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Abstract: By using the generalized Hirrota bilinear operators a kind of bilinear differential equations is 

established and examined when the linear super position principle can apply to the resulting generalized 

bilinear differential equations. Examples of generalized bilinear differential equations together with an 

algorithm using weights are computed using a 1+1 and 2+1 dimensional equations in order to shed more lights 

on the presented general scheme for the construction of the bilinear differential equations which posses linear 

subspaces of solutions.  

 

I. Introduction 
Integrable systems and nonlinear evolution equations have attracted much attention of mathematicians 

as well as physicist for the last 2 decades. The analysis of exact travelling wave solutions to nonlinear evolution 

equations plays a vital role in the study of nonlinear physical phenomena. Single solitons are most beneficial 
solutions among travelling wave solutions. The existence of multi-soliton solutions, especially two-soliton and 

three-solton is useful in establishing optical communication systems. However, besides solitons , another 

attractive set of multi-exponential wave solutions [1] is a linear combination of exponential waves. It was shown 

that some of the nonlinear equations can posses such a linear superposition principle[2,3]. Also, special 

solutions by combining exponential functions and trigonometric functions were presented and called 

complexitons [4]. 

A variety of powerful methods have been used to study integrable systems and nonlinear evolution 

equations, such as Hirota bilinear method [5], the pfaffian technique, the dressing method [6], the inverse 

scattering method,the Backlund transformation method [8, 9], the Darboux transformation and the generalized 

symmetry method [10]. These approaches possess powerful features that make it possible to create multiple 

soliton solutions for a wide range of integrable systems and nonlinear evolution equations.   
Many important equations of mathematical physics are rewritten in the Hirota bilinear form through dependent 

variable transformations [5]. For example the KdV equation: 

                                  6 0xxx x tu uu u    

The Jimbo-Miwa equation 

                                    
03233  xzytxyxxxyxxxy uuuuuuu     

which can express as  

                               4 . 0x t xD D D F F   

under the transformation   2 ln
xx

u f  

                            0.)32( 3  ffDDDDDD zxytyx   

under the transformation   2 ln
xx

u f
   

respectively, where , ,x y tD D and D are Hirota bilinear operators 

and are generally defined by: 

   ' ' ' ' '. '
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x t yD D D f g g x y t f x y t x x t t y y
x x y y t t

         
          

           

for nonnegative integers m,n and k 
In this paper we would like tofurther confirm the kind of generalized bilinear differential operator and 

examine when is the linear superposition principle will be applied to the corresponding bilinear differential 

equations that is established in [11]. The resulting theory paves a way to construct a new kind of bilinear 
differential equations which possess linear subspaces of solutions. The considered solutions are linear 

combinations of exponential travelling wave solutions, and the involved exponential wave solutions may or may 

not satisfy the corresponding dispersion relations. All the obtained results will exhibit that there are bilinear 

differential equations different from Hirota bilinear equations, which share some common features with the 

linear differential equations. 



On the generalized bilinear differential equations 

www.iosrjournals.org                                                             25 | Page 

The paper is organized as follows. In section 2, we will visit the generalized Hirota bilinear operators 

as introduced [11], and see how we can establish a kind of generalized bilinear differential equations. The 

analyzed linear superposition principle for exponential travelling waves and the established criterion for 

guaranteeing the existence of linear subspaces of exponential travelling wave solutions to the generalized 

bilinear differential equations is employed as in [11].while in section four we will present two examples of 

newly introduced bilinear differential equations, together with an algorithm using weights to compute. Finally, 
concluding remarks will be drawn in section 5.  

II. Bilinear Differential Operators And Equations 

Let M, PN be given,. We introduce a kind of bilinear differential equation: 

 1
' '

1 1

' '

1 1' ,
1

... . ( ) ( ... ) ( ... ) |iM

j j M M M

M
nn n

p x p x m M x x x x
i i i

D D f g f x x g x x
x x


 



 
 

 
                                              

(2.1) 

Where 1... Mn n are arbitrary nonnegative integers and for an integer m the mth power of  is defined by:  

( )( ) , ( )mod , 0 ( )m r m if m r m p with r m p                                                                          

(2.2)  
For example if p=2k (k N), All the above bilinear differential operators are Hirota bilinear operators, since 

2 ,k x xD D
       (see for example [11]) for the detailed analysis of the algorithm) 

Ie if p = 2, then we have  
2 3 41, 1, 1, 1,...          

