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Abstract: In this paper, we study the pointwise convergence of nonuniform wavelet packet expansions and 

show that such expansions converge pointwise almost everywhere, and more precisely everywhere on the 

Lebesgue set of the function being expanded. Certain results are obtained in this direction by assuming only that 

the nonuniform wavelet packets being used be bounded by radial decreasing  𝐿1 –functions. 
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I. Introduction 
A simple, but powerful extension of wavelets and multiresolution analysis is wavelet packets. Wavelet 

packet functions comprise a rich family of building block functions and are localised in time, but offer more 

flexibility than wavelets in representing different types of signals. In particular, wavelet packets are better at 

representing signals that exhibit oscillatory or periodic behavior. 

In his paper, Mallat [11] first formulated the remarkable idea of multiresolution analysis (MRA) that 
deals with a general formlism for construction of an orthogonal basis of wavelet bases. A multiresolution 

analysis consists of a sequence of embedded closed subspaces {𝑉𝑗 : 𝑗 ∈ ℤ} for approximating 𝐿2(ℝ) functions 

(see [7]). The notions of MRA and wavelets were generalised to many different settings. One can replace the 

dilation factor 2 by an integer 𝑀 ≥ 2. In general, in higher dimensions, it can be replaced by a dilation matrix 𝐴, 

in which case the number of wavelets required is  det𝐴 − 1. But in all these cases, the translation set is always 

a group. In the two papers [4, 5], Gabardo and Nashed considered a generalisation of Mallat's [11] celebrated 

theory of MRA, in which the translation set acting on the scaling function associated with the MRA to generate 

the subspace 𝑉0 is no longer a group, but is the union of ℤ and a translate of ℤ. More precisely, this set is of the 

form  0, 𝑟/𝑁 + 2ℤ, where 𝑁 ≥ 1 is an integer, 1 ≤ 𝑟 ≤ 2𝑁 − 1, 𝑟 is an odd integer relatively prime to 𝑁. They 

call this a nonuniform multiresolution analysis (NUMRA). Later on, Behera [2] constructed the associated 
nonuniform wavelet packets for this nonuniform multiresolution analysis. For basic construction of nonuniform 

wavelets and associated nonuniform wavelet packets, we refer to [2, 4-6]. 

 The problem of convergence of the wavelet series has been studied by Meyer [12], Walter [15, 16], and 

Kelly et al. [9, 10]. Meyer was amongst the first to study convergence results for wavelet expansions. He has 

shown that the regular wavelet expansions converge in 𝐿𝑝 , 1 ≤ 𝑝 < ∞ and also in 𝐿∞ for expansions of 

uniformly continuous functions, the expansion of continuous functions converge everywhere. The results in [12] 

were based on the assumption of so called regularity for the basic wavelets and their derivatives. In addition, 

Walter [15, 16] established pointwise convergence results for regular wavelet expansions of continuous 

functions. Kelly et al. [9, 10] have extended and obtained results analogous to those obtained by Carleson [3] 

and Hunt [8] for the Fourier series. In contrast, the results in [9, 10] assumed only that the wavelets being used 

be bounded by radial decreasing 𝐿1-functions. In [10], it is shown that the wavelet expansions of a function 

belonging to 𝐿𝑝  converges pointwise everywhere on the Lebesgue set of a given function, for 1 ≤ 𝑝 < ∞. 

Recently, Ahmad and Kumar [1] have extended the results of Kelly et al. [9, 10] to the stationary wavelet 

packets and have shown that wavelet packets expansion of any 𝐿𝑝 -function (1 ≤ 𝑝 ≤ ∞) converges pointwise 

almost everywhere under certain conditions. On the other hand, Nielson [13, 14] introduced the non-stationary 

wavelet packets generated by the Haar filters which he called them Walsh-type wavelet packets for which the 

same type of 𝐿𝑝 -convergence results hold. 

 Motivated and inspired by the importance of nonuniform wavelet packets, in the present paper, we 

study the pointwise convergence of nonuniform wavelet packet series by assuming that the nonuniform wavelet 

packets being used be bounded by radial decreasing 𝐿1-functions. 

 

II. Preliminaries 
Definition 2.1. Let 𝑁 be an integer, 𝑁 ≥ 1, and Λ =  0, 𝑟/𝑁 + 2ℤ, where 𝑟 is an odd integer relatively prime 

to 𝑁 with 1 ≤ 𝑟 ≤ 2𝑁 − 1. A sequence {𝑉𝑗 : 𝑗 ∈ ℤ} of closed subspaces of 𝐿2(ℝ) is called a nonuniform 

multiresolution analysis (NUMRA) associated with Λ if the following conditions are satisfied: 

(2.1) 𝑉𝑗 ⊂ 𝑉𝑗+1  for all 𝑗 ∈ ℤ, 

(2.2) ⋃𝑗 ∈ℤ𝑉𝑗  is dense in 𝐿2 ℝ  and  𝑉𝑗 = {0}𝑗 ∈ℤ ,  
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(2.3) 𝑓 ∈ 𝑉𝑗  if and only if 𝑓(2𝑁. ) ∈ 𝑉𝑗+1, 

(2.4) There exists a function 𝜑 in 𝑉0 such that {𝜑 .−𝜆 : 𝜆 ∈ Λ} is an orthonormal basis of 𝑉0. 

