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ABSTRAC: The governing equations for the description of turbulence with reacting and mixing n-chemical 

elements described by R. S. Brodkey 1 and E. E. O’Brien 2 are considered. For convenience, we consider a 

turbulent reaction mixture with two reacting and mixing chemical elements A and B. The reactions are 
irreversible, isothermic, second order and the type of reactions is A+B→ Product. A brief account of derivation 

of the equations describing the dynamics of the energy spectrum density functions for the velocity field and the 

concentration fields A and B derived on using Lewis-Kraichnan 3 space-time version of the Hopf 4 functional 

formalism and multiple-scale-cumulant-expansion method is given. The equations for spectrum functions of the 

velocity field and the concentration fields derived on employing multiple-scale-cumulant-expansion method by 

Joshi N. E. and Meshram M. C. 5 are considered.  The equations for spectrum functions are rewritten by using a 

modified-zero-fourth-order-cumulant-expansion (MZFOCE) approximation method which are first written in 

dimensionless form and then integrated numerically. The numerical values of the energy of velocity field as well 

as that of concentration fields are obtained. These values are used to evaluate the statistical quantities 

describing the turbulence with reacting and mixing chemical elements for large Reynolds numbers up to R=106 

.The quantities include energy transfer functions of concentration fields , enstropy of the concentration fields, 
skewness of concentration fields, dissipation energy of concentration fields and Taylor’s micro-scales  for 

concentration fields. We present these in the form of graphs for the representative values of Reynolds number 

R=104 and R=106.The analysis of the numerical values of statistical parameters thus obtained is carried out and 

the laws governing these quantities are investigated. Also, we discuss the merits and scope of the present 

closure scheme for studying similar types of turbulent flows. 

Key Words:  Hopf functional formalism, Cumulants, Multiple scales, Turbulence with reacting and mixing 

chemical   elements 

 

I. Introduction 
It is accepted that the turbulence itself is viewed as last unsolved problem of classical physics and the 

addition of the chemical reaction amplifies the difficulties enormously. At first glance, to the uninitiated the 

subject of turbulent reacting flows would appear to be relatively simple. Indeed, the basic governing principles 

can be reduced to a statement of conservation of chemical species and energy and a statement of conservation of 

fluid momentum. However, anyone who has attempted to master this subject will tell you that it is in fact quite 

complicated subject. On the one hand, in order to understand how the fluid flow affects the chemistry, one must 

have an excellent understanding of turbulent flows and of turbulent mixing. On the other hand, given its 

paramount importance in the determination of the types and quantities of chemical species formed, an equally 

good understanding of chemistry is required. Even a cursory review of the literature in any of these areas will 

quickly reveal the complexity of the task. Indeed, given the enormous research production in these areas during 
the twentieth century, it would be safe to conclude that no one could simultaneously master all aspects of 

turbulence, mixing, and chemistry. 

Notwithstanding the intellectual challenges posed by the subject, the main impetus behind the 

development of computational models for turbulent reacting flows has been the increasing awareness of the 

impact of such flows on the environment. For example, incomplete combustion of hydrocarbons in internal 

combustion engines is a major source of air pollution. Likewise, in the chemical process and pharmaceutical 

industries, inadequate control of product yields and selectivities can produce a host of undesirable by-products. 

Even if such by-products could all be successfully separated out and treated so that they are not released into the 

environment, the economic cost of doing so is often prohibitive. Hence, there is an ever-increasing incentive to 

improve industrial processes and devices in order for them to remain competitive in the marketplace. 
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Given their complexity and practical importance, it should be no surprise that different approaches for dealing 

with turbulent reacting flows have developed over the last sixty years. On the one hand, the chemical-reaction-

engineering (CRE) approach came from the application of chemical kinetics to the study of chemical reactor 

design. In this approach, the details of the fluid flow are of interest only in as much as they affect the product 

yield and selectivity of the reactor. In many cases, this effect is of secondary importance, and thus in the CRE 

approach greater attention has been paid to other factors that directly affect the chemistry. On the other hand, the 
fluid-mechanical (FM) approach developed as a natural extension of the statistical description of turbulent 

flows. In this approach, the emphasis has been primarily on how the fluid flow affects the rate of chemical 

reactions. 

In particular, this approach has been widely employed in the study of combustion. A brief list of such 

contribution include Rosner 6 (2000); Peters7 (2000); Poinsot and Veynante 8 (2001); Veynante and Vervisch9 

(2002), Meshram and Junghare10,11 (2004), Meshram12,13 (2010,2012), Meshram and Sahu14 (2012). In hindsight, 

the primary factor in determining which approach is most applicable to a particular reacting flow is the 

characteristic time scales of the chemical reactions relative to the turbulence time scales. In the early 

applications of the CRE approach, the chemical time scales were larger than the turbulence time scales. In this 

case, one can safely ignore the details of the flow. Likewise, in early applications of the FM approach to 

combustion, all chemical time scales were assumed to be much smaller than the turbulence time scales. In this 

case, the details of the chemical kinetics are of no importance, and one is free to concentrate on how the heat 
released by the reactions interacts with the turbulent flow. More recently, the shortcomings of each of these 

approaches have become apparent when applied to systems wherein some of the chemical time scales overlap 

with the turbulence time scales. In this case, an accurate description of both the turbulent flow and the chemistry 

is required to predict product yields and selectivities accurately.  