which gives the pattern of symbols for the Hirota bilinear operators 

, , , , , , , ,...( 2)p          

And if p = 3, we have  
2 3 4 5 61, 1, 1, 1, 1, 1,...              

which gives the pattern of symbols for the Hirota bilinear operators 

, , , , , , , ,...( 3)p          

And if p = 5, we have  
2 3 4 5 6 7 8 9 101, 1, 1, 1, 1, 1, 1, 1, 1, 1,...                        

which gives the pattern of symbols for the Hirota bilinear operators 

, , , , , , , , ,...         (p = 5) 

And when p = 7, the pattern of symbol is 

, , , , , , , , , , , ,...( 7)p              

Following those patterns of symbols, some new bilinear differential operators can be computed as: 

3,

3, 3,

3

3,

2

3, 3, .

.

. 3 3

2 2

x x x

x t xt x t t x xt

x xxx xx x x xx xxx

x t xxt xx t xt x x xt t xx xxt

D f g f g fg

D D f g f g f g fg

D f g f g f g f g fg

D D f g f g f g f g f g f g fg

 

   

   

      

 

  
3

3, 3, . 3 3 3 3x t xxxt xxx t xxt x xt xx xx xt x xxt t xxx xxxtD D f g f g f g f g f g f g f g f g fg       

 

4

3, . 4 6 4x xxxx xxx x xx xx x xxx xxxxD f g f g f g f g f g fg    

 

5

3, . 5 10 10 5x xxxxx xxxx x xxx xx xx xxx x xxxx xxxxxD f g f g f g f g f g f g fg       

 
6

3, . 6 15 20 15 6x xxxxxx xxxxxx x xxxx xx xxx xxx xx xxxx x xxxxxx xxxxxxD f g f g f g f g f g f g f g fg      
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5, .x x xD f g f g fg 

 

5, 5,x t xt x t t x xtD D f g f g f g fg   
 

3

5, . 3 3x xxx xx x x xx xxxD f g f g f g f g fg   

 

2

5, 5, . 2 2x t xxt xx t xt x x xt t xx xxtD D f g f g f g f g f g f g fg     

 

3

5, 3, . 3 3 3 3x t xxxt xxx t xxt x xt xx xx xt x xxt t xxx xxxtD D f g f g f g f g f g f g f g f g fg       

 

5

5, . 5 10 5x xxxxx xxxx x xx xxx x xxxx xxxxxD f g f g f g f g f g fg    
 

We can observe that from those formulas we see that except for
3 3

5, 3,. 0, . ,x xD f f D f f  

5 5

3, 5,. .x xD f f and D f f  do not equal zero, which is different from the Hirota case: 
3 5. . 0x xD f f D f f   

Now let p be a polynomial in M variables and introduce a generalized bilinear differential equation: 

 

1, ,( ,..., ) . 0
Mp x p xP D D f f                                                                                                          

(2.3) 

Observe particularly that when p = 3, we have the generalized bilinear KdV equation: 
4 2

3, 3, 3,( ) . 2 2 6 0x t x xt x t xxD D D f f f f f f f                                                                             (2.4) 

 The generalized Sawada-Kotera equation: 
6 2

3, 3, 3,( ) . 2 2 2 20 0x t x xt x t xxxxxx xxxD D D f f f f f f ff f            

We will like, following the approach of [10, 12] to discuss the linear subspaces of solutions to the generalized 

bilinear differential equations defined by (2.3). to be precise, as in Hirota case [5], and also show when the 

linear superposition principle will apply to the generalized bilinear differential equation (2.3). 

 
III. Linear Superposition Principle 

Let us now fix N and in introduce N waves variables: 

               1, 1 ,... , 1i i M i Mk x k x i N                                                                                   (3.1) 

 
and N exponential wave functions: 

              1, 1 ,...
, 1 ,i M i Mi

k x k x

if e e i N
  

                                                                                    

(3.2) 

Where the , 'j ik s are constants. Note also that we have a bilinear identity: 

      
1. , 1, 1, , ,( ,..., ) . ( ,..., ) ,j ji i

Mp x p x i j M i M jP D D e e P k k k k e e
                                               (3.3) 

Where the power of α obey the rule (2.2).  Then we consider a linear combination solution to the linear 

differential equation (2.3): 

        1

1 1 1... ... ,N

N N Nf f f e e
                                                                                      

(3.4) 

Where  , 1 ,i i N   are arbitrary constants. Using (3.3) we can compute that 
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. ,,..., ) i j

j M i M jk k e
 






                                                                            (3.5) 

