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Abstract : B. Alspach, C.C. Chen and Kevin Mc Avaney [1] have discussed the Hamiltonian laceability of the 

Brick product C(2n, m, r) for even cycles. In [2], the authors have shown that the (m,r)-Brick Product C(2n+1, 

1, 2) is Hamiltonian-t-laceable for 1 ≤ t ≤ diamC2n+1. In this paper we explore the Hamiltonian-t-laceability of 

the (m,r)-Brick Product C(2n+1,1,r) for r=3 and 4. 
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I. Introduction 
Let G be a finite, simple, connected and undirected graph. Let u and v be two vertices in G. The 

distance between u and v denoted by d(u,v) is the length of a shortest u-v path in G. G is Hamiltonian laceable 

if there exists a Hamiltonian path between every pair of vertices in G at an odd distance. G is Hamiltonian-t-

laceable if there exists a Hamiltonian path between every pair of vertices u and v in G with d(u,v)=t , 1 ≤ t ≤ 

diamG.  In [1], B. Alspach, C.C. Chen and Kevin McAvaney have explored Hamiltonian Laceability in the 

Brick Products of even cycles. In  [2] ,  Leena Shenoy and R.  Murali  have discussed the (m,r ) -

Br ick Product  of odd cycl es C(2n+1,m,r ).  In  th is paper  we  explore the Hamil ton ian -t -

laceabi l i t y of the (m,r ) -Br ick Product  C(2n+1,1,r)  for  r=3 and 4.  

 

Definition 1: Let m, n and r be a positive integers. Let C2n- a0,a1,a2,a3…..a(2n-1)a0 denote a cycle of order 2n. 

The (m,r)-brick product of C2n denoted by C(2n,m,r) is defined for m=1, we require that r be odd and greater 

than 1. Then C(2n,m,r) is obtained from C2n by adding chords a2k(a2k+r), k=1,2,….n, where the computation is 
performed under modulo 2n. 

 
Fig. 1: Brick product C(10,1,5) 

 

Definition 2: Let m,n and r be positive integers. Let C2n+1= a0 a1 a2 a3…………a2n a0 denote a cycle of order 

2n+1 (n>1). The (m,r)-brick product of C2n+1, denoted by C(2n+1,m,r) is defined for m=1, we require that 1< r < 

2n. Then C(2n+1,m,r) is obtained from C2n+1 by adding chords ak(ak+r), 0 ≤ k ≤ 2n where the computation is 

performed  under modulo 2n+1. 

 
Fig.2:  The Brick product C(13, 1, 2) 
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Definition 3: Let u and v be two distinct vertices in a connected graph G. Then u and v are attainable in G if 
there exists a Hamiltonian path in G from u and v. 

 

Terminologies: For m=1, if ai is any vertex of C(2n+1,m,r),  then the following are defined. 

(ai) P[m] = (ai)( ai+1)( ai+2) . . . . . . . .(  ai+m-1)     

(ai) P
-1[m] = (ai)(ai-1)( ai-2) . . . . . . . . (ai-m+1)      

(ai) [J] = (ai)( ai+r)  and  (ai)[J
-1] = (ai)( ai-r)        

 

Example: For n= 4,  C(2n+1, 1, 4)  and d(ai, aj) = 2 for i =1 and j =3, the Hamiltonian path is given by                   

(ai) P(2) J  [P-1(2)]2 J-1 [P-1(2)]2(n-3) J-1 = a1-a2-a6-a5-a4-a0-a8-a7-a3 under modulo 2n+1. 

 
Fig.3:  Hamiltonian path from vertex a1 to a3 in the Brick Product C(9,1,4) 

 

In [2], Leena Shenoy and R. Murali proved the following theorem. 

 

Theorem 1: C(2n+1, 1, 2) is Hamiltonian – t – laceable. Where 1 ≤ t ≤ diam G. 
We now prove the following results. 

 

II. Results 

Theorem2: The graph C(2n+1, 1, 3) is Hamiltonian-t-laceable for t=1,2 if n=3 and is 

Hamiltonian-t-laceable for t=1,2,3 if n≥6 such that (2n+1)  1 (mod 3). 

Proof: Consider the graph G= C(2n+1, 1, 3). 

