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Abstract: We study the line element proposed by the quantum vacuum KantowshiSachs universe 

without cosmological constant. We consider the scale factor b(=iR I) of the metric to be imaginary 

and the other a ( = R) is real, of the KantowskiSachs quantum state spacetime. It is seen, that in 

the Einstein‟s spacetime, the numerical volume of the matter universe once been squeezed in a 
zero volume, we may assume then the matter universe transferred into  another phase by the phase 

transition system with the help of latent energy group SU(6) [SU(11)    SU(5)   SU(6)  U(1)] 

The subgroup SU(6) has been interpreted as a new type of energy source other than SU(5)[SU(5)  

SU(3)  SU(2) U(1), where SU(3) the strong energy group, SU(2) the weak energy group & U(1) 
the electro dynamics]. We suppose that the original phase transition takes place before the GUT 

phase transition i.e. in the stage of SUT (Super Unified Theory) phase transition.  According to the 

classical theory it may be assumed an imaginary scale factor, that means, the universe is then 

belongs to the pseudo-tachyon-field. It may be compared with the internal space „a‟ of the extra

dimension „D‟ expressed by the KaluzaKlein cosmological universe.  

Thus we think that the universe is numerically as a complex spacetime R + iRI rather than 
it was measured as only the real part classically. Solving the metric tensors and getting the energy 

tensors              and             in the 10(= 4+6)dimensional spacetime under the exchange            . 
Hence we introduce a wider universe, other than Einstein‟s universe. We derived Einstein universe 

from wider universe.  

We also study the Chaplygin gas Friedmann RobertsonWalker quantum cosmological 

models in the presence of negative cosmological constant. We consider a (4+D) dimensional 

FriedmannRobertsionWalker type Universe having complex scale factor R + iR
I
. We apply the 

Schutz‟s variational formalism to recover the notion of time and this give rise to WheelerDeWitt 

equations for the scale factor R, corresponding to 4dimensional universe and as well as R I for D-
dimensional space. By introducing an exotic matter in the form of perfect fluid with an special 

equation of state, as the spacetime part of the higher dimensional energymomentum tensor, a 

four dimensional effective decaying cosmological term appears as  ~ R
  m

 with 0 < m < 2, playing 

the role of an evolving dark energy in the universe. By taking m = 2, which has some interesting 

implications in the reconciling observations with inflationary models and is consistent with 
quantum tunneling the resulting Einstein‟s field equations yield the exponential solutions for t he 

scale factors R
I
 and R. We use the eigen functions in order to construct the wave packets and obtain 

the timedependent expectation value of the scale factors. Since the expectation value of the scale 
factors never tend to the singular point, we have an initial indication that this model may not have 

singularities at the quantum level. 

Again we study the Hartle-Hawking no boundary proposal in which wave function of the 

universe is given by a path integral over all compact Euclidean 4 -dimensional geometries and 
mater fields that have the 3-dimensional argument of the wave function on their one and only 

boundary. We suppose that the original phase transition takes place before the GUT phase 

transition i.e. in the stage of SUT (Super Unified Theory) phase transition. After the phase 

transition, there is a fluctuations of the scalar field , over a smooth average value. These 

fluctuations result in fluctuations of energy density. In this paper, we choose the potential V() as a 
exponential function of time “t” and consider a complex radius of the Friedmann-Robertson-Walker 

model.  