With these observations in mind, Joshi N.E. and Meshram M.C.5   employed the multiple-scale-

cumulant-expansion method for the investigation of turbulent reaction mixture with second order irreversible, 

isothermic reactions for a reaction of type A+B→ Product. We have noticed that the multiple-scale-cumulant-

expansion method for chemical reactants enables us to understand their role to get an idea about analysis of   

various statistical quantities.  Such an analysis seems to stimulate a new development in the study of the 

physical mechanism of turbulence with reacting and mixing chemical elements. There remains, however, an 

important question concerning the physical basis and the mathematical accuracy of the present approximation at 
large Reynolds number. Frisch U., Leusieur M. and Schertzer D.15  have pointed out that the results obtained on 

employing multiple-scale-cumulant expansion method by Tatsumi T., Kida S. and Mizushima J.16 do not 

completely describe the statistical features of incompressible isotropic turbulence at large Reynolds numbers. 

Their observation was based on results they obtained by numerical computations. T. Tatsumi and S. Kida17 

introduced the modified-zero-fourth-order-cumulant expansion approximation method for isotropic turbulence 

in response to the defects pointed out by Frisch U., Leusieur M. and Schertzer D.15. By introduction of this 

method for incompressible isotropic turbulence they successfully rectified the defects of earlier method. The 

method introduced is capable to completely describe the statistical features of incompressible isotropic 

turbulence for Reynolds numbers as large as  106. On extension of the multiple-scale-cumulant expansion 

method of Tatsumi T., Kida S. and Mizushima J.16 to turbulence with reacting and mixing chemical elements of 

the type A+B→ Product we could carry out our investigations for Reynolds number up to 1600.This suggests 

the improvement in the closure scheme. Hence, our maiden natural choice to improve the findings is to employ 
the modified-zero-fourth-order-cumulant-expansion method for the investigation of turbulence with reacting and 

mixing chemical elements of the type A+B→ Product. Joshi N. E. and Meshram M. C.5 obtained the dynamical 

equations for spectrum functions of the velocity fields and the concentration fields on employing multiple-scale-

cumulant-expansion method. A brief account of these equations is presented in section 2. In section 3 the 

equations for energy spectrum functions on using modified-zero-fourth-order-cumulant-expansion method are 

given. Equations for energy spectrum functions in dimensionless form are given in section 4. These equations 

are integrated numerically and the statistical quantities describing the turbulent reaction mixture with second 

order reaction are evaluated and detail analysis is carried out in section 5. The presentation concludes with 

section 6 where the summary of the work is given and results obtained are discussed. This is followed by scope 

of the method for studying the similar turbulent flows. 

 

II. Equations For Spectrum Functions Of Velocity Field And Concentration Fields 
The theory of turbulence with reacting and mixing chemical elements with a second order , irreversible 

, isothermic reactions may be developed in terms of joint probability distribution P in the space of the vector 

field U(x, t) and the n -concentration scalar fields A∝(x, t), ∝=1, 2, 3, . . . , n. which satisfy the following system 

of equations: 
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Where U = U(x, t) = velocity of the flow field, A p =A p(x, t) = concentration of reactant p, D = molecular 

diffusivity, γ  = kinematic viscosity and K = reaction rate. 

  In order to isolate the rate of small-scale fluctuation from other effects, the statistical homogeneity of 

the concentration fields Ap is assumed. Similarly, the turbulence is assumed to be isotropic, homogeneous and 

axisymmetric.  We ignore the dynamic and chemical role of the product. To ensure simplicity, the reaction rate 

K is selected as constant and the stoichiometric coefficients q as unity. Even though the theory can be developed 

with these equations for n-concentration fields, we restrict ourselves to two reactants A and B keeping future 

convenience in mind. Similar computations can be conducted for a practical study involving more than two 

reactants. Thus, for a turbulent mixture with reactants A and B, the system of simultaneous equations (2.1), (2.2) 

and (2.3) are represented by following equations: 
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Here repeated lower indices imply summation. The above equations are described in the work of   Brodkey 

R.S.1 and O’Brien E.E.2. 