Let d(ai, aj) = t, (0 ≤ i < j ≤ 2n). For convenience we take j>i. Here we need to establish the following claims to 

show that ai and aj are attainable for t=1, 2 and 3. 

Claim 1: t =1 

Case i: j - i = 1 or (2n+1)-(j-i) =1 

If j - i = 1 in C2n+1 then, ai and aj are attainable in G, since (ai) [P
-1(2)]2n   is  the Hamiltonian path. 

If (2n+1)-( j - i) =1 in C2n+1 then, ai and aj are attainable in G, since (ai) [P(2)]
2n 

 
 
is  the Hamiltonian path. 

Case(ii): j - i = 3 or (2n+1)-( j - i) =3 

If j - i = 3 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-3 J-1(P)2  is the Hamiltonian path. 

If (2n+1)-( j - i) =3 in C2n+1 then, ai and aj are attainable in G, since 
(ai) [P(2)]2n-3 J(P-1)2  is the Hamiltonian path. 

Claim 2: t = 2 

Case(i):  j - i = 2 or (2n+1)-( j - i) =2 

If  j - i = 2  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J-1 P(2) J-1)n/3  [J-1]2n/3  is  a Hamiltonian path. 

If (2n+1)-( j - i) =2  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2) J P-1(2) J)n/3  [J]2n/3  is  a Hamiltonian path. 

Case(ii):  j - i = 4 or (2n+1)-( j - i) = 4 

If  j - i = 4  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J
-1]2(n-3)/3 [P-1(2) J-1 P-1(2)P-1(2)] [J-1 P(2) J-1 P-1(2)]n-3/3 J-1 P-1(2)  is the Hamiltonian path. 

If (2n+1)-( j - i) = 4  in C2n+1 then, ai and aj are attainable in G, since 
(ai) [J]2(n-3)/3 [P(2) J P(2)P(2)] [J P-1 (2) J P(2)]n-3/3 J P(2)  is the Hamiltonian path. 

Case(iii):  If j - i = 6 or (2n+1)-( j - i) =6 

If  j - i = 6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2) J-1 P-1(2) J-1]n-3/3 [P(2) J-1 [P-1(2)]3] [J-1]2n-3/3   is the Hamiltonian path. 
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If  (2n+1)-( j - i) =6  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J P(2) J]n-3/3 [P-1 (2) J [P(2)]3] [J]2n-3/3   is the Hamiltonian path. 

Claim 3: t=3 
Case(i):  j - i = 5 or (2n+1)-( j - i) = 5 

If  j - i = 5 in C2n+1  then, ai and aj are attainable in G, since 

(ai) [P(2) J P-1(2) J ] [P(2)]2(n-3) [J]2   is the Hamiltonian path. 

If (2n+1)-( j - i) = 5 in C2n+1  then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J-1 P(2) J-1 ] [P-1(2)]2(n-3) [J-1]2   is the Hamiltonian path. 

Case(ii):  j - i = 7 or (2n+1)-( j - i) = 7 

If  j - i = 7  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-7 [J-1 P-1(2)]2 [P(2) J P(2)]  is the Hamiltonian path. 

If (2n+1)-( j - i) = 7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-7 [J-1 P-1(2)]2 [P(2) J P(2)]  is the Hamiltonian path. 

Case(iii):  j - i = 9 or (2n+1)-( j - i) =9 
If   j - i = 9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J-1] [P-1(2)]2n-11  [J-1 P(2)J-1 P-1(2) J-1 [P(2)]2 [J]2 ] is the Hamiltonian path. 

If (2n+1)-( j - i) =9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2) J] [P(2)]2n-11  [J P-1(2)J P(2) J [P-1(2)]2 [J-1]2 ] is the Hamiltonian path. 

 

Hence the proof .                                                                                                                                                    ▀ 

 

Theorem3:  The graph C(2n+1, 1, 3) is Hamiltonian-t-laceable for t=1,2,3. Where n≥5 such that 

(2n+1)  2 (mod 3). 

Proof: Consider a graph G= C(2n+1, 1, 3). 

Let d(ai, aj)= t,  Here we need to establish the following claims to show that ai and aj  

 (0 ≤ i < j ≤ 2n) are attainable for t=1,2,3. 