The function 𝜑 whose existence is asserted in (2.4) is called a scaling function of the given NUMRA. 

It is worth noting that, when 𝑁 = 1, one recovers from the definition above the standard definition of a one-

dimensional multiresolution analysis with dilation factor equal to 2. When, 𝑁 > 1, the dilation factor of  2𝑁 

ensures that 2𝑁Λ ⊂ 2ℤ ⊂ Λ. Equation (2.3) implies that 

 2.5                                                            𝜑  
𝑥

2𝑁
 =  𝑎𝜆𝜑 𝑥 − 𝜆 ,𝜆∈Λ                  

where   |𝑎𝜆 |2 < ∞𝜆∈Λ . 

Now, we consider 𝑊0  the orthogonal complement of 𝑉0on 𝑉1, i.e. 

𝑉1 = 𝑉0⨁𝑊0 . 

If 𝜓1 ,𝜓2 ,… ,𝜓2𝑁−1 are the functions in 𝑊0 , then for ℓ = 0,1,… ,2𝑁− 1, there exist sequences {𝑎𝜆
ℓ }𝜆∈Λ  

satisfying  |𝑎𝜆
ℓ |2 < ∞𝜆∈Λ  such that 

 2.6                                                          
1

2𝑁
𝜓ℓ  

𝑥

2𝑁
 =  𝑎𝜆

ℓ𝜑 𝑥 − 𝜆 𝜆∈Λ . 

Now, consider 

(2.7)                                                     𝜓 ℓ 2𝑁𝜉 = 𝑚ℓ(𝜉)𝜑 (𝜉) 

where the functions 𝑚ℓ 𝜉 =  𝑎𝜆
ℓ

𝜆∈Λ 𝑒−2𝜋𝑖𝜆𝜉  are locally  𝐿2. Since Λ =  0, 𝑟/𝑁 + 2ℤ,  
we can write that   

(2.8)                                             𝑚ℓ 𝜉 = 𝑚ℓ
1 𝜉 + 𝑒−2𝜋𝑖𝜉𝑟 𝑁 𝑚ℓ

2 𝜉 , ℓ = 0,1,… ,2𝑁− 1, 
 

where 𝑚ℓ
1 and  𝑚ℓ

2 are locally  𝐿2 , 1/2  -periodic functions. 

 

In this case   𝜓1 ,𝜓2 ,… ,𝜓2𝑁−1   is a set of basic wavelets associated with a scaling function 𝜑. It is easy to 

show that   𝜓ℓ 𝑥 − 𝜆 : 1 ≤ ℓ ≤ 2𝑁 − 1   is an orthonormal basis of  𝑊0 . An obvious rescaling shows that 

 𝜓ℓ,𝑗 ,𝜆 = (2𝑁)𝑗/2𝜓ℓ  2𝑁 
𝑗𝑥 − 𝜆 : 1 ≤ ℓ ≤ 2𝑁 − 1, 𝜆 ∈ Λ  

is an orthonormal basis of 𝑊𝑗 . Since ∪𝑗∈𝕫 𝑉𝑗   is dense in 𝐿2 ℝ , the collection   𝜓ℓ,𝑗 ,𝜆 : 𝑗 ∈ ℤ, 𝜆 ∈ Λ, 1 ≤ ℓ ≤

2𝑁−1, is an orthonormal basis of 𝐿2ℝ . 

We, now, define 𝜔𝑛  for each integer  𝑛 ≥ 0  as follows. Suppose that for 𝑝 ≥ 0,𝜔𝑝  is already defined. Then, 

define basic nonuniform wavelet packets 𝜔𝑞+2𝑁𝑝 , 0 ≤ 𝑞 ≤ 2𝑁 − 1,   by 

 2.9                                                        𝜔𝑞+2𝑁𝑝 𝑥 =   2𝑁 𝑎𝜆
𝑞
𝜔𝑝 2𝑁𝑥 − 𝜆 .