It thus follows that a linear combination function f defined by (3.4)solves the generalized bilinear differential 

equations (2.3) if and only if: 

      
1, 1, , , 1, 1, , ,( ,..., ) ( ,..., ) 0, 1 ,i j M i M j j i M j M iP k k k k P k k k k i j N                                 

(3.6) 
are satisfied, where the powers of α obey the rule (2.2). the condition in (3.6) present a system of nonlinear 

algebraic equations on the wave related numbers  
, 'j ik s and the coefficients of the polynomial P. generally, it is 

not easy to solve (3.6). but in many cases, such systems have various sets of solutions .  

However, the whole result was summarized in a theorem (criterion for linear superposition principle) in [13].  

The theorem tells us that the linear superposition principle can apply to generalized bilinear differential 
equations defined by (2.3). it also paves a way of constructing N-wave solutions to the generalized bilinear 

differential equations. 

 
IV. Application 

Let us now compute examples of the generalized bilinear differential equations, defined by (2.3), with 
linear subspaces of solutions, by applying the theorem in [11] .The problem is how to construct a multivariate 

polynomial 1( ,..., )MP x x such that:   

1,1 1,2 ,1 ,2 1,2 1,1 ,2 ,1( ,..., ) ( ,..., ) 0,M M M MP k k k k P k k k k        
                                            

(4.1) 

Holds for two sets of constants  1, ,,..., , 1,2,i M ik k i   where the powers of α obey the rule (2.2). our basic idea 

is to introduce weights of independent variables and then use parameterization of wave numbers and 

frequencies. 

Following the approach of [11], we introduce the weights for the independent variables: 

                   1 1( ( ),..., ( )) ( ,..., )M Mw x w x n n                                                                                 (4.2) 

Where each weight is an integer, and then form a polynomial 1( ,..., )MP x x being homogenous 

in some weight. Second, for i = 1,2, we parameterization the constants  1, ,,..., ,i M ik k  consisting 

of wave numbers and frequencies, using a free parameter ik  as follows: 

                                      , ,1in

j i j ik b k j M                                                                             (4.3) 

Where the 'jb s   are constants to be determined. The parameterization balances the degree of the free 

parameters in the system (4.1). detailed procedures could also be found in [11] 

In what follows we present two illustrative examples in a 1+1 and a 2+1 dimensions, which apply to the above 

parameterization achieved by using one free parameter. 

 

Example1.  Examples with positive weights: 
Let us introduce the weights of independent variables:  

(w(x), w(t)) = (1,2)                                                                                                                    (4.4) 

Then a general even polynomial being homogenous in weights 4 reads: 
4 2 2

1 2 3P c x c x c t  
                                                                                                                  (4.5)

 

Following the parameterization of wave numbers and frequency in (4.3), the wave variables read 
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3

1 ,1 ,i i ik x b k t i N      

Where the , 1ik i N   are arbitrary constants, but 1b  is a constant to be determined. In this example, the 

corresponding generalized bilinear differential equation reads: 
2 2

3, 3, 1 2 3 3( , ) . 6 2 2 2 0x t xx xxt tt tP D D f f c f c f f c f f c f    
                                                         

(4.6)
 

And the corresponding linear subspace of N-wave solutions is given by: 

2
1

1 1

i i

N N
k x b k t

i i i

i i

f f e  

 

   ,                                                                                                           (4.7) 

Where   , 1i i N    are arbitrary constants, but 1b  need to satisfy:  

   

2

1 3 1

2

2 1 3 1

3 0

0

c c b

c b c b

  


                                                                                                                            (4.8)

 

Therefore, the coefficients of the polynomial P need to satisfy:  
2

2 1 33c c c
                                                                                                                                    (4.9)

 

Then the non-trivial solution of 1b is given: 

1
1

2

3c
b

c




                                                                                                                                       (4.10) 

 

Example 2 

Let us introduce the weight of independent   variables: 
                          (w(x), w(y), w(t)) = (1, 3, 2)                                                                         (4.11) 
Then an even polynomial being polynomial in weight 3 reads: 

                         
3

1 2 3P c x c y c xt  
                                                                                       (4.12) 

 Following the parameterization of wave numbers and frequency in (4.3), the wave variables 

read
3 2

1 2 , 1 ,i i i ik x b k y b k t i N       

Where the , 1ik i N   are arbitrary constants, but 1b  and 2b   are constants to be determined. In this 

example, the corresponding generalized bilinear differential equation reads: 

