0] is the initial enzyme concentration. 

Schnell and Maini challenged the basic assumption 
2

2[ ( ) ] 0d E Ca dt  with the aid of the rQSSA when the 

enzyme reaction (4) occurs at high enzyme concentration [13]. Segel and Slemrod examined sQSSA and 
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showed that it holds if initial substrate (Ca2+) concentration is much larger than enzyme [5]. When the 

concentration of the substrate (Ca2+) is high enough, it seems reasonable to say that the enzyme–substrate 

complex (E(Ca2+)2) is in a quasi steady state, because in this condition free enzyme E will immediately combine 
with another molecule of Ca2+. However, this condition does not hold if there is an excess of enzyme E, 

compared to substrate [5], [17]. In this case, all the molecules of substrate Ca2+ will immediately combine with 

the molecules of E implying that the substrate will be depleted, and thus the approximation 2[ ] 0d Ca dt  will 

be valid for a considerable period of time. Therefore, at high enzyme concentration it seems to be more 

reasonable to propose that Ca2+ is in quasi steady state with respect to E(Ca2+)2, rather than saying (E(Ca2+)2) is 

in quasi steady state with respect to Ca2+. 

On the basis of rQSSA, Schnell and Maini obtained a uniform approximation for the total time evolution (0 < t 

< ∞) of the reactant concentration [13], given as follows, 
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where
1 1sK k k is the equilibrium dissociation constant of 2 2

2[ ] from [E( ) ]Ca Ca  . Using rQSSA the 

SERCA pump can be modeled as follows, 
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where the dynamics of [Ca2+] is governed by (9). 

 

2.2 Ip3r Receptor 

The IP3R receptor model is based on the kinetics proposed by Keizer and Jafri [16] (see fig. 2). In the 

model there are four states X100, X101, X110 and X111. Among these four states two states X101 and X111 are 

inactivated, state X100 is the closed state and X110 is open state i.e. the conducting state. 

Applying law of mass action in the kinetics described in fig. 2, we get the following system of differential 

equations governing open and closed state of IP3R channel, 
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where 2 2 2 5 5 5 and b a d b a d    , while a2, a5, d2, d5 and c2 are as described in the Table I. In (13) [IP3] denotes 

the cytosolic IP3 concentration suitable for inducing cytosolic Ca2+ oscillation. 

 

 
Fig. 2 Schematic of IP3R kinetics [16] 

 

2.3 Membrane Fluxes 

We have included two fluxes across the plasma membrane. Flux through the plasma membrane 

calcium pump is denoted by Jpm and is modeled by a Hill equation with a Hill coefficient of 2 and the influx 

from outside the cell is denoted by Jin and is of the form given by Sneyd et al. [18]. These fluxes are as follows, 
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where Vpm is the maximum pumping rate and Kpm is the Ca2+ concentration when pumping rate is half of its 
maximum and [IP3] is as described earlier. 
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2.4 Calcium Buffer 

We have assumed the following bimolecular enzyme kinetic reaction between calcium and buffer inside 

the cytosol, 
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In this reaction k1
+ and k1

- are the buffer association and dissociation rate constants respectively. On applying the 

law of mass action we get the following system of nonlinear differential equations, 
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If we assume that there is no source or sink present for buffer then applying the conservation law for buffer, 

 [ ] [ ] [ ] [ ] [ ] [ ]T TB B CaB B B CaB      (19) 

we get reduced system of nonlinear differential equations governing the reaction kinetics given by (15), 
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Similar bimolecular reactions can be assumed inside the ER as given in (15) and on applying the same 

procedure described above gives the system of differential equations governing the [Ca2+]ER and [CaB]ER 
kinetics as follows, 
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2.5 The Whole Cell Model 

The complete cell model using equations (4-23) (see fig. 1) giving the effect of an rQSSA SERCA 

pump over intracellular Ca2+ dynamics can be written with the help of following, 
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Along with initial conditions 

 
2 2

100 110[ ] 0.1 M,  [ ] 10.9 M,  0.291,  0.281,  [ ] 2.3 M  [ ] 2.3 MER ERCa Ca X X CaB and CaB         

 (30) 

The above set of equations (24-30) has been solved numerically with the help of Gears algorithm 

implemented in MATLAB. The whole cell model has been simulated for one second using variable time step. 
The time taken to simulate whole cell model for one second is about 920 millisecond, when simulated on a 
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system having 3 GB RAM and Intel Centrino Core2 Duo Processor with processing speed 1.67 GHz. Parameter 

values, taken from the literature are given in Table 1.  