𝜆∈Λ

 

Clearly, the set  𝜔𝑛  𝑥 − 𝜆 : 𝜆 ∈ Λ, 𝑛 = 0,1,…   is an orthonormal basis of 𝐿2(ℝ). Corresponding to some 

orthonormal scaling function  𝜑 = 𝜔0 , the family of nonuniform wavelet packets 𝜔𝑛  defines a family of 

subspaces of  𝐿2(ℝ)  as follows: 

(2.10)                                            𝑈𝑗
𝑛 = span  2𝑁 𝑗 2 𝜔𝑛  (2𝑁)𝑗𝑥 − 𝜆 : 𝜆 ∈ Λ ;  𝑗 ∈ ℤ,𝑛 = 0,1,2,… 

Since 𝜔0 = 𝜑 is the scaling function and 𝜔𝑛 , 1 ≤ 𝑛 ≤ 2𝑁− 1, are the nonuniform wavelet packets, we observe 

that 

𝑈𝑗
0 = 𝑉𝑗 ,      𝑈𝑗

1 = 𝑊𝑗 =  𝑈𝑗
𝑟 ,     𝑗 ∈ ℤ

2𝑁−1

𝑟=1

 

So that the orthogonal decomposition  𝑉𝑗+1 = 𝑉𝑗 ⊕𝑊𝑗  , can be written as           

(2.11)                                               𝑈𝑗+1
0 = 𝑈𝑗

0 ⊕𝑈𝑗
1 =  ⨁ 𝑈𝑗

𝑟 .     2𝑁−1
𝑟=0      

 

A generalisation of this result for other values of  𝑛 = 1,2,…,  can be written as 

 2.12                                                    𝑈𝑗+1
𝑛 = ⨁ 𝑈𝑗

𝑟+2𝑁𝑛 ,         𝑗 ∈ ℤ2𝑁−1
𝑟=0 . 

 

Lemma 2.2 [2].  If  𝑗 ≥ 0, then 

𝑊𝑗 =  𝑈𝑗
𝑟 =  𝑈𝑗 −1

𝑟 = ⋯ =  𝑈𝑗 −𝑝 ,               
𝑟

 2𝑁 𝑝+1−1

𝑟= 2𝑁 𝑃

 2𝑁 2−1

𝑟=2𝑁

2𝑁−1

𝑟=1

𝑝 ≤ 𝑗 

 

=  𝑈0
𝑟

 2𝑁 𝑗+1−1

𝑟= 2𝑁 𝑗

, 

where 𝑈𝑗
𝑛   is defined in (2.10). Using this decomposition, we get the nonuniform wavelet packets decomposition 

of subspaces  𝑊𝑗 , 𝑗 ≥ 0 . Therefore, for any function 𝑓 ∈ 𝐿2(ℝ), we have  
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𝑓 𝑥 =    𝐶𝑟 ,𝑛 ,𝜆𝜔𝑟 ,𝑗 ,𝜆 𝑥 ,

𝜆∈Λ𝑗∈𝑍 

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑝

 

where 𝑟 = 𝑗 − 𝑝, 𝑝 = 0 if 𝑗 < 0 and  𝑝 = 0,1,2,… , 𝑗 if𝑗 ≥ 0; will be a nonuniform wavelet packet expansion of  

𝑓 and 𝐶𝑟 ,𝑛 ,𝜆  the wavelet packet coefficients, defined as              

𝐶𝑟 ,𝑛 ,𝜆 =  𝑓,𝜔𝑟 ,𝑗 ,𝜆  . 

 

Let  𝑃𝑗   and  𝑄𝑗 , respectively be the orthogonal projections onto the spaces  𝑉𝑗  and  𝑊𝑗   with the kernels  𝑃𝑗  𝑥,𝑦   

and  𝑄𝑗 (𝑥,𝑦), defined as follows: 

 2.13                                                        𝑃𝑗  𝑥,𝑦 =  𝜑𝑗 ,𝜆 𝑥 𝜑𝑗 ,𝜆 𝑦 
         ,

𝜆∈Λ

 

where   𝜑𝑗 ,𝜆 𝑥 =  2𝑁 𝑗 2 𝜑  2𝑁 𝑗𝑥 − 𝜆   and        

 2.14                                                      𝑄𝑗  𝑥,𝑦 =   𝜓ℓ,𝑗 ,𝜆 𝑥 𝜓ℓ,𝑗 ,𝜆 𝑦 .           

𝜆∈Λ

2𝑁−1

ℓ=0

 

In the light of  𝑉𝑗+1 = 𝑉𝑗 ⊕𝑊𝑗 ,𝑃𝑗 (𝑥, 𝑦)  can be written as     

 2.15                                               𝑃𝑗  𝑥, 𝑦 =  𝑄𝑚  𝑥, 𝑦 =    𝜓ℓ,𝑗 ,𝜆 𝑥 𝜓ℓ,𝑗 ,𝜆 𝑦 .           