The governing equations for description of turbulent mixture with reactants A and B for an isotropic, 

homogeneous and axisymmetric turbulence are then transformed into a Fourier space by Joshi N.E. and 

Meshram M.C. 5. They have defined the characteristic functional for joint probability distribution of velocity 
and concentration fields. They derived the equations for turbulence under study to the functional differential 

equations and thereafter, they defined the second characteristic functional. They translated the equations in 

characteristic functional in terms of second characteristic functional and obtained the equations for the 

cumulants of various order. These equations describe the dynamics of various order cumulants and also reflect 

the characteristic difficulty of the turbulence theory that demands a hypothesis to obtain a close set of equations 

for cumulants. By considering the following hypothesis of multiple scales respectively for length and time as 

                              ..,.........3,2,1,2  nkDk
n

n                                            (2.8) 

                            ..,.........3,2,1,0,   ntDt n
n                                                (2.9) 

they successfully obtained a close set of equations for cumulants without any adhoc assumption. The 

assumption of multiple–scales for the turbulence itself serves the desired purpose. 

Even though the equations for higher order cumulant are available they considered equations for second order 
cumulants and third order cumulant which also involves the fourth order cumulant. On application of multiple-

scale-cumulant-expansion method they obtained a close set of equation for second order cumulant, since second 

order cumulants are related to spectral density functions. They derived the following  equations describing the 
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dynamics of  spectral density function for velocity field ),( tkV , spectral density function for the reactant A ,

),( tkA  and  the spectral density function for reactant B, ),( tkB . 

 

 
 

  







dtktktk

k

kk
kk

kkk

e
dktkk

t

VVV

tkkk
V

)},''(),(),'({

1
''

'1
4),()2( 2

2

3'

1

1

2''2'2

'2

2''2'2




























                   

(2.10)    

 

 
 

  



d
k

kk
kktk

tktkq
kkkD

e
dktkkD

t

A

BV
tkkkD

A

2

2

3'

2

1

1

2''2'2

'2

1
''

'
)},''(

),(),'({
1

4),()(

2''2'2



























                    
(2.11) 

 

 
 

  



d
k

kk
kktk

tktkq
kkkD

e
dktkkD

t

B

AV
tkkkD

B

2

2

3'

2

1

1

2''2'2

'2

1
''

'
)},''(

),(),'({
1

4),()(

2''2'2



























                    

(2.12) 

These equations are integrated numerically by Meshram M. C and Sahu K.18.They obtained the 

statistical quantities describing turbulence with mixing and reacting chemical elements for Reynolds numbers as 

large as 1600.The results so obtained do not completely describe the statistical features of turbulence at large 

Reynolds numbers. Hence, we investigate the turbulence with mixing and reacting chemical elements using 

modified-cumulant-expansion method. This method is described in the section that follows. 

 

III. Modified-Zero-Fourth-Order-Cumulant-Expansion-Approximation Method 
The numerical results of Frisch U., Leusieur M. and Schertzer D.15 reveal that the investigation of 

homogeneous isotropic turbulence by Tatsumi T., Kida S. and Mizushima J.16 on employing multiple-scale-

cumulant-expansion method do not completely describe the statistical features of incompressible isotropic 

turbulence at large Reynolds numbers. To examine the situation and consider the problem raised by Frisch U., 

Leusieur M. and Schertzer D. 15; Tatsumi T., Kida S. and Mizushima J.16 employed modified-zero-fourth-order-

cumulant-expansion-approximation method. They got success in describing the statistical features of 

incompressible isotropic turbulence at large Reynolds number up to 106. Hence, we find it worthy to introduce 

modified-zero-fourth-order-cumulant-expansion-approximation method to study the statistical structure of 

turbulence with reacting and mixing chemical elements. In the present work we investigated turbulence with 
reacting and mixing chemical elements for Reynolds number up to 106. However, we prefer to present the 

results which are representative for 
410R and 

610R .These results reveal several features of 

turbulence at these Reynolds numbers which were not clearly detected by using multiple-scale-cumulant-
expansion method in earlier investigation. 

The equations for energy spectrum function of the velocity field, energy spectrum function of reactant A and 

energy spectrum function of reactant B of turbulence with reacting and mixing chemical elements in symbolic 

form can be written as: 
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where t),(kT,t),(kT,t),(kTand  t),(kE,t),(kE,t),(kE BAVBAV
are energy spectrum 

function for velocity field,  energy spectrum function  of reactant A,  energy spectrum function of reactant B and 

energy transfer function for velocity field, energy transfer function of reactant A, energy transfer function of 

reactant B respectively, k is  the wavenumber , t is the time.  

Under the modified-zero-fourth-order-cumulant-expansion-approximation method the energy transfer 

function of  velocity field , energy transfer function of reactant A and energy transfer function of reactant B are 
expressed in terms of the respective energy spectrum function of velocity field, energy spectrum function of 

reactant A and  energy spectrum function of reactant B as follows: 
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IV. Equations For Energy Spectrum Functions In Dimensionless Form 
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where '2''' 222   . 