 

I. Introduction: 
There is no consensus yet on how the universe initially came to be, the general assumption 

is that perhaps an energetic fluctuation caused the universe to tunnel into existence from quantum 

foam. The spontaneous symmetry breaking of the unified fie ld occurred, thereby separating gravity, 

matter fields and GUT force field, as well as initiating the expansion of the universe.  
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In 1915 Einstein published the general theory of relativity.  He expected the universe to be „closed‟ 

and to be filled with matter. Again, if we go out -side the gravitating sphere, we see the gravitation 

would be weaker and weaker. According to Einstein's general relativity, the matter -space-time 

cannot be separated by any cost. Thus, out-side the Einstein's universe, where real time can not be 

defined, so the corresponding space (although, the matter belongs to another phase) must be 

measured as imaginary. Thus the space-time of the universe is actually a complex space-time. Here 

we consider the real space-time (i.e. unfolded ) for Einstein and imaginary space-time ( i.e. folded) 
for us. We found a relation between folded and unfolded space-time of the universe by using 

Wheeler De-Witt equation. The generalized solution for the Einstein field equations for a 

homogeneous universe was first presented by Alexander Friedmann. The Friedmann equation for 

the evolution of the cosmic scale factor R(t) which represents the size of the universe, is  

   

 

 

 

 

Differentiating the above equation with respect to time „t‟ , and since the total  matter in a given 

expanding volume is unchanged, i.e.                       is constant. We have, 
 

                                                                            i.e 

 

 

Since      is always negative, at  a finite time in the past R must  have  been equal  to zero. Then, 

according to these models, the contents of all the galaxies must have once been squeezed together in 

a small volume where the temperature would have been immensely high. The radiation left over 

from this fireball must still be around today, although cooled to a much lower temperature due  to 

expansion of the universe. So as the size „R‟ of the Einstein matter universe numerically squeezed 

in a zero volume, then we may assume the size of the Einstein‟s matter universe become iR I in other 

phase which can be measured classically, as the energy never die at all.  

So we may consider the scale factor „R‟ of the Einstein universe is only the real part an d 
there may exist an imaginary part (pseudo-space)„iRI‟ and hence the size of the universe is actually 

may be written in the form R + iRI.  

If we consider the (4 + D)dimensional KaluzaKlein cosmology with a RobertsonWalker 

type metric having two scale factors „a‟ and „R‟, corresponding  to Ddimensional internal space 

and 4dimensional  space, respectively. In the expansion of „R‟universe, the internal space „a‟ 

decreases as the space R increases. Avoiding „R‟universe squeezed in a zero volume, then we may 
assume that the matter universe must be changed into another phase  by the phase  transition  

method with the help of latent energy group SU(6).  

It is then compared with the Ddimensional internal space „a‟( = iR I) of the KaluzaKlein 

cosmology, with the Einstein‟s 4dimensional space of the scale factor R. The knowledge about the 
quantum state space for the gravity system and gravity matter system are very limited and the 

definition of the inner-product in quantum state space has not been found.  

A natural query is what happened before unification –may be called super unified field. The vacuum 

universe U(11) is thermodynamically equilibrium with the infinite boundary (R  , RI  ) like 

a plain white paper. The break-down of the special unitary group SU(11) of U(11) into SU(6)  

SU(5)  U(1), under the pre-distribution of energy when it is reached below the “critical point” (it 
is compared with the curie point of the magnet).  

The breakdown of SUT symmetry group SU(11), gave two  fundamental group like  SU(6)  
SU(5) leads to a phase transition and then the fundamental group SU(5) breaks into subgroup like 

SU(3)  SU(2)
L  U(1), in which  the scalar field   changes. The original vacuum, with false 

vacuum ( = 0) is no longer the true vacuum ( = ). The inflationary  stage arises, however, if the 

true vacuum is not immediately attained.  
After the separation of two type energies SU(5) & SU(6), they want  to interact each other  

and has a tendency to unify once  again, as a result the direction of the ene rgy group SU(6) is 

opposite to the direction of the energy group SU(5), remaining the temperature unaltered and then 

an inflation occurred instantaneously.  An analogy will illustrate the scenario. Suppose steam is 

being cooled through the phase transition temperature of 100
o
c. Normally we expect the steam to 

condense to water at this temperature. However, it is possible to supercool the steam to 
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temperature below  100oc, although it is then  in an unstable state. The instability set in when 

certain parts of the steam condense to droplets of water which then coalesce and eventually the 

condensation is complete. In the supercooled state the steam still remains its latent heat, which is 
released as the droplets form.  

