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Abstract: In this paper, we discussed single variable unconstrained optimization techniques using Interval 

Analysis.  The most of the unconstrained linear problems have been dealt with differential calculus methods.  

But, here non-linear unconstrained problems are solved using Newton’s method by establishing Interval 

Analysis method.  Establishing Interval Analysis method gives more accurate root even for higher order 

derivatives. 
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I. Introduction 
We need to be clear that optimization in economic simply refers to the actions by which individual 

economic agents do as well as they can. Thus consumers who seek to maximize utility are optimizing when they 

choose consumption bundles which yield the highest level of utility. Similarly firms who seek to maximize 

profit given production functions, prices of output and inputs are optimizing when they choose input levels 

which yield the highest level of profits. 

The differentiable function )(xf  to be maximized is concave. The necessary and sufficient Condition for 

 xx   to be optimal (a global max) is 0
dx

df
at 

 xx  It is usually not very easy to solve the above 

equation analytically. 

The one dimensional unconstrained problems to find a sequence of trial solutions that leads toward an 

optimal solution and using the signs of derivative to determine where to move positive derivative indicates that 
x is greater than x ;and vice versa. 

We propose a new method for finding the roots using interval analysis. Interval Analysis is a means of 

representing uncertainty by replacing single (fixed-point) values with intervals. Interval analysis is applied to 

numerical methods that deal with optimization functions. 

 

II. Preliminaries 
2.1   Global optimization: Global optimization is a branch of applied mathematics and numerical 

analysis that deals with optimization of a function or a set of functions according to some criteria.  Typically, a 

set of bound and more general constraints is also present, and the decision variables are optimized considering 

also the constraints. 

 

2.2 Interval Arithmetic: 

We recall a new type of arithmetic operations on interval numbers introduced in [12]: For  21,~ xxx 

,  21,~ yyy 
 
and for   ,,,

 
 

We define     kymxmkymxmyx  )~()~(,)~()~(~~
 

Where     )~()~(,)~()~(min ymxmymxmk    

Where  and   are the end points of the interval yx ~~   under the existing interval arithmetic. 

In particular,  

i. Addition:  

   2121
~~ yyxxyx    
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 kymxmkymxm  )~()~(,)~()~( Where







 


2

)()( 1122 xyxy
k

                                                                

 

ii. Subtraction:  

   2121
~~ yyxxyx 

 

 kymxmkymxm  )~()~(,)~()~( Where 







 


2

)()( 1122 xyxy
k  

iii. Multiplication:  