We must emphasize that the present study relates to the investigation of turbulence with reacting and 

mixing chemical elements A and B. Here A and B are not chosen as any specific reactants as we wish to present 

the investigations in the general form. For the study of specific reactants their corresponding initial values for 

spectral density functions may be selected and the investigation be carried out corresponding to those specific 

reactants. Also, for the present study we have selected Schmidt number Sc ( 
D

Sc


  ) as unity since not 

much information is lost by this assumption. The Schmidt number represents the ratio of the kinematic viscosity 

of the fluid and the molecular diffusivity of particular specie. We have also assumed equal diffusivities for all 

species. We select the initial conditions for spectral density functions of velocity fields, reactant A and the 
reactant B as follows 
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  Similarly we select the initial conditions for the energy spectrum function for velocity field, energy 

spectrum function for the reactant A, ),( tkE A
 and the energy spectrum function for the reactant B, 

),( tkE B
 as given below by equations (4.5a), (4.5b) and (4.5c) respectively. 



























2

0

2

0
0 exp)0,(

k
k

k
kEkE VV

                      (4.5a) 



























2

0

2

0
0 exp)0,(

k
k

k
kEkE AA

                    (4.5b) 

                                       


























2

0

2

0
0 exp)0,(

k
k

k
kEkE BB

                               (4.5c) 

                   The integrals on the right –hand side of equations (4.1) to (4.3) are calculated numerically by using 

appropriate sum rules at discrete values of  and'  and terminating the infinite integrals with respect to 

' at a sufficiently large value of ' . At very large Reynolds number the integrand changes rapidly at small 

'  and does not vanish even at large ' . In order to evaluate such an integral accurately and efficiently we 

employ a non–uniform mesh for ' whose size is an increasing function of ' .To meet this requirement we  

introduced the following variables  and   : 
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In terms of these variables equations (4.1), (4.2) and (4.3) takes the form as given below: 
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V. Evaluation Of Statistical Quantities And Investigation Of Governing Laws 
                 The numerical integration of equations (4.7), (4.8) and (4.9) is carried out for 

654 10and10,10R  using the same numerical method as employed for multiple-scale-cumulant-expansion-

method but employing the larger cutoff wave number for the '  integral and finer steps for the time 

integration. The cutoff wavenumber is taken as 
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The time step is taken as   2.0 . Thus, the equations (4.7) , (4.8) and (4.9) are solved numerically for the 

initial conditions(4.5a) , (4.5b) and (4.5c);  the Reynolds number R=104 to R=106; and the energy spectrum 

functions for reactant A,  ),( tkE A
and energy spectrum functions for reactant B, ),( tkE B

 are obtained as 

functions of the wave number k and time t. Important statistical quantities such as energy of concentration fields

),( tkE A
and ),( tkE B

, transfer functions of concentration fields ),( tkT A
and ),( tkT B

 , enstropy of 

concentration fields )(tA and )(tB , skewness of concentration fields )(tS A
and )(tS B

, 

dissipation energy of concentration fields ),( tkD A
 and ),( tkD B

 
 and Taylor’s micro-scales for concentration 

fields )(tA and )(tB ; characterizing the turbulence with reacting and mixing chemical elements of the 

type A+B→ Product are derived from numerical values of energy spectrum functions. We prefer to present only 

representative of these corresponding to R=104 and R=106. In the entire discussion below the energy spectrum 

function ),( tkEV
shall not be discussed as all relations governing ),( tkEV

are not different from those 

obtained by T. Tatsumi et.al.17 and do not fetch any additional information for the velocity field using modified-

cumulant-expansion method. 

Of all the numerical data concerning the evolution of energy spectrum functions ),(),( tkEandtkE BA
 of 

concentration fields A and B respectively for R= 104 and R=106 are chosen as representative data and shown 

graphically in figure 5.1 and figure 5.2 respectively. T. Tatsumi et.al.17 on employing modified-cumulant-

expansion-approximation method for the velocity field obtained positive energy spectrum function at all times 
for all the Reynolds numbers. On extending this method to the turbulence with reacting and mixing chemical 
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elements of the type A+B→ Product  we also obtained positive energy spectrum function for both  

concentration fields A and B at all times for all the Reynolds numbers as large as 106. The spectrum of the 

concentration fields extends much further into the high wave number range than that of the velocity field. 