𝜆∈Λ𝑚<𝑗

2𝑁−1

ℓ=0 𝑚<𝑗

 

Now, we consider a projection 𝑄𝑗
𝑛  onto 𝑈𝑗

𝑛  with kernel  𝑄𝑗
𝑛 (𝑥,𝑦) defined as 

 2.16                                               𝑄𝑗
𝑛  𝑥,𝑦 =  𝜔𝑗 ,𝑛 ,𝜆(𝑥)𝜔𝑗 ,𝑛 ,𝜆(𝑦)           

𝜆∈Λ

;   𝑗 ∈ ℤ, 𝑛 = 0,1,2,… 

where 𝜔𝑗 ,𝑛 ,𝜆  are the nonuniform wavelet packets. Thus, we observe that  𝑄𝑗
0 = 𝑃𝑗   and  𝑄𝑗

1 = 𝑄𝑗 . In the light of 

Lemma 2.2,  𝑄𝑗  can be expressed as    

 2.17                                              𝑄𝑗  𝑥, 𝑦  =  𝑄𝑟
𝑛  𝑥, 𝑦  =    𝜔𝑟 ,𝑗 ,𝜆(𝑥)𝜔𝑟 ,𝑗 ,𝜆(𝑦)           

𝜆∈Λ𝑗 ∈ℤ

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃

, 

 

where 𝑟 = 𝑗 − 𝑝, 𝑝 = 0 if 𝑗 > 0 and 𝑝 = 0,1,2,… , 𝑗 if 𝑗 ≥ 0. 
Thus eq. (2.15) gives    

 2.18                                              𝑃𝑗  𝑥, 𝑦 =  𝑄𝑚  𝑥, 𝑦 =   𝑄𝑟
𝑛 (𝑥, 𝑦)

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃𝑚<𝑗𝑚<𝑗

 

 

=    𝜔𝑟 ,𝑗 ,𝜆(𝑥)𝜔𝑟 ,𝑗 ,𝜆 𝑦 ,            

𝜆∈Λ

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃𝑚<𝑗 ∈ℤ

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0 𝑖𝑓 𝑚 < 0 and 𝑝 = 0,1,2,… ,𝑚 if 0 ≤ 𝑚 < 𝑗. 
Now, we consider a natural operator 𝑆𝑗 ,𝜆

𝜎  associated with nonuniform wavelet packets 𝜔𝑛  with kernel  

 2.19                                          𝑆𝑗 ,𝜆
𝜎  𝑥, 𝑦 =    𝜔𝑟 ,𝑗 ,𝜆(𝑥)𝜔𝑟 ,𝑗 ,𝜆(𝑦)           

𝜆∈Λ

+ 𝑅𝑗 ,𝜆
𝜎  𝑥,𝑦 ,

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃𝑚<𝑗

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0 𝑖𝑓 𝑚 < 0 and 𝑝 = 0,1,2,… ,𝑚 if 0 ≤ 𝑚 < 𝑗, 

𝑅𝑗 ,𝜆
𝜎  𝑥, 𝑦 =  𝜔𝑗 ,𝑛 ,𝜎 𝑚 (𝑥)𝜔𝑗 ,𝑛 ,𝜎 𝑚  𝑦 ,                

𝜆

𝑚=1

 

with  𝑟 = 𝑗 − 𝑝,𝑝 = 0 if 𝑗 < 0 and 𝑝 = 0,1,2,…𝑗 if 𝑗 ≥ 0, 𝑗 ∈ ℤ,𝜆 ∈ Λ and 𝜎  is a permutation of ℤ. This 

operator is a partial sum of nonuniform wavelet packet expansion of 𝑓. 

 

Definition 2.3 [7]. For a function 𝑓defined on ℝ, we say that a bounded function 𝐻:  0,∞ → ℝ+  is a radial 

decreasing  𝐿1-majorant of 𝑓 if  |𝐹 𝑋 ≤ 𝐻( 𝑥 )  and  𝐻  satisfies the following conditions: 

 2.20                                                          

 i  𝐻 ∈ 𝐿1 0,∞ ,
 ii   𝐻 is decreasing,
 iii    𝐻 0 < ∞.
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Definition 2.4 [7]. The point  𝑥 ∈ ℝ  is said to be a Lebesgue point of a function  𝑓 on ℝ if 𝑓 is integrable in 

some neighbourhood of  𝑥  and 

lim𝜀→0
1

𝑉(𝐵𝜀 )
  𝑓 𝑥 − 𝑓 𝑥 + 𝑦  𝑑𝑦 = 0
𝐵𝜀

, 

 

where 𝐵𝜀   denotes the ball of radius  𝜀 about the origin and  𝑉 denotes volume. 
 

Lemma 2.5 [7]. Let  𝐻  be the function on  [0, ∞)  satisfying the conditions of (2.20). Then 

 

 𝐻  𝑥 − 𝜆  𝐻  𝑦 − 𝜆  ≤ 𝐶𝐻 
|𝑥 − 𝑦|

2𝑁
 ,

𝜆∈Λ

     for  all 𝑥, 𝑦 ∈ ℝ, 

where 𝐶  is a constant depending on  𝐻. 

