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Abstract: MHD visco elastic Fluid flow and heat transfer over a stretching surface in presence of viscous 

dissipation, internal heat generation or absorption and work due to deformation has been investigated. The flow 

is influenced by linearly stretching sheet, in presence of heat generation/absorption of the wall. The problem 

has been solved numerically by shooting technique with fourth order RUNGE-KUTTA integration scheme. Heat 

Transfer analysis has been carried out for both prescribed surface temperature (PST) and prescribed power law 

heat flux (PHF) to get the effect of visco –elasticity (k1),Eckert number (Ec), heat source /sink (), and Prandle 

number (Pr) in presence and absence of magnetic field (Mn). 
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I. Introduction: 
           During the past three decades there have been several studies of boundary layer flows of non-

Newtonian fluids. In recent years, the study of boundary layer flow over a moving continuous solid surface has 

gained momentum because of its numerous application in the various engineering disciplines. Keeping in view 

its applications in drawing of polymer sheets. Sakiadis [1] has initiated the study of such boundary layer 

problem assuming the velocity of the boundary sheet as constant. However, in reality, one has to deal with the 

stretching of plastic sheet. Hence, Crane [2] has reinvestigated this problem assuming the stretching sheet’s 

velocity varying linearly with the distance from the slit. Gupta and Gupta [3] have analyzed the heat and mass 

transfer characteristics in the boundary layer flow, in the presence suction/blowing. 

So many other researchers carried out extensive analysis of heat and mass transfer phenomena 

associated with such flow, but their investigations are restricted only to the flow of Newtonian fluid.  

However, in reality most of the liquids used in industrial applications particularly polymer processing 

applications are of non-Newtonian in nature. The non-Newtonian fluids are being considered more important 

and appropriate in technological applications in comparison with Newtonian fluids. A large class of real fluids 

does not exhibit the linear relationship between stress and rate of strain. Because of non-linear dependence, the 

analysis and behavior of non- Newtonian fluids tends to be more complicated in comparison to Newtonian 

fluids.  

In view of the importance of these applications, Rajagopal et.al 4 has studied the flow behavior of 

visco-elastic fluid over a stretching sheet and gave an approximate solution for the flow. Vajravelu and Rollins 

[5] examined the effects of viscous dissipation and internal heat generation or absorption in viscoelastic 

boundary layer flow. Sarma and Rao [6] analyzed the effects of work done due to deformation in the energy 

equation. Vajravelu and Roper [7] examined the effects of viscous dissipation, internal heat generation or 

absorption and work done due to deformation.  

              In this chapter, we study the flow and heat transfer in MHD visco-elastic fluid over a stretching sheet, 

including the effects of viscous dissipation, internal heat generation or absorption and work due to deformation.  

 

II. Mathematical Analysis: 
   Consider a steady state two-dimensional boundary layer flow of incompressible visco-elastic fluid of 

the type Walter's liquid B over a semi infinite stretching sheet coinciding with the plane y=0. Two equal and 

opposite forces are introduced along x-axis. so that the wall is stretching keeping the origin fixed. The basic 

boundary layer equation governing the flow, heat and mass transfer take the form  
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               Here u and v are velocity components in x and y directions respectively,  is the electrical 

conductivity, B0 is the applied magnetic field, k0 is the visco-elastic parameter of the Walter’s liquid B. k' 

permeability of porous medium, Q is the volumetric rate of heat generation, k is the thermal conductivity. The 

other quantities have their usual meanings. 

 The appropriate boundary conditions governing the flow are  

                  u= bx           v = 0      at      y=0,     b>0                                                    (3) 

                  u0      as      y                  

               Here u and v are velocity components along x and y directions respectively, x is being along the 

stretching sheet and y is normal to the surface, A and B are arbitrary constants, which depend on the nature of 

the boundary surface. ,wT T   are temperature of the stretching sheet and temperature of the flow region far 

away from the sheet respectively. 

 

III. Solution of momentum equation: 
In order to obtain the mathematical form of the velocity, we introduce the following similarity 

transformations, 

      ),(fbxu     )( fbv        Where   y
b

.


                                               (4)            

With these changes of variables, equation (1) is identically satisfied and equation (2) is transformed into the 

following non-linear ordinary differential equation. 
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are non-dimensional visco-elastic and Magnetic parameters respectively and the boundary condition takes the 

form 

                           0f   1f          at    =0  

       f’0  0f        as                                                             (6) 

 Where prime denotes differentiation w.r.t . The exact solution of equation (5) corresponding to the boundary 

conditions (6) is obtained as 
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The solutions for velocity field is obtained as 
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IV. Heat Transfer Analysis: 
                 The governing boundary layer equation with viscous dissipation (or frictional heating) and work done 

due to deformation for the two dimensional flow is 
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Where  is the density, cp is the specific heat at constant pressure, k is the thermal conductivity and Q is 

volumetric rate of heat generation. Thermal boundary conditions depend upon the type of the heating process. 