It is very convenient to construct a quan tum perfect fluid model. Schutz‟s formalism gives 

dynamics to the fluid degrees of freedom in interaction with the gravitational field. Using a proper 

canonical transformations, at least one conjugate momentum operator associated with matter 

appears linearly in the action integral. Therefore, a Schrodingerlike equation can be obtained 
where the matter plays the role of time. Moreover, recently, some applications of the Schutz‟s 

formalism have been discussed in the frame work of the perfect fluid Stephani Universe and 

FriedmannRobertsonWalker Universe in the presence of Chaplygin gas.  
 

II. Intelligence: SU(6)  

In the transformations under the group SU(6), the basic fields here are the latent energy 

field and we have      U = exp (- iH) ………. (1). Where H is a 6  6 Hermitian matrix of zero trace. 
We have 35 matrix charges I

1
, I

2
, I

3
,  ……….I

35
  out of which five matrices  are diagonal. 

corresponding to this, we have 35 bosons. For want of any specific designation, they are referred to 

simply as Jk. There were no change takes place for exchanging the bosons namely J
k3

, J
k8

, J
k15

, J
k24

, 

J
k35, corresponding to the said five diagonal  matrices. We expect the participating interactions of 

the bosons Jk to have comparable strength. The Jk bosons are expected to generate a latent force. 

This force is believed to be potentially so large that the exotic matter fluid are  expected  to transfer  

into the ordinary  matter and then  everything of the universe.  
As  the energy  group SU(5)  advanced for   unification  with SU(6) ,  the strength of weak force 

gradually increases  and the strength of strong force  decreases, ultimately the unification occurred 

at  the extreme situation. 

 

                                                             Super Unified Theory  

It can be expected, that for the symmetry breaking of SU(11), created an amount of positive energy, 

negative energy and an equivalent amount of latent energy.  

 
 

III. Einstein’s solution in general phase without cosmological constant:  

Imagine, a uniform distribution of matter filling the infinite Euclidean space in a phase 

other than Einstein‟s universe. We know that any finite distribution of pressurefree matter would 
tend to shrink under its own gravity.  

We consider the closed surface from the very early universe as rectangularparallelepiped after then 

a cubical box and then spherical spacetime. The equation of the diagonal of the parallelepiped as  
                               (2) 

 
Consider the side of the cubical box is r

1
 and also consider the diagonal remains unchanged for 

parallelepiped and cubical box.  

Hence the diagonal of the cubical box is  

                               (3) 

Now we consider the equation (3) of a 3surface in Cartesian coordinates x
1
, x

2
, x

3
, & x

4
 by 

                               (4) 
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Where S
1
 is the radius of the 3surface of a four dimensional hypersphere. We consider the total 

mater in the cubical surface and Einstein‟s  spherical surface remains unaltered. Hence  

   

 

     i.e.                                            (5) 

 

  

  [Taking only the real part] 

 

                            (6) 

 

 
Interms of a constant negative curvature, the equation (4) becomes  

  

                                       (7) 

Here, 

,     Where                                   (8) 

 

Where , 
1
 are the energy densities of the two phase respectively. Comparing with the Einstein‟s 

universe, the most general line element satisfying the Weyl -postulate and the cosmological 

principal is given by  

                                                                                                                               

  

 

Where, S(t) = (t). R(t);                                                                                                      (9) 
 

 

And the Einstein‟s equations become,  

                           (10) 

 

          
 

 

               &                                                                                                             (11) 

                     

 

 

 where, S(t) = (t), R(t)                                                                                                       (12) 
                  

                                       

 

 

IV. Einstein Universe derived from wider universe: 
From the equation (10) & (11) we have the relation,  

                            (13) 

 

 

when      and  

At the very early epoch, p
/

 = 0, then 
      = constant.                                 (14) 

By the equation (12) we have 
1


3

(t).R
3

(t) = constant   

      i.e.   R
3

 = constant.                     [ by the equation (8)] 