 
   2121

~~~.~ yyxxyxyx 
    

 kymxmkymxm  )~()~(,)~()~(  

Where     )~()~(,)~()~(min ymxmymxmk  
 

Where ),,,(min 22122111 yxyxyxyx  

Where   ),,,(max 22122111 yxyxyxyx . 

 

iv. Inverse: 

  







 k

xm
k

xmxxx
x

)~(

1
,

)~(

1

,

1
~
1~

21

1
 

Where &
1

,
1

min
21

12

121

12

2 











































xx

xx

xxx

xx

x
k      21,0 xx  

From iii. It is clear that  

 
 








0,

0,~

12

21






forxx

forxx
x  

It is to be noted that we use    to denote the existing interval arithmetic and  to denote the modified interval 
arithmetic. But wherever there is no confusion we use the same notation for both the cases. 

It is also to be noted that






  yyxxyxyxyx ~,~~~~~ 

, 
where  O,,,   is the existing 

interval arithmetic. 

 

III. Single- Variable Theory 

Given a real valued function )(xf defined on a subset S of R, if f attains its maximum (or minimum) 

at an interior point Sx 0 , then 0)(  xf , provided f is differentiable at 0x  .Otherwise attains its 

maximum (or minimum) on the boundary of S. 

 

3.1 Determining single variable Techniques 
Most of the Numerical methods in optimization techniques have characteristics for improved 

approximation values to the optimal solution, based on specific methods. The two methods we will discuss are 

Elimination and Interpolation methods. These methods are used to obtain values of the objective function. For 

the given function, maximum or minimum values can be obtained by having various combinations of the 

decision variables. Then conclusions are drawn regarding the optimal solutions. 

 

3.2 Elimination Method 

The elimination method can be used to find optimal solutions for even   discontinuous functions. To 

use the elimination methods, however, the function must have only one maximum or minimum (ie, be external). 

Even if a function is not globally extrema, if it is extrema over some interval, the method may be applied over 

that interval. For elimination methods, an interval is the result. If we seek a single answer, then we evaluate the 
function at the end points and midpoint of the interval, and take the optimum of the three values to approximate 

the desired value. 
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3.3 Interpolation Method 

A method for approximation or precisely finding some quantity by known individual values of it or of 

other quantities related to it. On the basis of interpolation a whole series of approximate methods for solving 

mathematical problem has been developed  

Most significant in numerical mathematics is the problem of constructing means for the interpolation of the 

functions. The interpolation of functions and operator is also widely used in constructing numerical methods. 

        

Newton’s Method 

             Newton‟s Method is an iterative method used to determine the root of a function. Given a function 

)(xf and an initial guess to the root 0x , improved guesses are given by  

      
)(

)(
1

i

i

ii
xf

xf
xx


  1i  

          In order to apply Newton‟s Method to find the critical points of a function, the function‟s first and 

second derivatives must exist in the neighborhood of interest.  If the second derivative at an iterate 1ix is zero, 

the method is fails. Note that since Newton‟s Method is only a root-finding method, it can only determine where   

the first derivative is zero; It cannot determine if this is a maximum or minimum. The sign of the second 

derivative must be examined to determine this. Here is the idea: given an initial guess  1x , 2x   and two 

tolerances. 
  = the tolerance in the difference between successive iterate and 

 = the tolerances in the derivative of the function do the following: while  )(xf  and  1ii xx  

Compute 
)(

)(

1

1
1









i

i
ii

xf

xf
xx

 
 

IV.  Single Variable Unconstrained Optimal Solutions 
 Given a real valued function f(x) defined on X in R, if f attains its maximum or minimum at a point

Xx 0 , then the roots of 0)(  xf can be calculated by using Newton‟s interval method, which is 

substituted on „ f ‟ to obtain maximum or minimum value of „ f „. 

 

4.2 Interval Newton Method 

For details of the math and convergence properties of the algorithm, refer to Kulisch et al. (2001). This 

algorithm, when finding roots of fixed-point functions exhibits O(n^2) convergence. Like the Bisection Method, 

it requires a bracketing interval to begin and with each iteration generates smaller and smaller intervals (if 

possible), which are bounded by intersections with previous iterations. The algorithm is as follows: 

 
i

i

i
ii x