Here we considered two different types of heating process namely: 

 (1) Prescribed surface temperature  
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 (2) Prescribed power law heat flux 

CASE (1): Prescribed Surface Temperature 

For this circumstance, the boundary conditions are  

   =  =  + A 

s

l
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at     y = 0. 

     TT       as   y                                                          (10)                                                                              

 wT  is variable wall temperature,  is a constant and l is the characteristic length. 

 We now define a non-dimensional temperature () as 
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     Using relation  (7), (8) and (11) in equation (9) leads the following equation 

    +Pr f  Pr(s f-)  
 
 =Pr E(xl)

s-2
 [(f) 2

 +k1 f (f f - f f )]        

                                                                                                                                     (12) 

 Obviously, we get an x-independent similarity equation from the above when s=2 and this yields 

             +Pr f  Pr(2 f-)  
 
 =Pr E [(f) 2

 +k1 f (f f - f f )]                   

                                                                                                                                     (13)        

and the corresponding boundary conditions in terms of  can be obtained as  

                                       () = 1   at        = 0 

                         as                                                                 (14) 

Where prime denotes differentiation w.r.t  , 
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number, heat source/sink parameter and Prandtl number. 

 

CASE(2):  Prescribed Power Law Heat Flux 

              The power law heat flux on the wall surface is considered to be power of x in the form     
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at       y  = 0 

                                TT          as         y                                                                    (15)                

 

      Where D is constant and k is thermal conductivity.  

        We now define a non-dimensional temperature g () as                     
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 With this change of variable equation (9) and corresponding boundary conditions takes the form  

        

            g+Pr f g Pr(sf-) g 
 
 =Pr E(xl)

s-2
 [(f) 2

 +k1 f (f f - f f )]               

                                                                                                                                     (17) 

Obviously, we get an x-independent similarity equation from the above when s=2 and this yields 

          g+Pr f g Pr(2 f-) g 
 
 =Pr E [(f) 2

 +k1 f (f f - f f )]                     

                                                                                                                                   (18) 

and the corresponding boundary conditions in terms of g can be obtained as  

                                 g' ( ) = - 1                  at     = 0  

                                 g ( )   0                  as                                                 (19)     

 

 Since equation (13) and (18) is linear (but with variable coefficients) subject to the boundary conditions (14) 

and  (19) can be solved analytically in terms of Kummer’s functions (confluent hyper geometric functions). 

However, it is solved here numerically for several chosen values of the parameters k1 E,  and Pr, and 

interesting results involving () and g() are presented in Figures 1-8.   
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V. Results and discussion: 
In order to have a clear insight of the physical problem, numerical results are displayed with the help of 

graphical illustrations. Results for prescribed Surface temperature (PST) are drawn in Fig1-4 and for prescribed 

power law heat flux (PHF) are drawn in Fig 5-8.  

Fig-1 shows the variation of temperature profile against the space variable  for different values of 

visco-elastic parameter k1, it can be seen from Fig-1 that temperature profile increases when k1 increase. This is 

due to the fact that the thickness of thermal boundary layer occurs due to the increase of Visco-elastic normal 

stress. This behavior is even true in the absence of Mn., which is represented in Fig-1 as dotted line.    

The effect of heat source/sink parameter () on temperature profile () in the boundary layer is shown 

in Fig-2 in presence and absence of magnetic field Mn. It is observed that the effect of heat source ( > 0) in the 

boundary layer generates the energy, which causes the temperature to increase, while the presence of heat sink 

( < 0) in the boundary layer absorbs the energy, which causes the temperature to decrease. This behavior is 

even true in the absence of Mn, which is represented in Fig-2 as dotted line. 

The graph for temperature distribution () Vs. distance  from the sheet for different values of Eckert 

number is plotted in Fig-3 The analysis of the graph reveals that the effect of increasing the values Eckert 

number is to increase temperature distribution () in the flow region. This is due to the fact that heat energy is 

stored in the fluid due to frictional heating. This behavior is even true in the absence of Mn., which is represent 

in Fig-3 as dotted line.     