Consider, when R = R
o
,  = 

o
 then 

                            (15) 

 

Which may be found by the Einstein‟s universe at the early epoch when pressure p = 0, by using the 

Friedmann equations and with the help of RobertsonWalker line element.  
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                           (16) 

 

Again in absence of any external forces, the velocity u
i

 satisfies the geodesic equation 
                                                                                  (17) 

 

 

 

Substitute  in the equation (9) gives the result 

         = constant.                                  (18) 

However, u


 measures the velocity in the comoving (r, , ) coordinates, we have   
                  = constant ….                                                                                        (19) 

Again, if we substitute     in the equation (16) which gives the result   

u


R
2

(t)=constant…………………….(20) 

Now, if we compare (20) with (19), we get        (t) = constant. 

   i.e. 
1
 (t)  (t)                       (21) 

Which indicates the large or small matter  energy density in the vapor phase (so called nothing) 

changes to the large or small matter energy density in the liquid phase (Einstein‟s Universe) and 

hence it is found, an important fact, that the existence of discrete structure in the universe, ranging  

from galaxies to superclusters.  
 

V. Einstein field equation in complex quantum state :  

The work covered in the Einstein field equations did not  tell us the important item of 

information about  the universe is what  happened, when the  volume of the matter  universe 

squeezed into zero  volume and there  before. To find the answer to this question it is necessary to 

do beyond the concept of Einstein universe. We need a new concept with the Einstein‟s universe to 

proceed any further, and Einstein‟s general relativity with complex  spacetime is one of such 
theory. We will consider alternative approaches to cosmology but for the present is 

KantowskiSachs universe. We have the line element to start with:  
                           (22) 

 

The only nontrivial Einstein equations of the above metric (with N = 1 are)  

     

                                                                        (23) 
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Where c
/

is the velocity of photonlike particle in vapor stage and c
/

> c, the velocity of photon.  
We next consider a = R & b = iR I, [where                  ]. Then the equation (23), (24) & (25) 

becomes  
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Before we consider specific forms of      it is worth noting that three properties must be satisfied by 

the energy tensor in the present framework of cosmology. The first is obviously define negative 

pressure by                  The second      is  

 

define the matter energy density and the third     is define the latent energy density.  If we take       

        

                                     & 
 

Also we have from (26), (27) & (28), we get                                                                       (29) 

                                                  (30) 

                                                                                                                       

        &                         (31) 

 

 

Now, it is clear that, if H
R = H

I
 i.e. R = R

I
. Which is possible for 6+4 = 10 dimensional spacetime. 

Then the equations (29) & (31) are identical  

             i.e  

  

 

 and                              (32) 

 

                          (33)  

Now, if      then, H
I
= H

R
=0 i.e. R

I
= constant. Hence there is a maximum of R

I
 

At    we have,                        (34) 

 

which is not possible,  i.e.               . 

For derivation it is convenient to write 

 

                                      (35) 
 

and                               (36) 

 

 

It relates the pressure p to the energy density . Hence from equations  (35) & (36) we have  
                           (37) 

 

 

 

VI. Behaviour of Entropy in the Complex SpaceTime 
The second laws of thermodynamics tell  us that the entropy in a given volume S3 stays 

constant as the volume expands adiabatically.  

That means            , where  is a constant is and T is the temperature. Where S is the 
scale factor,                        (38) 

Hence,   

Separating real and imaginary part, we get  

                             (39) 

Hence from equations  (37) & (39) we have  
 

i.e 

        

We take  T = T
o

 (say) when t = 0, 

Then                                           (40) 
 

Which is the temperature of the universe in the super gravity stage, when the wave function is 

symmetric under the exchange           .   

 

One may assume a sudden drop of temperature  due to the separation of  latent energy in the phase 

transition, which is not measurable by any physical instrument.  
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VII. Cosmology of perfect fluid and Chaplygin gas model  

We study the metric considered in which the space time is assumed to be of Friedmann

Robertsonwalker type,  
                      (41) 

 

where N(t) is the lapse function, a(t) is the scale factor of the space time, h
m is the metric.  