Claim 1:  t=1 
Case(i): j - i = 1 or (2n+1)-( j - i) = 1 

If  j - i = 1 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n  is the Hamiltonian path. 

If (2n+1)-( j - i) = 1 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n  is the Hamiltonian path. 

Case(ii): If j - i = 3 or (2n+1)-( j - i) = 3 

If  j - i = 3 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J
-1]2n  is the Hamiltonian path. 

If (2n+1)-( j - i) = 3 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J]2n  is the Hamiltonian path. 

Claim 2:  t=2 

Case(i): If j - i = 2 or (2n+1)-( j - i)=2 
If j - i = 2 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J-1 P(2) J-1) P-1(2)  [J-1]2(n+1)/3  P-1(2)   is the Hamiltonian path. 

If (2n+1)-( j - i)=2 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2) J P-1(2) J) P(2)  [J]2(n+1)/3  P(2)   is the Hamiltonian path. 

Case(ii):  j - i = 4 or (2n+1)-( j - i) = 4 

If  j - i = 4 in C2n+1  then, ai and aj are attainable in G, since 

(ai) P(2) [ J-1 P-1(2) J-1 P(2)]n-2/3  [J-1 P-1(2)][J-1]2n-1/3  is the Hamiltonian path. 

If (2n+1)-( j - i) = 4 in C2n+1  then, ai and aj are attainable in G, since 

(ai) P
-1(2) [ J P(2) J P-1(2)]n-2/3  [J P(2)][J]2n-1/3  is the Hamiltonian path. 

Case(iii):   j - i = 6 or (2n+1)-( j - i) =6 

If  j - i = 6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2) J-1 P(2)J-1]n-2/3 [P-1(2)]4  [J-1]2(n-2)/3   is the Hamiltonian path. 

If (2n+1)-( j - i) =6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2) J P-1(2)J]n-2/3 [P(2)]4  [J]2(n-2)/3   is the Hamiltonian path. 

Claim 3:  t=3 

Case(i):  j - i = 5 or (2n+1)-( j - i)=5 

If  j - i = 5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-5 [J-1 P(2)J-1 P(2) J]  is the Hamiltonian path. 

If  (2n+1)-( j - i)=5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-5 [J P-1(2)J P-1(2) J-1]  is the Hamiltonian path. 
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Case(ii): j - i = 7 or (2n+1)-( j - i)=7 

If j - i = 7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-7 [J-1 P(2)J-1 [P-1(2)]2 [J]2  is the Hamiltonian path. 

If (2n+1)-( j - i)=7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-7 [J P-1(2)J [P(2)]2 [J-1]2  is the Hamiltonian path. 

Case(iii):  j - i = 9 or (2n+1)-( j - i) =9 

If j - i = 9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J
-1]2n-9  [J-1 P(2) J-1 P-1(2) J-1 [P(2)]2 [J]2 ] is the Hamiltonian path. 

If  (2n+1)-( j - i) =9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J]2n-9  [J P-1(2) J P(2) J [P-1(2)]2 [J-1]2 ] is the Hamiltonian path. 

 

Hence the proof                                                                                                                                                       ▀ 

 

Theorem4:  The graph C(2n+1, 1, 4) is Hamiltonian-t-laceable for t=1,2 if n = 4 and is 

Hamiltonian-t-laceable for t=1,2,3 if n ≥ 6 such that  (2n+1)  1 (mod 4). 

Proof: Consider a graph G= C(2n+1, 1, 4). 
Let d(i, j)=t. Here we need to establish the following claims to show that ai and aj  

(0 ≤ i < j ≤ 2n)are attainable for t=1,2 and 3. 

Claim1:  t=1 

Case(i):  j - i = 1 or (2n+1)-( j - i) = 1 

If j - i = 1 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n is the Hamiltonian path. 

If (2n+1)-( j - i) = 1  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n is the Hamiltonian path. 

Case(ii):  j - i = 4 or (2n+1)-( j - i) = 4 

If j - i = 4  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J
-1]2n  is the Hamiltonian path. 

If (2n+1)-( j - i) = 4 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J]2n  is the Hamiltonian path. 