Fig-4 represents the temperature profile () vs.  for different values of Pr. we infer from this figure 

that the temperature profile decreases with increase in Prandtl number (Pr). This is because of the fact that the 

thermal boundary layer thickness decreases with increase in Prandtl number (Pr). This behavior is even true in 

the absence of Mn., which is represented in Fig-3 as dotted line.     

The graphs for the situation when the boundary has been prescribed with heat flux (PHF) are shown in 

fig.5-8 for both in presence and absence of magnetic field Mn. It is noticed from these figures that the wall 

temperature g() is not unity; it is changed at the wall with the change of physical parameters like Visco-elastic 

parameter (k1), heat source/sink (), Eckert number (Ec) and Prandl number (Pr) have same qualitative effects 

as those we found in PST case but quantitatively wall temperature is more in PHF case. 

 

VI. Summaries and Conclusion: 
This work presents heat transfer analysis in a boundary-layer flow of an electrically conducting visco-

elastic fluid under the influence of transverse magnetic field over a linearly stretching non-isothermal flat sheet. 

Effects due to dissipation, work done due to deformation and heat generation/absorption are considered. The 

wall is assumed to be non-isothermal with a temperature distribution, in one case, and a prescribed wall heat 

flux, in the other case, varying quadratically with the distance. The mathematical problem has been solved 

numerically by Runge-Kutta  fourth order method. 

        

The important findings of our study are as follows: 

1. The effect of magnetic parameter is to decrease the horizontal velocity in the boundary layer. 

2. The effect of magnetic parameter is to increase temperature profile in both cases of prescribed surface 

temperature and prescribed wall heat flux. 

3. In case of prescribed surface temperature, wall temperature remains constant at unity with the change of 

non-dimensional physical parameters. Whereas in prescribed wall heat flux wall temperature changes with 

the change of non-dimensional parameters. 

4. The effect of Eckert number is to increase temperature distribution in the flow region, due to the fact that 

heat energy is stored in the fluid due to frictional heating in both the cases of PST and PHF. 

5. The effect of Prandtl number is to decrease the thickness of the thermal boundary layer in both the cases of 

PST and PHF. 

6. The effect of magnetic parameter is to decrease the temperature gradient in both the cases of PST and PHF. 
 

Nomenclature: 

x , y 
Distances along and perpendicular to the surface, 
respectively  

u , v 
Components of velocities along and perpendicular to 

the surface, respectively 

k 1  Visco-elastic parameter 

Cp Specific heat at constant pressure 

k Thermal conductivity 
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Pr  Prandtl number 

T Temperature 

 

Greek symbols: 

                   Dimensionless normal distance 

                    Dimensionless temperature 

 Fluid density 

 Fluid kinematics viscosity 
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=.02(PHFcase)
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Fig 7: Plot of temperature distribution g( ) Vs.  for different values of 

Eckert number Ec,when k
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=0.1,=0.01 and Pr=1.0 (PHFcase)

____ Mn=0.2

........ Mn=0.0

g( )



Ec=0

Ec=1

Ec=2

 
 

0 2 4 6 8 10

0.0

0.4

0.8

1.2

Fig 8: Plot of temperature distribution g( ) Vs.  for different 

values of Pr,when k
1
=0.1,=0.01 and E

c
=.02

____ Mn=0.2

........ Mn=0.0

g( )



Pr=2.0

Pr=1.0

Pr=0.7

 
References: 

[1] Sakiadis.B.C: Boundary layer behavior on continuous solid surface. A.I.Ch. E.J7. (1961a) 26-28. 

[2] Sakiadis.B.C: Boundary layer behaviour on continuous flat surfaces. A.I.Ch. E.J.7 (1961b) 221-225 

[3] Crane.L.J: Flow past a stretching plate.ZAMP.21 (1970) 645-647 
[4] Gupta.P.S, Gupta.A.S: Heat and mass transfer on a stretching sheet with suction and blowing. Canad. J.chem. Engg.55 (1977) 744-

746. 

[5] Rajgopal.K.R, Na.T.Y, Gupta.A.S: Flow of a visco-elastic fluid over a stretching sheet. 
[6] Rheol.Acta 23(1984)213-215. 

[7] Vajravelu.K, Rollins.D: Heat transfer in electrically conducting fluid over stretching surface, Int.J.Non- linear Mech , 27(1992)265-

277 
[8] Sarme.M.S, Rao.B.N: Heat transfer in a visco-elastic fluid over a stretching sheet, J.Math.Anal.Appl.222 (1998) 268-275. 

[9] Vajravelu.K, Roper.T:  Flow and heat transfer in a second grade fluid over a stretching sheet, Int.J.Non- linear Mech , 
34(1999)1031-1036 