The metric(41) can be inserted in the Einstein Hilbert action  plus a generalized Chaplygin gas in 

the formalism developed by Schutz and we obtain  

                      (42) 

 

 

 

where g
ν

 is the metric, R is the Ricci scalar, K
m

 is the extrinsic curvature,  is the 

cosmological constant, and h
m

  is the induced metric over the threedimensional spatial hyper

surface, which is the boundary M of the 4dimensional manifold M. We choose units such that the 

factor 8G becomes equal to one, p
e
 denotes the Chaplygin gas pressure. The last term of (42) 

represents the matter contribution to the total action.  

We assume the energymomentum tensor T, of space time  to be an exotic  fluid with the 
equation of state  

 
                       (43) 

 

 

 

Where p

 and 


 are the pressure and density of the perfect fluid, respectively and the parameter m 

is restricted to the range 0 < m < 2 when m = 2, then  = 1/3. It is worth nothing that the equation 
of state (43) with 0 < m < 2 resembles a universe with negative pressure, violation the strong energy 

condition and this violation is required for universe to be accelerated.  
From thermo-dynamical considerations and using the constraints for the fluid, if we drop the 

surface term in the action (42), and use the canonical transformation then the Super Hamiltonian 

simplifies to  

            

                                                                                                                                      (44) 

 

 

Now, we study the Chaplygin gas expression in early and late times limits, namely for small scale  

factors  

                and large scale factors         , separately. For the early universe, we 

use the following expression 

           
                                                                                              

                                                                                                                                       (45) 

Hence, up to the leading order, the super Hamiltonian takes the form   

 

 

 

Again, we use canonical transformation, the superHamiltonian simplifies to  
                          (46) 

 

 

where  

 

Where the momentum p
T
, is the only remaining canonical variable associated with matter and 

appears linearly in the superHamiltonian. The parameter K defines the curvature of the spatial 

section, taking the values 0, 1, 1 for a flat, close or open universe, respectively.  
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It is apparent that, up to the leading order, the Chaplygin gas plays the role of the dust fluid in the 

early time regime.  

 

VIII. Wheeler DeWitt equation 
An appropriate quantum mechanical description of the universe was introduce and 

developed by DeWitt. In quantum cosmology the universe, as a whole, is treated quantum 
mechanically and is described by a single wave function.  

 (h
ij
, ), defined on a manifold (superspace) of all possible three geometries and all matter field 

configurations. The wave function (h
ij
, ), has no explicit time dependence due to the fact that 

there is no real time parameter external to the universe. Therefore there is no Schrodinger wave 

equation but the operator version of the Hamiltonian constraint of the Dirac canonical quant ization 

procedure, namely vanishing of the variation of the EinsteinHilbert action S with respect to the 
arbitrary lapse function N  

    

 

Which is written  

This equation is known as the WheelerDeWitt (WDW) equation. The goal of quantum 
cosmology by solving the WDW equation is to understand the origin and evolution of the universe, 

quantum mechanically. As a differential equation, the WDW Equation has an infinite number of 

solutions. To get a unique viable solution, we should also  respect  the question of boundary 

condition in quantum cosmology which is of prime  importance in obtaining the relevant solutions 

for the WDW equation.  

In principle, it is very difficult to solve the WDW equation in the superspace due to the 
large number of degrees of freedom of the of the gravitational and matter fields. This procedure is 

known as quantization in mini superspace, and will be used in the following discussion.  
 