 

III. Convergence Results 
Let  𝜔𝑛 , 𝑛 = 0,1,2,…  be the nonuniform wavelet packets associated with the increasing sequence of 

subspaces  𝑉𝑗  𝑗 ∈ℤ
, then the orthogonal projections of  𝐿2(ℝ) onto 𝑉𝑗  are given by  

 3.1                                             𝑃𝑗𝑓 𝑥 =     𝑓,𝜔𝑟 ,𝑗 ,𝜆  𝜔𝑟 ,𝑗 ,𝜆 𝑥 ,
𝜆∈Λ

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃

   
𝑚<𝑗  

for all 𝑓 ∈ 𝐿2 ℝ , 

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0  if 𝑚 < 0 and 𝑝 = 0,1,2,… ,𝑚 if 0 ≤ 𝑚 < 𝑗. 
 

We can also consider the projections  𝑄𝑗
𝑛  from 𝐿2(ℝ) onto 𝑈𝑗

𝑛  given by  

 3.2                                           𝑄𝑗
𝑛𝑓 𝑥 =   𝑓,𝜔𝑟 ,𝑗 ,𝜆  𝜔𝑟 ,𝑗 ,𝜆 𝑥 ,

𝜆∈Λ

      for  𝑓 ∈ 𝐿2 ℝ . 

There is also a natural operator, associated with a nonuniform wavelet packet 𝜔𝑛  given by  

 3.3                                       𝑆𝑗 ,𝜆
𝜎 𝑓  𝑥 =     𝑓,𝜔𝑟 ,𝑗 ,𝜆  𝜔𝑟 ,𝑗 ,𝜆 𝑥 +  𝑅𝑗 ,𝜆

𝜎 𝑓  𝑥 ,
𝜆∈Λ

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃𝑚<𝑗  

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0  if 𝑚 < 0 and 𝑝 = 0,1,2,… ,𝑚  if 0 ≤ 𝑚 < 𝑗, 

 𝑅𝑗 ,𝜆
𝜎 𝑓  𝑥 =    𝑓,𝜔𝑟 ,𝑛 ,𝜎 𝑚  𝜔𝑟 ,𝑛 ,𝜎 𝑚  𝑥 ,

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃

𝜆

𝑚=1

 

with 𝑟 = 𝑗 − 𝑝, 𝑝 = 0 if 𝑗 < 0 and 𝑝 = 0,1,2,…𝑗 if 𝑗 ≥ 0, 𝑓 ∈ 𝐿2 ℝ   and 𝜎 is any permutation of ℤ. This 

operator has a partial sum of nonuniform wavelet packet expansion of  𝑓. Since 

𝑉𝑗 = 𝑈𝑗
0 =   𝑈𝑟

𝑛 ,

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃𝑚<𝑗  

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0 if 𝑚 < 0 and 𝑝 = 0,1,2,… ,𝑚  if 0 ≤ 𝑚 < 𝑗,  we have  

 3.4                                                 𝑆𝑗 ,𝜆
𝜎 𝑓  𝑥 = 𝑃𝑗𝑓 𝑥 +    𝑓,𝜔𝑟 ,𝑛 ,𝜎(𝑚 ) 𝜔𝑟 ,𝑛 ,𝜎(𝑚) 𝑥 ,

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑃

𝜆

𝑚=1

 

where 𝑟 = 𝑗 − 𝑝, 𝑝 = 0 if 𝑗 < 0 and 𝑝 = 0,1,2,… , 𝑗  if 𝑗 ≥ 0. 
The above definition makes sense for any 𝑓 ∈ 𝐿2 ℝ . Writing   𝑓,𝜔𝑟 ,𝑛 ,𝑚    as an integral and interchanging the 

order of summation and integration, we obtain  

 

 3.5              𝑆𝑗 ,𝜆
𝜎 𝑓  𝑥 =   2𝑁 𝑗𝑃0  2𝑁 

𝑗𝑥,  2𝑁 𝑗𝑦 𝑓 𝑦 𝑑𝑦 +
∞

−∞
  2𝑁 𝑗𝑄0

𝜎 ,𝜆  2𝑁 𝑗𝑥,  2𝑁 𝑗𝑦 𝑓 𝑦 𝑑𝑦
∞

−∞
, 

where         

 3.6            𝑄0
𝜎 ,𝜆 𝑥, 𝑦 =  𝜔𝑛 𝑥 −

 𝜎 𝑚  𝜔𝑛𝑦 − 𝜎(𝑚)                 , where 𝑛 = 1,

𝜆

𝑚=1

 

and 

 3.7            𝑃0 𝑥,𝑦 =   𝜔𝑗 ,𝑛 ,𝜆(𝑥)𝜔𝑗 ,𝑛 ,𝜆(𝑦)           

𝜆∈Λ𝑗<0

, where 𝑛 = 1 
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                                    =  𝜔0 (𝑥 − 𝜆)𝜔0 𝑦 − 𝜆 ,              

𝜆∈Λ

        𝑎𝑠 𝜔0 = 𝜑. 