xf

xmf
xmx 










)('

)(
)(1

 

Where the x‟s are intervals, m(x) is the midpoint of a interval x, and f is the function whose root we 

seek (Kulisch et al. 35-36). The similarity of this algorithm to the fixed-point Newton method is that a starting 
interval must be supplied and the interval size is decreased using a f(x)/f‟(x) term during iterations. This 

algorithm is almost as simple as the bisection method since an easy convergence criterion has been specified; 

however, the interval Newton requires implementation of root func‟(t) and requires )('0 xrootfunc  for an 

evaluated interval x. Through computational trials, I have decided to increase the complexity of the function 

evaluations for the f(x)/f‟(x) by computing its united extension instead of a interval extension. Since both f(x) 

and f‟(x) involve many interval arithmetic calculations in an interval extension, the values are over expanded 

from their true solution set and in computing optimal residence times we are interested in finding tight bounds 

on the root given model uncertainties. As a result, the interval Newton step is calculated by finding the 

minimums and maximums of f(x) and f‟(x) given all the combinations of the endpoints of the parameters and 

the time interval and producing united extension values for both quantities. 

 

4.3      Example 1: 

For the funciton 363  xxf , maximum value can be calculated as follows 

Then 63 2  xf = )2(3 2 x
 

To find the value of 63 2  xf , using Newton‟s interval methods  
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Let us consider 22  xF  

An interval expansion of xF 2 is XXF 2)(   

Hence 
 

X

Xm
XmXN

2

2)(
)()(

2
  

Newton‟s interval formula 
 

X

Xm
XmXX kk

2

2)(
)(

2
)()1( 


 

Taking  2,1)0( X , we get 









16

22
,

16

22)1(X ,  41414.1,41406.1)2( X and 

 4142135.1,41421335.1)3( X  of course 22  xF has solution 2x rounding 
)3(X out of the 

eight place. We see that 2 lies on  4142135.1,41421335.1
 

(i.e) 
 4142135.1,41421335.1X

 to be optimal value of F, then 
X using in given equation. We 

obtain the maximum value -2.36139. 
 

  Example 2: 

The following function )1370113701137014567(
3

1
)( 23  xxxxf has also maximum value as 

derived below. 

Then 456791344567)( 2  xxxf   

To find the value of 456791344567)( 2  xxxf , using Newton‟s interval methods  

Let us consider 456791344567 2  xxF  

An interval expansion of 91349134  xF is 91349134)(  XXF and 0)(  XF  

Hence 
 

9134

9134)(9134
)()(




Xm
XmXN  

Newton‟s interval formula 
 

9134

9134)(9134
)()()1( 
 Xm

XmXX kk
 

Taking  3,0)0( X , we get  8909.0,7585.0)1( X  ,  088.1,9349.0)2( X ,  041.1,036.1)3( X , 

 024.1,9298.0)4( X  ,  024.1,9856.0)5( X
 
and  015.1,9852.0)6( X  

 using in given function

        )13701015.1,9852.013701015.1,9852.013701015.1,9852.04567(
3

1
)015.1,9852.0( 23

f

 We obtain the maximum value 6089.3333. 

 

 

4.4 Real time Example: 

For real time problems also, Interval analysis method can be calculated to get optimal value. The 
following example describes the fact that how an optimal value obtained for the real time problem. 

An animal weighing 200 kg gains 5 kg per day and costs Rs 0.60 per day to keep. The market price for animals 

is Rs 0.70 per day, but is falling Rs.0.01 Per day. When the animal be sold. 

We define a mathematical modeling our problem is to maximize p (t) over the set  0; tt
 

Where  
205.009.0140)( tttP 

 

Find the maximum value of
205.009.0140)( tttP  . 

Then tt
dt

dp
10.09.0)05.0(29.0    

To find the value of ttP 10.09.0)05.0(29.0   using Newton‟s interval methods  

Let us consider tF 10.09.0   
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An interval expansion of 10.0F is 1.0)(  XF  

Hence 
 
1.0

)(1.09.0
)()(

Xm
XmXN


  

Newton‟s interval formula 
 
1.0

)(1.09.0
)()()1( Xm

XmXX kk 


 

Taking  10,8)0( X , we get  0012.9,992.8)7( X  

 Take an interval  0012.9,992.8ot  using in
205.009.0140)( tttP 

,   

We get a solution 
   20012.9,992.805.00012.9,992.809.0140)( tP  

= 144.04964 

The maximum value of P (t) is 144.04964. 
 

V.  CONCLUSION 
By calculus methods of calculating maxima and minima for linear derivatives gives approximated 

value. Thus, while using Interval Analysis method, calculating maxima and minima even for higher order 

derivatives is not tedious and it gives more accurate value than any other method. Also, this Interval Analysis 

method is very useful and economic in time saving one for most of the Engineering fields like in computing 

programmes, applied thermo dynamics etc. 
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