The WheelerDewitt equation in minisuperspace can be obtained by imposing the standard 
quantization conditions  

on   the   canonical   momentum                and requiring that the super 

 

Hamiltonian operator annihillates the wave function of the universe (  = 1). Using (46), we have 

                                                                                                        (47) 

 
 

Here, t = T corresponds to the time coordinate. Equation (47) takes the form of a Schrodinger 
equation          

 

 

Demanding that the Hamiltonian operator        to  be selfadjoint, the inner product of any two 

wave functions   and    must take form  
                         (48) 

 

On the other hand, the wave functions should satisfy the following boundary conditions  

                         (49) 

 

Using the separation of variables  

                  (a, t)  = e
iEt

 (a) 
The equations (47) take the form, 

                          (50) 

  

 

 

For  the late times        ,  we have  

                        (51)  

 

 
So, up to the first order, the super Hamiltonian (44) takes the following form  
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                                                                                                                                     (52) 

 

Now, using the additional canonical transformation, the superHamiltonian simplifies to  
                        (53) 

 

 
where,     .  

 

 

Using canonical form of moment, the SWDW  equation in the late time can be written as  

                        (54) 

 

 

For this case, the inner-product of any two functions  and  takes the form  
                         (55) 

 

 

Using the separation of variables                                (56) 

 

We can obtain the timeindependent SWDW equation as,  

                           (57) 
 

 

 

Using (50)& (57), we get,  

 

i.e.  A
3/2 a

3

 + aE  E = 0    [(a)  0,  a  0 and  take    =  1/3 ] 

 
We take    a = R + iRI    

then   

 

 

Separating real and imaginary part, we have  

                          (58) 

                          (59) 

 

 

Comparing (58) & (59), we get,  

                          (60) 
 

 

 

IX. Quantum Cosmology of Zero Loop  

  We consider the Hartle-Hawking path integral for „no boundary‟  proposal, by taking the 

wave function, [gij(yk), A(yk)]   o –  loop[gij, 
A] = 

                                                                                             (61) 

Where we summing over a small set of extrema of the Euclidean action I, generally complex 

classical solutions of the field equations.  

The zero-loop approximation gives  

  (ab, b)  
0-loop

 (ab, b) =                                  (62) 

 

 

where I(ab, b) is the Euclidean action of a classical solution  that is compact and has the S 3 
geometry and homogeneous scalar field as its one and only boundary.  

One boundary FRW-scalar histories have a time parameter „t‟ that can be taken to run from 0 (at a 

regular „centre‟) to 1 (at the boundary), and then to have  = (t) and four metric.  
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Consider the metric  

                           (63) 

 

 

 

Where N(t) is the lapse function and        is the metric on a unit 3-sphere S3. 

 

If the scalar field potential is             V(    [with the co-efficient again chosen to simplify 
the formulas  

 

 

below, in terms of the rescaled potential [V()] , then the Euclidean action of the history is  
    

    I = -iS = dt                                             (64)              
    

 

i.e. 

                                                 (65) 

 

Here  is the scalar field.  
 

X. FRW-Scalar Model with Complex Scale Factor  

We have from the equation (65),  

                           (66) 

We consider a = R + iRI as complex radius. Now substituting „a‟ in the equation (66), and 

separating real and imaginary part, we have,  

                           (67) 

and  

                           (68)  

Now we consider,             

 

 

where R(0) = RI(0) = p and consider  N(t) = 1. 
Thus the equation (68) becomes,                                                                                         (69) 

 

10.1 FRW-Scalar Models with An Exponential Potential V = e
2

                                                                  
To illustrate some of these ideas quantitatively, it is helpful to consider the case of an 

exponential potential  

 V() = e2                                                 (70) 

where  is a real parameter that characterizes how fast the potential varies as a function of .  

We have from  the equation  (69) & (70),      
Integrating, we have  

 

                                         (71) 

     [where A is integration constant] 

i.e.    

     [taking  +ve  Sign]                                  (72) 

Hence  

                              (73) 

Differentiating both side with respect to time, t we get  

                                                                                                                                            (74) 

 
 

 

Again, if we take negative sign, then from the equation (71), we have  

  V =                            (75) 
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                             (76) 

 

When  A = 1, then,  

                              (77) 

                           V = 

                                 (78) 

 
 

              & 

   
                                       (79) 

 

Thus,                              (80) 

 

 

i.e. 