Now, we consider an operator  𝑇𝑗  defined as       

 3.8                              𝑇𝑗𝑓  𝑥   2𝑁 𝑗𝑃0  2𝑁 
𝑗𝑥,  2𝑁 𝑗𝑦  𝑓 𝑦 − 𝑓(𝑥) 𝑑𝑦,

ℝ

 

where 

|𝑃0 𝑥, 𝑦 | ≤ 𝐶𝐻 
 𝑥−𝑦 

2𝑁
 , 

𝐻 satisfies (2.20) and  𝐶 is a constant. 
 

Theorem 3.1. Let  𝑇𝑗 : 𝑗 ∈ ℤ  be the family of operators defined by (3.8). If 𝑓 ∈ 𝐿𝑃 ℝ , 1 ≤ 𝑝 ≤ ∞, then 

lim
𝑗→∞

𝑇𝑗𝑓 𝑥 = 0 for every 𝑥 in the Lebesgue set of  𝑓.  

 

Proof. From (3.8), we have 

|𝑇𝑗𝑓 𝑥 | ≤   2𝑁 𝑗  𝑃0  2𝑁 
𝑗  𝑥,   2𝑁 𝑗𝑦  

ℝ

 𝑓 𝑦 − 𝑓 𝑥  𝑑𝑦 

≤ 𝐶  2𝑁 𝑗𝐻  2𝑁 𝑗−1 𝑥 − 𝑦  
ℝ

 𝑓 𝑦 − 𝑓 𝑥  𝑑𝑦 

= 𝐶  2𝑁 𝑗𝐻  2𝑁 𝑗−1 𝑡   𝑓 𝑥 − 𝑡 − 𝑓 𝑥  𝑑𝑡.
ℝ

 

     (replacing 𝑦  by (𝑥 − 𝑡) ) 

If  𝑥  is a point in the Lebesgue set of  𝑓 and  𝛿 > 0, there exists any  𝜂 > 0 such that 

 3.9                                                   
1

𝑠
  𝑓 𝑥 − 𝑡 − 𝑓(𝑥) 𝑑𝑡 ≤ 𝛿, 0 < 𝑠 ≤ 𝜂.
 𝑡 ≤𝑠

 

Thus                

𝐶−1 𝑇𝑗𝑓 𝑥  ≤   2𝑁 𝑗𝐻  2𝑁 𝑗−1 𝑡  
 𝑡 <𝜂

 𝑓 𝑥 − 𝑡 − 𝑓 𝑥   𝑑𝑡 

                    +  2𝑁 𝑗𝐻  2𝑁 𝑗−1 𝑡   𝑓 𝑥 − 𝑡 − 𝑓 𝑥  𝑑𝑡
 𝑡 ≥𝜂

 

= 𝐼 + 𝐼𝐼. 
But  𝐻( 𝑥 )  decreases to zero as  𝑥 → ∞  and  𝐻 ∈ 𝐿1  0,∞  . Therefore 

 𝑠𝐻 𝑠 ≤  𝐻  𝑥  𝑑𝑥 → 0 𝑠
2𝑁

≤ 𝑥 ≤𝑠
  as  𝑠 → ∞. 

Further, since  𝐻  is continuous at zero,  𝑠𝐻 𝑠 → 0  as  𝑠 → 0. Let     

𝑔 𝑠 =  𝑓 𝑥 − 𝑠 − 𝑓(𝑥)  and𝐺 𝑠 =  𝑔 𝑢 𝑑𝑢.
𝑠

0

 

From relation (3.9), we deduce that 

(3.10)                                         𝐺 𝑠 ≤ 𝑠𝛿  when 0 ≤ 𝑠 ≤ 𝜂. 
On integrating by parts, we obtain 

𝐼 =   2𝑁 𝑗𝐻  2𝑁 𝑗−1  𝑡   𝑓 𝑥 − 𝑡 − 𝑓 𝑥  𝑑𝑡
 𝑡 <𝜂

 

                           =  2𝑁   2𝑁 𝑗𝐻  2𝑁 𝑗−1𝑠 𝑔 𝑠 𝑑𝑠
𝜂

0

 

                         =  2𝑁 𝐺 𝑠  2𝑁 𝑗𝐻  2𝑁 𝑗−1𝑠 |0
𝜂
−  2𝑁  𝐺(𝑠) 2𝑁 𝑗  2𝑁 𝑗−1𝐻′  2𝑁 𝑗−1𝑠 𝑑𝑠

𝜂

0

 

       ≤  2𝑁 𝑗 𝑠𝛿 2𝑁 𝑗𝐻  2𝑁 𝑗−1𝑠 |0
𝜂
−  2𝑁  𝐺 2𝑁 −𝑗 𝑠)𝑑𝑠 𝐻′  

𝑠

2𝑁
 𝑑𝑠.