           The form of the spectrum function ),( tkE A
and ),( tkE B

 of the reactant A and B especially its 

structure at higher wave numbers , are displayed more clearly on logarithmic scale as shown in figure 5.1 and 

figure 5.2. There are some remarkable features in the evolution of the spectrum functions shown in these 

figures. First, the positive slopes of ),(),( tkEandtkE BA
at very low wave numbers, which are almost 

invariant in time.  Thus, the spectrum functions in the very low wave number range are entirely fixed by the 
initial conditions, reflecting the well known permanence of the large scale component of turbulence. Second, in 

the similarity period the higher wave number part of the spectrum are not influenced appreciably by the 

difference between the cases corresponding to Reynolds numbers 104 and 106 at very low wave numbers but has 

a nearly identical form for both the cases. The more detailed structure of the spectrum in the similarity period is 

dependent upon the Reynolds number, so that it will be described below for small and large Reynolds numbers 

in turn. A closer inspection of the spectrum reveals that the dependence of the spectrum  functions on the wave 

number is not precisely that of exp ( - 2 
2k t) as would be expected from the linearized form of (4.1),(4.2) and 

(4.3) and the initial conditions (4.5a) ,(4.5b) and (4.5c) but is more closely represented by 

                        )exp(),( 5.1ktkE A                    (5.1) 

)exp(),( 5.1ktkE B                             (5.2) 

as k→ ∞, where 𝛔 is a constant dependent upon    and t. The spectrum functions in the universal wave number 

range are composed of three parts having different functional forms. 

In the lowest subrange of the universal wave number range, the energy spectrum functions follow the laws 

which are expressed as follows:  

                               3
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),(


 ktkE A
                                                                       (5.3)                            

                               
3

5

),(


 ktkE B
                                                                       (5.4) 

The energy spectrum functions of reactant A and that of reactant B is proportional to the negative 3

5

 

power of the wave number .We notice that the above law for the energy spectrum functions of reactant A and 

reactant B  has exactly the same power as Kolomogorov’s inertial-subrange spectrum. This result is in 

accordance with the Kolomogorov’s second hypothesis, which assumes the existence of the inertial subrange at 

large Reynolds numbers. The part of the subrange in which Kolomogorov’s second hypothesis are valid 

increases indefinitely with Reynolds number. The negative 3

5

 power for spectrum functions have been 

observed by many experiments in various turbulent flows with extremely large Reynolds number either in 

nature or in laboratory. 

(ii) Next to previous subrange, there exists a subrange in which the spectrum functions follow the laws as 

follows:  

The energy spectrum functions of the reactant A, ),( tkE A
 and the reactant B, ),( tkE B

 are inversely 

proportional to a wave number. 

Symbolically the laws are written as follows: 

1),( ktkE A
                                                               (5.5)                     

                               
1),( ktkE B

                                                               (5.6)          

As the Reynolds number increases, this subrange is shifted to higher wave number without changing its width 

on logarithmic scale but becomes wider on linear scale.  

(iii) At still higher wave number, both the spectrum functions ),( tkE A
 and ),( tkE B

    

      decays exponentially.  
Thus, the results obtained by the application of modified-cumulant-expansion- approximation method support 

the asymptotic decay of the spectrum functions for very high wave number irrespective of Reynolds numbers.  
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The energy transfer function of the reactant A, ),( tkT A
 and of the reactant B, ),( tkT B

  respectively those 

for R= 104 and R=106 are shown graphically in figure 5.3 and figure 5.4. From these figures we notice that the 

energy transfer is from lower to higher wave numbers. The nature of the transfer spectra of both the chemical 

reactants A and B is analogous. The difference observed in the graphs for ),( tkT A
and ),( tkT B

 at different 

times is mainly due to the difference in the choice of their respective initial values. Both transfer spectra are 

positive in the first shell.  

The present closure scheme employed for investigation leads to the result that, for a given Reynolds number, in 

the neighbourhood of the wave number both the energy transfer functions change their sign and satisfy the 
following requirement  

0),(

0




dktkT A
            (5.7)           

        0),(

0
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

dktkT B
        (5.8)                                                                                                       

We further notice that as the Reynolds number takes the larger value the wavenumber at which ),( tkT A
  and 

),( tkT B
 vanish is shifted to the lower wavenumber. 

The enstropy )(tA  of the concentration field A and enstropy )(tB of the concentration field B are 

respectively defined by the following integrals: 
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These quantities mostly reflect the shape of energy spectrum functions ),(),( tkEandtkE BA
 in the 

energy containing range of the wave number.  