 

 

10.2 The Energy Density of -Field 

We have from the equation (71) 
                               (81) 

 

 

The inflationary model seems capable of producing the spectrum, through fluctuations in 

the scalar field (t). 
Harrison in 1970 and Zeldovich in 1972 has argued independently, from theoretical considerations 

that at the time of entering the horizon, the amplitude of a typical density perturbations should have 

the form F(k)  k-3 where                      and k, the wave number. The fact that T/T in 
the microwave background  

Radiation is <10-5, implies that |(k, t)]2 <<1 in the radiation dominated phase of expansion. It can 
be shown that the root–mean-square fluctuation of  mass M as a fraction of average  mass contained  

in a region  of size  R is proportional to k3|ĸ|2 at k = R-1. Therefore, for the above F(k), <(M/M)2> 
will be independent of the scale R at             , thus  giving  equal  power  at all scales at the time 

they enter the horizon.  

A scale-invariant spectrum is indicated by the distribution of discrete large-scale structures.  

We write the equation (81), the fluctuation as F(t) over a smoothed average value o(t). 

Thus   (t) = o(t) + F(t)                          (82) 
These fluctuations result in fluctuations of energy density.  

 

The energy density of a scalar field is                                                             (83) 
 

The average energy density during inflation being dominated by the constant term VO of the 

Coleman-Weinberg-potential. We have the density contrast 

                               (84)  

 

 

We use       , the mean evolution of  in the slow roll-over phase; but what is F(t) ? Now in actuality 

the fluctuations in  are of quantum origin but here, in a classical approximation, we are using  F(t) 
to mimic them classically. In quantum field theory the field would be an operator       whose Fourier                 

coefficient         are also operators.  In a quantum state specified by the wave function k, the 
fluctuations of        are given by the dispersion relation                                                           (85) 

 

The mean value (in k = 0 mode) of k being zero.  This is because o, the average of , is 
homogeneous.  Since           appears to be a good measure of quantum fluctuations. We may write  

                                            (86) 
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Thus we have taken a semi-classical approximation to estimate the fluctuations in the energy 

density of the  field which act as the seed fluctuation of density during the inflationary phase t
i
< t 

< t
f
.  

                            XI    Excess production of Jk bosons in the early universe:  
 Let us denote the mass of the Jbosons by m J, and its coupling strength by J. The 

coupling strength depending on what type of particle J is, let us denote by     the rate of collisions 

that do not conserve the number of Jk bosons, i.e. collisions in which the Jboson is involved. 

Denote the characteristic decay rate of the Jboson by J, we thus have three time scales to play 

with:                 and   
 

At the earliest epochs, with constant temperature >10 19 GeV, the latent energy was the 

strongest force between the various constituents of the universe. Other interactions were 

unimportant under the hypothesis of asymptotic freedom. As the universe continued to changing 

phase and its constant temperature dropped there was a phase when gravity as well as latent force 

become weaker while the other interactions still   remained  unimportant.  Thus for T < 1019 GeV, 

the particles remained essentially free for some time.  

During this phase it becomes necessary to examine the nature of distribution, functi ons are 

as follows. Assuming ideal gas approximation and thermodynamic equilibrium, it is then possible to 

write down the distribution functions of any given species of particles. Let us use the symbol L to 

denote typical species (L = 1, 2, ….). Thus n L(P)dp denotes the number density of species in the 
momentum range (P, P + dP),  where  

 

   

 

 

 

Where T = the temperature of the distribution, g
L
 = the number of spin states of the species, k = the 

Boltzmann constant and    is the energy corresponding to rest mass m
L
 of a 

typical particle. The quantity μL is the chemical potential of the species L. We set μ
L
 = 0, g