 2𝑁 𝑗𝜂

0

 

Since  𝐻  is decreasing,  𝐻′  
𝑠

2𝑁
   is negative by (3.10) and the boundedness of 𝑠𝐻(𝑠), we obtain   

𝐼 ≤ 𝐶𝛿 −  2𝑁 𝑗𝛿  2𝑁 −𝑗 𝑠 2𝑁 𝑗−1 𝐻′  
𝑠

2𝑁
 𝑑𝑠

 2𝑁 𝑗𝜂

0

 

     = 𝐶𝛿 − 𝛿𝑠 2𝑁 𝑗𝐻 
𝑠

2𝑁
 |0

 2𝑁 𝑗𝜂
𝛿  2𝑁 𝑗𝐻 

𝑠

2𝑁
 𝑑𝑠

 2𝑁 𝑗𝜂

0

 

= 𝐶𝛿 −  2𝑁 𝑗𝛿𝐴𝐻 
𝐴

2𝑁
 +  2𝑁 𝑗𝛿   2𝑁 𝑗𝐻 𝑣 𝑑𝑣

𝐴

2𝑁
0

, 
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where 𝐴 =  2𝑁 𝑗𝜂  and  𝑠 =  2𝑁 𝑗𝑣 . As  𝑗 → ∞  (or equivalently, as  𝐴 → ∞ )  the last expression increases to 
 2𝑁 2 𝐻 𝐿1 ℝ . This gives the estimate 

(3.11)                                        𝐼 ≤ 𝐶𝛿 +  2𝑁 2 𝐻 𝐿1 ℝ 𝛿 = 𝑎𝛿. 

Clearly, the constant 𝑎 depends on 𝐻 only. In order to estimate II, let  𝑥𝑛  be the characteristic function of the set  

 𝑡 ∈ ℝ:  𝑡 ≥ 𝜂 . Let 𝑞 denote the conjugate exponent to 𝑝, that is  
1

𝑝
+

1

𝑞
= 1. By using Hölder's inequality, we 

get     

 3.12                                                 𝐼𝐼 ≤  𝑓 𝐿𝑝  ℝ    𝑥𝜂 𝑡  2𝑁 
𝑗𝐻  2𝑁 𝑗−1 𝑡   

𝑞
𝑑𝑡

ℝ

 

1

𝑞

 

                                                            + 𝑓 𝑥    𝑥𝜂 𝑡  2𝑁 
𝑗𝐻  2𝑁 𝑗−1 𝑡   𝑑𝑡.

ℝ
 

But 

  𝑥𝜂 𝑡  2𝑁 
𝑗𝐻  2𝑁 𝑗−1 𝑡   𝑑𝑡 =  2𝑁  𝐻  𝑢  𝑑𝑢,

 𝑢  ≥ 2𝑁 𝑗−1𝜂ℝ

 

which tends to zero as  𝑗 → ∞. Also, the same is true for the first summand of the above inequality. Further  
 

   𝑥𝜂 𝑡  2𝑁 
𝑗𝐻  2𝑁 𝑗−1 𝑡   

𝑞
𝑑𝑡

ℝ

 

1

𝑞

=     2𝑁 𝑗𝐻  2𝑁 𝑗−1  𝑡   
𝑞

𝑝   2𝑁 𝑗𝐻( 2𝑁 𝑗−1 |𝑡|) 𝑑𝑡
 𝑡 ≥𝜂

 

1

𝑞

 

≤  sup
 𝑡 ≥𝜂

  2𝑁 𝑗𝐻  2𝑁 𝑗−1  𝑡    

1

p

   2𝑁 𝑗𝐻( 2𝑁 𝑗−1 |𝑡|)  
1

𝑞  

≤ 𝐶  𝐻 𝐿1(0,1) 
1

𝑞  sup
 𝑡 ≥𝜂

  2𝑁 𝑗𝐻  2𝑁 𝑗−1  𝑡    

1

𝑝

. 

But  𝑠𝐻 𝑠 → 0  as  𝑠 → ∞. Therefore   

sup
 𝑡 ≥𝜂

| 2𝑁 𝑗𝐻( 2𝑁 𝑗−1  𝑡 )| =  2𝑁 𝑗𝐻((2𝑁)𝑗−1𝜂) 

tends to zero as  𝑗 → ∞. Hence, choosing 𝑗 large enough we deduce from (3.12) that II can be made smaller than 

𝛿. This together with inequality (3.11) proves the result.                                                                     

∎                                                            

Theorem 3.2. Suppose that 𝜔𝑛  are nonuniform wavelet packets and 𝜔𝑛  has a radially decreasing 𝐿1-majorant. If 

𝑓 ∈ 𝐿𝑝 ℝ , 1 ≤ 𝑝 ≤ ∞, then 

lim
𝑗→∞

𝑃𝑗 𝑓 𝑥 = 𝑓 𝑥  for any 𝑥 in the Lebesgue set of 𝑓. 

