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 Abstract : Using Deissler’s approach, the decay for the concentration of a dilute contaminant undergoing a 

first-order chemical reaction in dusty fluid homogeneous turbulence at times prior to the ultimate phase for the 

case of multi-point and multi-time is studied. Here two and three point correlations between fluctuating 

quantities have been considered and the quadruple correlations are ignored in comparison to the second and 

third order correlations. Taking Fourier transform the correlation equations are converted to spectral form. 

Finally, integrating the energy spectrum over all wave numbers we obtained the decay law for the concentration 
fluctuations in a homogeneous turbulence prior to the final period in presence of dust particle for the case of 

multi-point and multi-time.  
Keywords: Deissler’s method, Dust particle, First order reactant, Navier-Stock’s equation, Turbulent flow. 

 

I. INTRODUCTION  
Chemical kinetics deals with the rates of chemical reactions and with how the rates depend on factors 

such as concentration and temperature. Such studies are important in providing essential evidence as to the 

mechanisms of chemical processes. The essential characteristic of turbulent flows is that turbulent fluctuations 
are random in nature. Chemical reactions occur in the gas phase, in solution in a variety of solvents, at gas-solid 

and other interfaces, in the liquid state, and in the solid state. It is sometimes convenient to work with amounts 

of substances instead of with concentrations. Experimental methods, some of them very sophisticated, have been 

developed for studying the rates of these various types of reaction and even for following very rapid reactions 

such as explosions. Theoretical treatments also have been worked out for the various types of reaction. 

Experiments of this kind can be referred to as “bulk” or “bulb” experiments. Chemical reaction as used in 

chemistry, chemical engineering, physics, fluid mechanics, heat and mass transport. The mathematical models 

that describe chemical reaction kinetics provide chemists and chemical engineers with tools to better understand 

and describe chemicals processes such as food decomposition, stratospheric ozone decomposition, and the 

complex chemistry of biological systems. In recent year; the motion of dusty viscous fluids in a rotating system 

has developed rapidly. The motion of dusty fluid occurs in the movement of dust –laden air, in problems of 
fluidization, in the use of dust in a gas cooling system and in the sedimentation problem of tidal rivers. The 

behavior of dust particles in a turbulent flow depends on the concentrations of the particles and the size of the 

particles with respect to the scale of turbulent fluid. 

 Following Deissler’s approach [1, 2], the two-point, two-time correlations are obtained by considering 

the equation for the concentration of a dilute contaminant undergoing a first order chemical reaction. In order to 

solve the equations for the final period, the triple order correlation terms are neglected in comparison to the 

second-order ones. Loeffer and Deissler [3] used the theory, developed by Deissler [1, 2] to study the 

temperature fluctuations in homogeneous turbulence before the final period. In the study of homogeneous fluid 

turbulence a method is describing theoretically the concentration fluctuations of dilute contaminant a first order 

reactant prior to the ultimate phage of decay by Kumar and Patel [4]. Kumar and Patel [5] extended their 

problem [4] for the case of multi-point and multi-time concentration correlation. In [6], Sarker and Kishore 
studied the decay of MHD turbulence at times before the final period using Chandrasekhar’s relation [7].Sarker 

and Islam [8] discussed the decay of MHD turbulence before the final period for the case of multi-point and 

multi-time. Aziz et al. [9] also extended their previous problem in presence of dust particle. Corrsin [10] 

obtained on the spectrum of isotropic temperature fluctuations in isotropic turbulence. Azad et al. [11] obtained 

first order reactant in magneto-hydrodynamic turbulence before the final period of decay in presence of dust 

particles. Azad et al. [12] also studied the statistical theory of certain distribution functions in MHD turbulent 

flow for velocity and concentration undergoing a first order reaction in a rotating system.  