 
TABLE I 

Ca2+ Regulatory Mechanism Parameters (see [16]) 
Parameter Definition Value 

c1 Ratio of ER volume to cytosolic       volume 0.185 

c2 Proportionality constant X111 to [IP3] 0.2 μM 

v1 Maximum [IP3] receptor flux 300 s
-1

 

v2 Ca
2+

 leak rate constant 2 s
-1

 

a2 Inhibitory receptor binding constant 0.2 μM
-1

 s
-1

 

a5 Activation receptor binding constant 20 μM
-1

 s
-1

 

d2 Inhibitory receptor dissociation constant 1.0 μM 

d5 Activation receptor dissociation constant 82.3 nM 

[IP3] Basal concentration of [IP3] 0.5 μM 

 

TABLE II 

Parameter Values Of The Model 
Parameter Value 

k1 15.58 μM
-1

 s
-1

 

k2 0.6 s
-1

 

Ks 0.7 μM 

k1
+
 1.5 μM

-1
 s

-1
 

k1
-
 0.3 s

-1
 

k2
+
 100 μM

-1
 s

-1
 

k2
-
 37 s

-1
 

[BT] 5 μM 

[BT]ER 5 μM 

Vpm 12 μM s
-1

 

Kpm 0.1 μM 

 

III. Results And Discussion 
In this section results relevant to cytosolic Ca2+ oscillations are shown. The biophysical parameters 

used during the course of simulation are listed in Table I and Table II. 
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Fig. 3 Ca2+ oscillations and rate of change of Ca2+ oscillations for rQSSA and M-M SERCA pumps 

 

Fig  3(a) – 3(b) depicts the change in cytosolic Ca2+ concentration and 2[ ]d Ca dt  with respect to time for 

different SERCA pump formulations viz. reverse Quasi-Steady State Approximation (rQSSA) and Michaelis–

Menten (M–M) formulations. All the parameters, reaction equations and constants are same for both the curves. 

But, the only difference is the way net influx into ER via SERCA pump is modeled i.e. using rQSSA and M-M 

formulations. It will seem from fig. 3(a) that there is no change in frequency of Ca2+ oscillation for both the 

formulations. But, there is a decrease in frequency of Ca2+ oscillation when we consider more realistic rQSSA 
formulation in place of M-M formulation. This becomes more apparent if one looks at fig. 3(b) where the rate of 

change of Ca2+ with respect to time is plotted. It is clear from fig. 3(b) that M-M curve is quick to attain its crest 

and trough values while the rQSSA curve always lags behind the M-M curve signifying the change in frequency 

of Ca2+ oscillation in both the cases. 

The change in ER Ca2+ concentration and ER bound buffer concentration is shown in fig. 4. As and 

when the IP3 channel opens ER Ca2+ starts decaying and reaches its resting level, see fig. 4(a). Similar 

phenomenon is also evident from fig. 4(b), apart from a small phase where bound Ca2+ concentration rises 
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initially. It happens because as the reaction starts ER Ca2+ get bound to ER buffer as per the scheme given in 

(15). Since, we know that ER buffer concentration is lesser than ER Ca2+ concentration as a result of which very 

soon total ER buffer concentration gets saturated by binding of ER Ca2+ concentration. Afterwards, as ER Ca2+ 
concentration depreciates bound Ca2+ concentration also depreciates to reach its resting concentration. 
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Fig. 4 Change in ER Ca2+ and bound Ca2+ concentration for rQSSA model against time 

 

Fig. 5 gives an illustration of change in bound cytosolic Ca2+ concentration with respect to time. There is not 

much of a change in cytosolic bound buffer concentration as they rapidly get saturated after opening of IP3R 

Ca2+ channel. This thing is also evident from fig. 5 by an initial increase in bound Ca2+ concentration followed 

by a gradual decrease in bound Ca2+ concentration. 
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Fig. 5 Cytosolic bound Ca2+ concentration for rQSSA model 

 

This article highlights the importance of SERCA pump over cytosolic Ca2+ oscillations. This article also aims to 

suggest a different formulation for SERCA pump which is biologically more sound. This article also shows the 

effect of different SERCA pump formulations over the frequency of cytosolic Ca2+ oscillations. 