In particular,  lim
𝑗→∞

𝑃𝑗𝑓 𝑥 = 𝑓 𝑥  for almost every 𝑥 ∈ ℝ. 

 

Proof. It is easy to show that 

 𝑃0 ( 2𝑁 𝑗𝑥,  2𝑁 𝑗𝑦)𝑑𝑦 = 1.
ℝ

 

Now   

𝑃𝑗𝑓 𝑥 − 𝑓 𝑥 =   2𝑁 𝑗𝑃0 ( 2𝑁 𝑗𝑥,  2𝑁 𝐽𝑦) 𝑓 𝑦 − 𝑓(𝑥) 𝑑𝑦 = 𝑇𝑗𝑓 𝑥 .
ℝ

 

On taking limit  𝑗 → ∞  and applying Theorem 3.1, we get  

lim
𝑗→∞

𝑃𝑗𝑓 𝑥 − 𝑓 𝑥 = 0 ⇒ lim
𝑗→∞

𝑃𝑗𝑓 𝑥 = 𝑓(𝑥) 

for every 𝑥 in the Lebesgue set of 𝑓.   

∎                                                                         
 

Theorem 3.3. Let 𝜔𝑛 , 𝑛 ≥ 0 be nonuniform wavelet packets having the radial decreasing 𝐿1-majorant. If 

𝑓 ∈ 𝐿𝑝(ℝ), 1 ≤ 𝑝 ≤ ∞, then, for 𝜆 ∈ Λ, 

 

lim
𝑗→∞

𝑆𝑗 ,𝜆
𝜎 𝑓 𝑥 = 𝑓(𝑥)  for all 𝑥 in the Lebesgue set of 𝑓. 

 
In particular, the partial sums  𝑆𝑗 ,𝜆

𝜎 𝑓 𝑥   converge to 𝑓(𝑥)  for almost every  𝑥 ∈ ℝ . 

 

Proof. Since 

 𝜔𝑛  𝑦 𝑑𝑦 = 𝜔𝑛  0 = 0
ℝ
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for all 𝑛 > 0, by (3.4) we obtain 

 𝑆𝑗 ,𝜆
𝜎 𝑓  𝑥 − 𝑓 𝑥 =  𝑃𝑗𝑓 𝑥 − 𝑓 𝑥  + 𝑅𝑗 ,𝜆

𝜎 𝑓 𝑥 , 

where 

𝑅𝑗 ,𝜆
𝜎 𝑓 𝑥 =     𝜔𝑟 ,𝑛 ,𝜎 𝑚 (𝑥)𝜔𝑟 ,𝑛 ,𝜎 𝑚 (𝑦)               

 2𝑁 𝑝+1−1

𝑛= 2𝑁 𝑝

𝜆

𝑚=1

  𝑓 𝑦 − 𝑓(𝑥) 𝑑𝑦
ℝ

 

where 𝑟 = 𝑚− 𝑝,𝑝 = 0 if 𝑗 < 0 and 𝑝 = 0,1,2,… , 𝑗 if 𝑗 ≥ 0. Thus 

𝑅𝑗 ,𝜆
𝜎 𝑓 𝑥 =   2𝑁 𝑗𝑄0

𝜎 ,𝜆( 2𝑁 𝑗𝑥,  2𝑁 𝑗𝑦) 𝑓 𝑦 − 𝑓(𝑥) 𝑑𝑦
ℝ

. 

Hence 

 𝑠𝑗 ,𝜆
𝜎 𝑓  𝑥 − 𝑓 𝑥 = [𝑃𝑗𝑓 𝑥 − 𝑓 𝑥 ] +   2𝑁 𝑗𝑄0

𝜎 ,𝜆( 2𝑁 𝑗𝑥,  2𝑁 𝑗𝑦) 𝑓 𝑦 − 𝑓(𝑥) 𝑑𝑦.
ℝ

 

But by Theorem 3.2, lim
𝑗→∞

 𝑃𝑗𝑓 𝑥 − 𝑓 𝑥  = 0.  Therefore, by Lemma 2.5     

|𝑄0
𝜎 ,𝜆 𝑥, 𝑦 | ≤ 𝐶𝐻 

|𝑥 − 𝑦|

2𝑁
  

(independent of  𝜎 and  𝜆)  and hence the proof of the theorem follows from Theorem 3.1. 

∎ 
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