3, 3, 3, 1 3 3( , , ) . 2 2 2 0x y t xxx xt x tP D D D f f c f f c f f c f f   
                                                         (4.13)                 

 

the corresponding linear subspace of N-wave solutions is given by: 

3 2
1 2

1 1

i i i

N N
k x b k y b k t

i i i

i i

f f e   

 

  
                                                                                                

(4.14) 

Where   , 1i i N    are arbitrary constants, but 1b  need to satisfy:  

            
1 3 2 2 1

3 2 2 1

0

0

c c b c b

c b c b

   


  
                                                                                                      (4.15) 

if 1 0c  , then the solution becomes: 

   1 3 2 2,b c b c                                                                                                                                   

(4.16) 

Examples with positive and negative weights 

Example 1 

Let us introduce the weight of independent variables: 
        (w(x), w(t)) = (1, -2)                                                                                                        (4.17) 
 Then an even polynomial being polynomial in weight 3 reads: 

                         
3

1 2P c x c x t 
                                                                                                (4.18) 
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 Following the parameterization of wave numbers and frequency in (4.3), the wave variables 

read
2

1 , 1 ,i i ik x b k t i N      

Where the , 1ik i N   are arbitrary constants, but 
1b  is a constant to be determined. In this example, the 

corresponding generalized bilinear differential equation reads: 

3, 3, 2( , ) . 6 0x t xx xtP D D f f c f f 
                                                                                            (4.19)

 

The corresponding linear subspace of N-wave solutions is given by: 

2
2

1 1

i i

N N
k x b k t

i i i

i i

f f e 


 

  
                                                                                                       (4.20) 

Where   , 1i i N    are arbitrary constants, but 1b  need to satisfy  

2 16 0c b 

          Which gives 2 0c   

While 1b is arbitrary and can be written as: 

   1 1b c                                                                                                                                     (4.21) 

Example 2: 

Introducing the weights of independent variables as:  
 (w(x), w(y), w(t)) = (1,-1,2)                                                                                                    (4.22) 
  Then a general even polynomial being homogenous in weights 3 reads: 

3 4 2

1 2 3 4P c x c x y c xt c yt   
                                                                                                  (4.23)

 

Following the parameterization of wave numbers and frequency in (4.3), the wave variables read 
1 2

1 2 , 1 ,i i i ik x b k y b k t i N       

Where the , 1ik i N   are arbitrary constants, but 1b  and 2b  are constants to be determined. In this 

example, the corresponding generalized bilinear differential equation reads: 

3, 3, 3, 1 2 2 2 2

2 3 3 4

( , , ) . 2 2 8 12 8

2 2 2 2 0

x y t xxx xxxxy xxxy x xxy xx xxx xy

xxxx y xt x t ttty

P D D D f f c f f c f f c f f c f f c f f

c f f c f f c f f c f f

    

    
                  

(4.24)
 

And the corresponding linear subspace of N-wave solutions is given by: 

1 2
1 2

1 1

i i i

N N
k x b k y b k t

i i i

i i

f f e 
 

 

   ,                                                                                               (4.25)        

Where   , 1i i N    are arbitrary constants, but 1b  and 2b  need to satisfy  

2

4 1 2 3 2 2 1

1 2 1

3 2 2 1

6 0

3 0

3 0

c b b c b c b

c c b

c b c b

  


  
   

                                                                                                                

(4.26) 
which gives a solution of 

 1 1
1 2

2 3

,
3

c c
b b

c c
                                                                                                                             

(4.27) 
2 2

1 4 2 33c c c c                          

(4.28) 
V. Conclusion 

We were able to ascertain newly introduced kind of bilinear differential operators established in [10] 

and analyzed when the corresponding generalized bilinear equation posses superposition principle. In particular 

we computed two examples using 1+1 and a 2+1 dimensional equation by an algorithm using weights and their 
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linear subspaces of exponential travelling wave solutions. The balance requirements of the weights allow us to 

present a class of parameterization of wave numbers and frequencies. 

Our results further confirm the generalized Hirota bilinear operators and the established bridge between bilinear 

differential equations and linear differential equations [11]. The existence of linear subspaces of solutions 

amends the diversity of exact solution generated by various analytical methods (see for example, [5]. The 

generalized bilinear operators (2.1), definitely bring more chance to generate non trivial trilinear differential 
equations.  
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