 

Acknowledgements 
The author is thankful to Dr. Shivendra Tewari for his valuable suggestions regarding the improvement 

of the manuscript. 

 

References 
[1] E. R. Higgins, M. B. Cannell and James Sneyd, A Buffering SERCA Pump in Models of Calcium Dynamics, Biophys. J. 91   

(2006) 151-163. 

[2] K. J. Laidler, Theory of the transient phase in kinetics, with special reference to enzyme systems, Can. J. Chem. 33 (1955) 1614- 

1624. 

[3] M. M. Stayton and H. J. Fromm, A computer analysis of the validity of the integrated Michaelis-Menten equation, J. Theor. Biol. 78 

(1979) 309-323. 

[4] L. A. Segel, On the validity of the steady state assumption of enzyme kinetics, Bull. Math. Biol. 50(6) (1988) 579-593. 

[5] L. A. Segel and M. Slemrod, The quasi-steady-state assumption: a case study in perturbation, SIAM Rev. 31(3) (1989) 446-477. 

[6] J. M. Reiner, Behavior of Enzyme Systems, (New York: Van Nostrand Reinhold Company, 1969) 82-90. 

[7] A. R. Schulz, Enzyme Kinetics. From Diastase to Multi-enzyme Systems, (Cambridge: Cambridge University Press, 1994) 3-29. 

[8] I. H. Segel, Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-state  Enzyme Systems, (New York: Wiley, 

1975) 18-99. 



An Application of Reverse Quasi Steady State Approximation over SERCA 

www.iosrjournals.org                                                             43 | Page 

[9] A. Sols and R. Marco, Concentrations of metabolites and binding sites. Implications in metabolic regulation, in Current Topics in 

Cellular Regulation, 2, B. Horecker and E. Stadtman (Eds), New York: Academic Press, (1970) 227-273. 

[10] S. Cha, Kinetic behavior at high enzyme concentrations, J. Biol. Chem. 245 (1970) 4814-4818. 

[11] A. Goldstein, The mechanism of enzyme-inhibitor-substrate reactions, J. Gen. Physiol. 27 (1944) 529-580. 

[12] P. A. Srere, Enzyme concentrations in tissues, Science 158 (1967) 936-937. 

[13] S. Schnell and P. K. Maini, Enzyme kinetics at high enzyme concentration, Bull. Math. Biol. 62 (2000) 483-499. 

[14] G. De Young and J. Keizer, A single-pool inositol 1,4,5,- trisphosphate-receptor-based model for agonist-stimulated oscillations in 

Ca
2+

 concentration, Proc. Natl. Acad. Sci. USA. 89 (1992) 9895-9899. 

[15] J. Keizer and G. De Young, Simplification of a realistic model of [IP3]-induced Ca
2+

 oscillations, J. Theor. Biol. 166 (1994) 431-

442. 

[16] M. S. Jafri and J. Keizer, On the Roles of Ca
2+

 Diffusion, Ca
2+

 Buffers, and the Endoplasmic Reticulum in IP3-lnduced Ca
2+

 Waves, 

Biophys. J. 69 (1995) 2139-2153. 

[17] J. A. M. Borghans, R. J. De Boer and L. A. Segel, Extending the quasi-steady state approximation by changing variables, Bull.  

Math. Biol. 58 (1996) 43-63. 

[18] J. Sneyd, K. Tsaneva-Atanasova, J. I. E. Bruce, S. V. Straub, D. R. Giovannucci, and D. I. Yule, A model of calcium waves in 

pancreatic and parotid acinar cells, Biophys. J. 85 (2003) 1392-1405. 

 