The equations (4.7), (4.8) and (4.9) are integrated numerically and obtained  the numerical values of 
the energy spectrum functions of the velocity field ,energy spectrum functions of the reactant A and the reactant 

B. The values of energy spectrum functions thus obtained   are used to find the numerical values of enstropy of 

the reactant A and B and the plots of these values are shown in figure 5.5 and figure 5.6 respectively. We infer 

from these graphs of enstropy for reactant A and B that they are analogous to each other. The shape of each of 

these graphs can be divided into three parts depending upon their behaviour with respect to time.  The first part 

being from t = 0 to t =60, the second part from t =60 to t=135 and third part t >135 . The enstropy for both the 

reactants, )(tA  and )(tB  increases monotonically with respect to time in the initial period from t = 0 to t 

=60. Thereafter in the second period from t =60 to t=135 the curves attain the Gaussian shape. In the final period 

corresponding to t >135 the enstropy of both the reactants increases monotonically. The difference in enstropy 

of concentration fields A and concentration field B is solely due to the choice of initial conditions. We also 

observe from these figures that as the Reynolds number increases there is increase in the time taken to attain the 

maximum enstropy in case of both the reactants A and B. For both the reactants their enstrophy grows very 

rapidly in the initial period. The enstropy of the reactant A attains a quite large maximum value 21.5 for R=104 

and 17.5 corresponding to R=106. Similarly the corresponding maximum values for the reactant B are 16.5 and 

13.5 respectively. This reveals that there is a fall in the maximum value of enstropy with rise in the Reynolds 

number. 

In the initial period before attaining the maximum value the enstropy of the specie A is proportional to second 

power of time and analogues to this enstropy of the specie B is proportional to 2.25 power of time .Symbolically 
these laws are expressed as follows: 

                                           
2)( ttA                                                                        (5.11) 

                                          
25.2)( ttB                                                                      (5.12) 
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Next to previous period just after attaining the maximum value for R=104 and R=106 the value of enstropy of 

both the reactants decreases and this decrease is governed by the following laws:   

The enstropy of the concentration field A is proportional to the negative 2.1 power of time and the enstropy of 

the concentration field B is proportional to the negative 2.13 power of time . 

Symbolically these laws are written as follows:                                            

1.2)( ttA                                                           (5.13) 

                                      
13.2)( ttB                                                                  (5.14) 

These laws agree quite well with the experimental results.  

In the last period enstropy of the reactant A and that of B varies with respect to time as per the following laws: 

The enstropy of the concentration field A is proportional to the 1.13 power of time whereas the enstropy of the 

concentration field B is proportional to the 1.03 power of time. These laws symbolically are written as follows: 

                                                    
13.1)( ttA                                                   (5.15) 

                                           
03..1)( ttB                                                  (5.16) 

The skewness of the distribution of the time derivative of the reactant A, )(tS A
and reactant B, )(tS B

is 

defined and related to the corresponding energy spectrum functions and the energy transfer functions as follows: 
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                                   (5.18) 

      Equations (5.17) and (5.18) for skewness of the reactant  A , )(tS A
and of the reactant B , )(tS B

reveal  their dependence on energy spectrum functions ),( tkE A
 , ),( tkE B

 and energy transfer functions 

),( tkT A
, ),( tkT B

. The skewness of both the reactants is mainly determined by the forms of energy 

spectrum functions ),( tkE A
 , ),( tkE B

 and energy transfer functions ),( tkT A
, ),( tkT B

 in the higher 

wavenumber range, so that it reflects the shape of the energy spectrum ),( tkE A
 , ),( tkE B

  beyond the 

energy-containing range of the wave numbers. The skewness of both the reactants is evaluated by substituting 

numerical values of  ),( tkE A
 , ),( tkE B

 and ),( tkT A
, ),( tkT B

 into (5.1 7) and (5.18). 

The numerical values  of skewness of both the reactants are evaluated and presented in the form of graphs in 

figures 5.7 for  Reynolds number R=104 and in figure 5.8 for  Reynolds number R=106 .The initial value of 

skeness is  identically zero for both the reactants due to our choice of  the initial conditions. The chemical 

reaction has a dramatic effect upon the evolution of the skewness coefficient. The skewness )(tS A
and 

)(tS B
defined by (5.17) and (5.18) gives a non-dimensional measure of the strength of the vorticity 

production. Since )(tS A
and )(tS B

is expressed as an integral of ),( tkE A
 and ),( tkE B

 respectively 

weighted towards higher wave numbers, it reflects the behaviour of the spectrum in the universal range, or the 

small-scale structure of turbulence with reaction mixture. Also, from these figures we notice that the skewness 

of both the reactants is a measure of the departure from Gaussianity and indicate how transfer functions vary 
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with the time at high wave number. The skewness of both the reactants decreases substantially after having 

reached their sharp maximum and then increases monotonically with respect to time. Hence depending upon 

their behaviour with respect to time the shape of each of these graphs can be divided into three parts.  The first 

part being from t = 0 to t =60, the second part from t =60 to t=135 and third part t >135. The skewness for both 

the reactants, )(tS A
 and )(tS B

 increase monotonically with respect to time in the initial period from t = 0 

to t =60. Thereafter in the second period from t =60 to t=135 the curves assumes the Gaussian shape. In the final 

period corressponding to t >135 the skewness of both the reactants increases monotonically. The maximum 

value of the skewness attained by the reactant A for R=104 is 21.5 and that for the reactant B is nearly 16.5. 