 In this work, we studied the fluctuation of concentration of a dilute contaminant undergoing a first-

order chemical reaction in homogeneous dusty fluid turbulence prior to the final phase of decay for the case of 
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multi-point and multi-time. Here, we have considered two-point and three-point correlation equations and 

solved these equations after neglecting fourth-order correlation terms. Finally we obtained the decay law of 

energy fluctuations of concentration of dilute contaminant undergoing a first order chemical reaction for the 

case of multi-point and multi-time in homogeneous dusty fluid turbulence comes out to the form  
2X  .)exp()exp(-2RT 52/3

m
  mm BTfQAT   

where 2X  denotes the concentration fluctuation energy. It is seen that the demolition of the impurity is more 

rapid than that in the case of pure mixing. This result has been shown in the figure also.  

 

II. BASIC EQUATION  
 The differential equation governing the concentration of a dilute contaminant undergoing a first-order 

chemical reaction in dusty fluid homogeneous turbulence could be written as 

i
kk

i

kk

i
k

i Ru
xx

u

x

p

x

u
u

t

u



















 2
1




)( ii vuf                                                                                    (1)  

 The subscripts can take on the values 1, 2, and 3. Here, )ˆ(xui   is a random function of position and 

time at a point p, ),ˆ( txuk =turbulent velocity, R=constant reaction rate, D =diffusivity, t= time, 

mki =alternating tensor, m =constant angular velocity components, 


kN
f 

, dimension of frequency, 

N=constant number density of dust particle, 
sss Rm 

3

3

4
 , mass of single spherical dust particle of 

radius sR , s =constant density of the material in dust particle, ),ˆ( txp Pressure fluctuation,  Fluid 

density,  Kinematics viscosity, ku =turbulent velocity component, iv = dust particle velocity component, 

kx = space-coordinate, and repeated subscript in a term indicates a summation of terms, with the subscripts 

successively taking on the values 1, 2, 3.  

 

III.            TWO-POINT, TWO-TIME CORRELATION AND SPECTRAL EQUATIONS 
 Under the limitations that (i) the turbulence and the concentration fields are homogeneous (ii) the 

chemical reaction and the local mass transfer have no effect on the velocity field and (iii) the reaction rate and 

the diffusivity are constant, differential equation governing the concentration of a dilute contaminant undergoing 

a first-order chemical reaction we take the Navier-Stokes equations at the point P and the concentration equation 

at P and separated by the vector r̂  could be written as  
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where ),ˆ( txX   is a random function of position and time. The other symbols are as usual.  

Multiplying equation (2) by X  , equation (3) by X, and averaging, we get  
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where the conditions of continuity and the fact that the quantities at a point at a particular time are independent 

of the positions at the other points have been utilized.    

Using the transformations. 
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 in to equations (4) and (5), we obtains  
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In order to reduce Eqs. (6) and (7) to spectral form by using three-dimensional Fourier transform  
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IV.     Solution for the Ultimate Phase of Decomposing Turbulence 
 For the ultimate phase of homogeneous turbulence decompose, the third-order correlations can be 

ignored in comparison to the second-order correlations, with this approximation the solutions of Eqs. (10) and 

(11) may be obtained as  
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 For consistent solution of Eqs (12) and (13) we must have  
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where  22)( kkG   is the concentration spectrum function. We evaluate ƒ (k) by Corrsion [10] 

 i.e. ƒ (k) = Nok
2|   .where 0N  is a constant depend on initial condition. Thus, we obtain  
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By integrating equation (15) with respect to k, we obtain 
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V.          Three-point, Three-time Correlation and Spectral Equations 
 Under the same assumptions as before, we take the Navier-Stokes equation for dusty fluid 

homogeneous turbulence at the point P and the concentration equations at P and P as 
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 Multiplying equation (17) by XX, (18) by Xui
  and (19) by Xui

 and then taking space averages, we 

obtain. 
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Using the transformations  
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Into equations (20)-(22), we get 
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Using the six-dimensional Fourier transform of the type  
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and the assumption that the quintuple correlations representing the transfer terms in equations (23)-(25) can be 

neglected as they decay faster than the lower-order correlation terms. Then the equations (23) - (25) in Fourier 
space can be written as  
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where DN s / , the Schmidt number and lil vXXLvXX   , 1-L=Q. 