Claim 2:  t=2 

Case(i): j - i = 2 or (2n+1)-( j - i) =2 

If j - i = 2  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J]n P(2) [J]n-1/2 P-1(2)  [J-1]n-3/2   is the Hamiltonian path. 

If (2n+1)-( j - i) =2 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J
-1]n P-1(2) [J-1]n-1/2 P(2)  [J]n-3/2   is the Hamiltonian path. 

Case(ii): If j - i = 3 or (2n+1)-( j - i) =3 

If j - i = 3  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J P(2) J-1 P(2) J ]  [ P(2)]2(n-3) J   is the Hamiltonian path. 

If (2n+1)-( j - i) =3  in C2n+1 then, ai and aj are attainable in G, since 
(ai) [ J

-1
 P

-1
(2) J P

-1
(2) J

-1
 ]  [

 
P

-1
(2)]

2(n-3)
 J

-1
   is the Hamiltonian path. 

Case(iii):   j - i = 5 or (2n+1)-( j - i) = 5 

If j - i = 5  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2 J [P(2)]2(n-3) J [P(2)]2   is the Hamiltonian path. 

If (2n+1)-( j - i) = 5  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2 J-1 [P-1(2)]2(n-3) J-1 [P-1(2)]2   is the Hamiltonian path. 

Case(iv):   j - i = 8 or (2n+1)-( j - i) = 8 

If j - i = 8  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2 J [P-1(2)]2 J [P(2)]2(n-4) [J]2  is the Hamiltonian path. 

If (2n+1)-( j - i) = 8  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2 J-1 [P(2)]2 J-1 [P-1(2)]2(n-4) [J-1]2  is the Hamiltonian path. 

 

Claim 3: t=3 

Case(i):  j - i = 6 or (2n+1)-( j - i) = 6 

If j - i = 6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-3 [J-1 [P(2)]2 J-1P(2) J ] is the Hamiltonian path. 

If (2n+1)-( j - i) = 6  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-3 [J [P-1(2)]2 J P-1(2) J-1 ] is the Hamiltonian path. 

Case(ii): j - i = 7 or (2n+1)-( j - i) =7 

If  j - i = 7 in C2n+1then, ai and aj are attainable in G, since 
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(ai) [P(2)]2 J [P-1(2)]2 J [P(2)]2(n-4) [J]2  is the Hamiltonian path. 

If (2n+1)-( j - i) =7  in C2n+1then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2 J-1 [P(2)]2 J-1 [P-1(2)]2(n-4) [J-1]2  is the Hamiltonian path. 

Case(iii):  j - i = 9 or (2n+1)-( j - i) =9 

If j - i = 9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P
-1 (2)]2n-9  J [P(2)]2 J-1 [P-1(2)]3 [J]2  is the Hamiltonian path. 

If (2n+1)-( j - i) =9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P(2)]2n-9  J-1[P-1(2)]2 J [P(2)]3 [J-1]2  is the Hamiltonian path. 

 

Case(iv):  j - i = 12 or (2n+1)-( j - i)=12 

If j - i = 12 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P
-1 (2)]2(n-6)  J-1 [P(2)]2 J-1 [P-1(2)]2 J-1[P(2)]3 [J-1]2 is the Hamiltonian path. 

If (2n+1)-( j - i)=12 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P(2)]2(n-6)  J [P-1(2)]2 J [P(2)]2 J[P-1(2)]3 [J]2 is the Hamiltonian path. 
 

Hence the proof .                                                                                                                                                     ▀ 

 

Theorem5:  The graph C(2n+1, 1, 4) is Hamiltonian-t-laceable for t=1,2,3. Where n ≥ 5 such 

that (2n+1)  3 (mod 4). 

Proof: Consider a graph G= C(2n+1, 1, 4). 

Let d(ai, aj) = t. Here we need to establish the following claims to show that ai and aj  

 (0 ≤ i < j ≤ 2n)   are attainable for t=1,2,3. 

Claim 1: t=1 

Case(i):  j - i = 1 or (2n+1)-( j - i) = 1 

If j - i = 1  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n  is the Hamiltonian path. 

If (2n+1)-( j - i) = 1 in C2n+1 then, ai and aj are attainable in G, since 
(ai) [P(2)]2n  is the Hamiltonian path. 