L
 = 1, m

L
 

= 0, for J
k
 bosons. Since particles and antiparticles annihilate in pairs and produce J

k
 bosons their 

chemical potentials are equal and opposite. Again we saw that for T < T
J
 , the distribution function 

cannot preserve its  form under changing phase. Thus it may get distorted from its equilibrium 

form. Now of the various species in the very early universe, the Jbosons are probably the most 
massive. Thus, provided they have a high enough value T

J
, there is a chance that the J bosons will 

first dropout of equilibrium. For this to happen, however, it is also necessary that they have not all 

decayed by then. The collision rate                       . A comparison of the three rats shows that  

 

Soon after gravity became weak that means the amount of equivalent energy is not adequate then 

the changing phase of the universe with the essentially no interaction between the species.  

                                        

                                        XII   Concluding Remarks:  
First we studied the unification of the energy group SU(5) with a group SU(6) (In mathematics, the 

special unitary group of degree n may be denoted by SU(n), which is the grou p of nn unitary 
matrices with determinant 1. The group operation is that of matrix multiplication. Again, the special 

unitary group is a subgroup of the unitary group U(n), consisting of all nn unitary matrices, which 
is itself a sub group of the general linear group GL(n,C), where C is the classical Lie group. The 

group SU(n) may find wide application in the standard model of physics, particularly SU(2) in the 

electro-weak interaction and SU(3) in quantum-chromodynamics as well as there introduces a new 

type energy sources SU(6) in the present dissertation.) to form a special unitary group SU(11). In 
these early epochs the dominant form of energy particles moving relativistically. Such particles 

were mostly moving freely and would collide, of course, but these instances are assumed to have 

occupied very brief time spans and there effects on motions may be otherwise neglected. The 

collisions and scattering of the particles would, however, have helped to redistribute their energies 

and momenta. If these redistribution occurred frequently enough then the system of particles as a 

whole would have reached a state of thermodynamic equilibrium. In this case, for each species of 

particles there is a definite rule governing the number of particles in a given range o f momentum.  
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However, if the large percent of the matter sources in the universe would be of dark –energy 

type (as the present observations strongly recommend) then one may keep the results here even in 

the presence of other matter source, keeping in mind that the relevant contribution to the total 

matter source of the universe is the dark energy. It is shown, at the early epoch, the pressure free (p
/ 

= p = 0) wider universe and Einstein‟s universe are identical. It is found that the existence of 

discrete structure in the universe, ranging from galaxies to superclusters.  
So the space-time of the universe is actually a complex space-time and there is neither any 

starting point nor any ending point of the wider (measurable in quantum cosmology) universe. Only  

there exists the initial and ending conditions for narrower (measurable in classically) universe, 

which emerged from wider universe by the process of changing phase, which is a continuous 

process. As ocean has close with tide, similarly the wider universe  has the same with narrower 

universe.  

Also I think, the existence of new particles confirms at CERN‟s laboratory declared on 4 th 

July 2012 may belongs to the energy group SU(6).  
We showed that in Chaplygin gas scenario, we may observe a positive effective  cosmological 

constant at the late times despite having a negative bare cosmological constant. This is in agreement 

with the assumption of the existence of the negative cosmological constant in the early universe.   

We have constructed wave packets by the appropriate linear combination of the 

eigenfunctions. The time evolution of the expectation value of the scale factors has been determined 

in the spirit of the manyworlds interpretation of quantum cosmology. The scale factors considered 
here never tend to the singular point, i.e. these models may not have singularities at the quantum 

level. 

 In the paper, we consider a path integral over all compact Euclidean 4 -dimensional 

geometrics and matter fields by considering a complex scale factor. There were a stage of SUT of 

Phase transition before GUT. We think field created by the latent energy group. We consider a 

scalar -field. The fluctuation of the scalar field  result in fluctuations of energy density.  
We find the value of the scale factor, when potentia l V = 1 and also the scale factor, related with 

imaginary time. It has been showed that the energy density changes exponentially with time. We 

found the time, when  = 0, in terms of the parameter HR & HI.  
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