 As the pressure force terms are related to higher-order correlations, therefore, these along with the 

quadruple correlations are also neglected.  

Integrating equations (26)-(28) between to and t, we obtain  
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Substituting equations (30) and (29) into equation (10), we obtain   
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 This represents the transfer function arising due to the consideration of concentration at three- point 

and three- time. When t = 0 and R = 0, the expression for reduces to the case of pure mixing .It may also be 

noted that (for t = 0) 
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 This means that the conditions of continuity and homogeneity are satisfied. Physically, it was to be 

expected as W is a measure of the energy transfer and the total energy transferred to all wave numbers must be 
zero. With the help of equations (31) and (34), one can get 
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If  0t ,then equation (38) reduces to the form 
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 Thus, the decay law for the concentration energy fluctuation of dusty fluid homogeneous turbulence in 

a first order reactant for multi-point and multi-time prior to the ultimate phase may be written as 
2X  .]fQ exp[)exp(-2RT 52/3

m
  mm BTAT                                                                                               (40)                     
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In equation (40) we obtained the concentration fluctuation energy of dusty fluid homogeneous turbulence. In the 

absence of dust particles the equation (40) becomes 
2X  .)exp(-2RT 52/3

m
  mm BTAT                                                                                                               (41) 

 Which was obtained earlier by Kumar and Patel [5].For large times, the last term of equation (41) 

becomes negligible and the decay law for the ultimate period becomes )()exp(-2RT 2/3

m



mAT which in the 

case of pure-mixing is similar to the law obtained by Corrsin [12]. 

 In Figs. 1-4 we observe that the variation of chemical reaction in presence of dust particle i.e. for exp 

(fQ) =.75, .50, .25, 0 causes significant changes in the concentration fluctuation decay of energy of 

homogeneous turbulence. In the presence of dust particles the energy decay of the fluid particles more rapidly 

which indicated in the Figs. 3-1 respectively. In Fig. 4, we observe that in the absence of dust particles energy 

decay more slowly than with the present of dust particles. It is noted that y1,y2,y3,y4,y5,y6 and y7 are solution 

curves of equation (40) but in the absence of dust particles y1,y2,y3,y4,y5,y6 , y7 are represented by  equation 

(41) at the different values of R and dust particles and plotted are shown  from Figs. 1 -3 and Fig. 4 respectively. 

                                            

VI.         Figures 
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 Fig. 1.Energy decay curves for exp (Qf) = 0.75.              Fig. 2.Energy decay curves for exp (Qf) = 0.50. 
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Fig. 3.Energy decay curves for exp (Qf) = 0.25.              Fig. 4.Energy decay curves for exp (Qf) = 0. 

                                                   

VII.           CONCLUSION 
In the case of pure mixing, the concentration fluctuation decays with time in a natural manner. This 

study shows that if the concentration selected is the chemical reactant of the first order, then the effect is that the 

decomposition of the concentration fluctuation in homogeneous turbulence in the presence of dust particle for 

the case of multi-point and multi-time is much more rapid and the faster rate of decomposition is governed 

by )exp(-2RTm .The decomposition of the concentration fluctuation in homogeneous turbulence is more slowly 

due to the absence of dust particles than any other type of chemical reactant as stated above.  In a normal way, it 

takes a lot of time to get rid of a pollutant in the fluid. From the above figures and discussion, we conclude that 

in the absence of dust particles energy decay of the fluid particles more slowly but in the presence of dust 

particles the decomposition of the concentration fluctuation for the case of multi-point and multi-time in 
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homogeneous turbulence are decreases due to the increases of the first order chemical reaction and maximum at 

the point where the chemical reaction is zero. 
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