Case(ii):  j - i = 4 or (2n+1)-( j - i) = 4 

If j - i = 4 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J
-1]2n is the Hamiltonian path. 

If (2n+1)-( j - i) = 4 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [J]2n is the Hamiltonian path. 

Claim 2:  t=2 

Case(i):  j - i = 2 or (2n+1)-( j - i) =2 

If j - i = 2 in C2n+1 then, ai and aj are attainable in G, since 

(ai) P(2) J [P-1(2)]2 J-1 [P-1(2)]2(n-3) J-1   is the Hamiltonian path. 

If (2n+1)-( j - i) =2 in C2n+1 then, ai and aj are attainable in G, since 

(ai) P
-1(2) J-1 [P(2)]2 J [P(2)]2(n-3) J   is the Hamiltonian path. 

Case(ii): j - i = 3 or (2n+1)-( j - i) =3 

If j - i = 3 in C2n+1then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-5 J-1 P-1(2) J [ P-1(2)]2  is the Hamiltonian path. 

If (2n+1)-( j - i) =3 in C2n+1then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-5 J P(2) J-1 [ P(2)]2  is the Hamiltonian path. 

Case(iii): j - i = 5 or (2n+1)-( j - i) =5 

If j - i = 5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J P-1(2) J-1 ] [P-1(2)]2(n-3) [J-1 P-1(2) J]   is the Hamiltonian path. 

If (2n+1)-( j - i) =5 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ J
-1 P(2) J ] [P(2)]2(n-3) [J P(2) J-1]   is the Hamiltonian path. 

Case(iv):  j - i = 8 or (2n+1)-( j - i)= 8 
If j - i = 8  in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2 J P(2) [J-1]2[P-1(2)]2n-9 J-1 P-1(2) J   is the Hamiltonian path. 

If  (2n+1)-( j - i)= 8 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2 J-1 P-1(2) [J-1]2[P(2)]2n-9 J P(2) J-1   is the Hamiltonian path. 

  

Claim 3: t=3 

Case(i): j - i = 6 or (2n+1)-( j - i) =6 

If j - i = 6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-3 [J-1 [P(2)]2 J-1P(2) J  is the Hamiltonian path. 
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If (2n+1)-( j - i) =6 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-3 [J [P-1(2)]2 J P-1(2) J-1  is the Hamiltonian path. 

Case(ii):  j - i = 7 or (2n+1)-( j - i) =7 
If j - i = 7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P
-1(2)]2n-7 J-1 [P-1(2)]3 J [P(2)]2 is the Hamiltonian path. 

If (2n+1)-( j - i) =7 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [P(2)]2n-7 J [P(2)]3 J-1 [P-1(2)]2 is the Hamiltonian path. 

Case(iii):  j - i = 9 or (2n+1)-( j - i) =9 

If j - i = 9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P
-1(2)]2n-9 J-1 [P(2)]2 J-1 [P-1(2)]3  [J]2  is the Hamiltonian path. 

If (2n+1)-( j - i) =9 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P(2)]2n-9 J [P-1(2)]2 J [P(2)]3  [J-1]2  is the Hamiltonian path. 

Case(iv):  j - i = 12 or (2n+1)-( j - i)=12 

If j - i = 12 in C2n+1 then, ai and aj are attainable in G, since 
(ai) [ P

-1 (2)]2(n-6) J-1 [P(2)]2 J-1 [P-1(2)]2 J-1[P(2)]3 [J]2 is the Hamiltonian path. 

If (2n+1)-( j - i)=12 in C2n+1 then, ai and aj are attainable in G, since 

(ai) [ P(2)]2(n-6) J [P-1(2)]2 J [P(2)]2 J [P-1(2)]3 [J-1]2 is the Hamiltonian path. 

 

Hence the proof.                                                                                                                                                      ▀ 

 

III.        Conclusion 
In this paper, we have proved that the (m,r)-Brick Product C(2n+1, 1, r) for r = 3, 4 is Hamiltonian-t-

laceable for t= 1,2,3. The general problem whether C(2n+1, 1, r) for 121  ndiamCr   is Hamiltonian-t-

laceable still remains open. 
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