Similarly for R=106 the maximum values of the skewness attained by the reactant A and reactant B respectively 

are 17.5 and 13.5 approximately. This reveals that there is a fall in the maximum value of skewness with rise in 

the Reynolds number. 

  In the initial period before attaining the maximum value the skewness of the specie A is proportional to 

second power of time and analogues to this skewness of the specie B is proportional to 2.25 power of time 
.These laws symbolically are written as follows: 

                                   
2)( ttS A                                                                              (5.19) 

                                                     
25.2)( ttS B                                                                        (5.20) 

Next to previous period just after attaining the maximum value for R=104 and R=106 the value of 

skewness of both the reactants decreases and this decrease is governed by the following laws:  

The skewness of the concentration field A is proportional to the negative 2.1 power of time and this law for  the 

skewness of the concentration field B is proportional to the negative 2.13 power of time .  These laws 

symbolically are written as follows: 

                                                   
1.2)( ttS A                                                                          (5.21) 

                                           
13.2)( ttS B                                                                          (5.22) 

In the last period skewness of the reactant A and B varies with respect to time as per the following laws:  

The skewness of the reactant A is directly proportional to 1.13 power of time and similarly the skewness of the 

reactant B is directly proportional to 1.03 power of time. These laws symbolically are written as follows: 

                                          
13.1)( ttS A                                                                        (5.23) 

                                   
03..1)( ttS B                                                                       (5.24) 

      The energy dissipation function for concentration field A and concentration field B respectively are defined 

below as: 

                      ),(2),( 2 tkEktkD AA                                                            (5.25) 

                      ),(2),( 2 tkEktkD BB                                                           (5.26) 

The numerical values of energy spectrum functions of both the reactants are used to evaluate their 

dissipation functions .The values so obtained are plotted verses wavenumbers at  time t=0 and t=3 for Reynolds 

numbers R=104 in figure 5.9 and R=106 in figure 5.10. These graphs clearly reflect the characteristic of energy 

spectra .It is observed that for large Reynolds number, in the energy containing range and the inertial subrange 

the energy dissipation is much bigger in magnitude than the energy transfer.  

     Finally it is observed that for large Reynolds number the k-1 spectrum always occurs in the neighbourhood of 

wavenumber at which energy transfer changes its sign. 

       0),(

0




dktkT A
                             (5.27)  

       

0),(

0




dktkT B
                                                       (5.28) 

Lastly, the Taylor’s micro-scale for the reactants A, )(tA  and for the reactant B, )(tB  are defined and 

expressed in terms of the energy spectrum functions as given below: 
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The values of  Taylor's micro-scale of reactant A, )(tA and that of reactant B, )(tB  obtained by 

substituting numerical values of ),( tkE A
 and ),( tkE B

 into (5.29) and (5.30) and the numerical values thus 

obtained  are plotted  in figure 5.11 for Reynolds number R=104 and in figure 5.12 for Reynolds number R=106. 

The Taylor’s micro-scale defined by (5.29) and (5.30) gives another parameter representing the small scale 

structure of turbulence with reacting and mixing chemical elements A and B. At large Reynolds numbers the 

micro-scale for the reactant A and that of the reactant B decrease very rapidly in the initial stage. Then thereafter 

for R=104 the Taylor’s micro-scale of   reactant A attains a minimum around t=1.2  and that of the reactant B 
attains a minimum around t=0.5 and these values for R=106 respectively are t=0.8 and t=0.4. 

The variation of the Taylor’s micro-scale of   reactant A and that of the reactant B 

with time  is governed by the laws that the Taylor’s microscale of both the reactants varies proportionally to 

negative  0.5 power of the time. Symbolically these laws are written as follows: 

                                    
5.0)( ttA                                                                  (5.31) 

                                              
5.0)( ttB                                                                   (5.32) 

The variation of the Taylor’s micro-scale of   reactant A and that of the reactant B with time confirms the 

asymptotic decrease of Taylor’s micro-scale with time. 
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Figure 5.5 Enstropy of the reactant A (solid line) and the reactant B (dashed line) for  R=10
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Figure 5.6 Enstropy of the reactant A (solid line) and the reactant B (dashed line)  for Reynold number 
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VI. Summery And Discussion 
We first write the equations for turbulent multi-component mixture (n-reactants) with second order, 

irreversible, isothermic reaction. In the present study we restrict ourselves to two reactants A and B.  Joshi N.E. 

and Meshram M. C.5 investigated turbulence with reacting and mixing chemical elements of the type A+B→ 

Product on employing the multiple-scale-cumulant-expansion method.  The choice of multiple time scale and 

multiple length scale of Joshi N.E. and Meshram M. C.5 is retained in the present work. In order to improve the 

drawbacks of multiple-scale-cumulant-expansion method Tatsumi T. and Kida S. 17 have introduced the 

modified-zero-fourth-order-cumulant-expansion method for investigation of homogeneous isotropic turbulence. 

We have employed this method for the investigation of turbulence with reacting and mixing chemical elements 

of the type A+B→ Product. We consider the equations for the energy spectrum function for the specie A and 

that for the specie B derived by Joshi N.E. and Meshram M. C. 5 on employing this method.  These equations are 
then integrated numerically and various statistical quantities describing the turbulence with reacting and mixing 

chemical elements of the type A+B→ Product such as energy of concentration fields, enstropy of the 

concentration fields, skewness of concentration fields, dissipation energy of concentration fields, transfer 

functions of concentration fields and Taylor’s micro-scales for concentration fields A and B are evaluated and 

representative values for   Reynolds numbers  R=104 and R=106 are presented in the form of the graphs . The 

characteristics of turbulence with reacting and mixing elements reflected in these graphs are studied. The 

important features of the statistical quantities describing the turbulence under study reveal the following:  

1. The energy spectrum function for both the reactant A and the reactant B are found to be positive definite for 

all values of Reynolds numbers.  

2. The spectrum of the concentration fields extends much further into the high wave number range than that of 

the velocity fields. 

3. The energy spectrum functions of reactant A and that of B is proportional to the negative 5/3 power of the 
wave number for all the time in the inertial subrange whose extent increases indefinitely with Reynolds number. 

This result is in accordance with the Kolomogorov’s second hypothesis. 

4. The universal spectrums are composed of three different subspectra, which are in order of increasing 

wavenumber, the k
-5/3

 spectrum, the k
-1

 spectrum and the exponential spectrum. 

5. The nature of the transfer spectra of both the chemical reactants A and B is analogous. As the Reynolds 

number takes the larger value the wavenumber at which ),( tkT A
  and ),( tkT B

 vanish is shifted to the lower 

wavenumber. 
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6. The graphs of the enstropy for reactant A and B are analogous to each other. As the Reynolds number increases there is 

increase in the time taken to attain the maximum enstropy in case of both the reactants A and B. 

7. Enstrophy of both the reactants grows very rapidly in the initial period and attains a quite large maximum 

value 21.5 for R=10 4and 16.5 corresponding to R=106 for the reactant A respectively. Similarly the 

corresponding maximum values for the reactant B are 17.5 and 13.5 respectively. 

8. In the initial period the enstropy of the specie A is proportional to second power of time and analogues to this 

enstropy of the specie B is proportional to 2.25 power of time. In the intermediate period The enstropy of the 

concentration field A is proportional to the negative 2.1 power of time and this law for the skewness of the 

concentration field B is proportional to the negative 2.13 power of time whereas in the third period the enstropy 
of the concentration field A is proportional to the 1.13 power of time and the enstropy of the concentration field 

B is proportional to the 1.03 power of time. 

9. The initial value of skeness is identically zero for both the reactants. 

10. The maximum value of the skewness attained by the reactant A for R=104 is 21.5 and that for the reactant B 

is nearly 16.5. Similarly for R=106 the maximum value of the skewness attained by the reactant A and reactant 

B is 17.5 and 13.5 approximately. 

11.The graph of the skewness for both the reactants is divided into three different time period. In the initial 

period the skewness of the specie A is proportional to second power of time and analogues to this skewness of 

the specie B is proportional to 2.25 power of time . In the intermediate period the skewness of both the reactant 

assumes the Gaussian shape and the skewness of the concentration field A is proportional to the negative 2.1 

power of time and the skewness of the concentration field B is proportional to the negative 2.13 power of time 
and finally in the third period skewness of the concentration field A is proportional to the 1.13 power of time 

and the skewness of the concentration field B is proportional to the 1.03 power of time. 

12.In the energy containing range and the inertial subrange, as Reynolds number increases the energy 

dissipation decreasess in magnitude than the energy transfer.  

13.An eminent feature obtained related to dissipation function is that for large Reynolds number the k-1 

spectrum always occurs in the neighbourhood of wavenumber at which energy transfer changes its sign. 

14. As the Reynolds number increases the time taken for obtaining zero Taylor’s    micro-scale for both the 

concentration fields A and B decreases.  

15. The Taylor’s micro-scale for both the reactants A and B is inversely proportional   to half power of time. 

The present investigations for turbulence with reacting and mixing chemical elements A+B→Product using modified-zero-
fourth-order-cumulant-expansion-approximation method has provided significant structure of turbulence under study. 
Therefore, we foresee that this method when employed for the investigation of similar turbulent flows may provide 
significant information in general and in the study of statistical investigation of turbulence with reacting and mixing 
chemical elements A+A→ Product; atmospheric turbulence with reacting and mixing chemical elements in particular. The 

work in such areas is in progress and update shall be presented in due course of time.  
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