
IOSR Journal of Mathematics (IOSR-JM) 

ISSN: 2278-5728. Volume 3, Issue 2 (Sep-Oct. 2012), PP 25-31 
www.iosrjournals.org 

www.iosrjournals.org                                                             25 | Page 

 

Stability Analysis at DFE of an Epidemic Model in the Presence 

of a Preventive Vaccine 
 

Md. Saiful Islam
1
, Dr. Md.  Asaduzzaman

 2
, Dr. Md. Nazrul Islam Mondal

3 

 

Abstract: Various kinds of deterministic models for the spread of infectious disease have been analyzed 

mathematically and applied to control the epidemic. A vaccine is a biological preparation that improves 
immunity to a particular disease. In this paper, a deterministic model for the dynamics of an infectious disease 

in the presence of a preventive vaccine and natural death rate is formulated. The model has various kinds of 

parameter. In this paper, we try to present a model for the transmission dynamics of an infectious disease In 

order to control the epidemic by changing the value of the parameters. 
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I. Introduction: 
The spread of communicable diseases is often described mathematically by compartmental models. In 

1927, Kermack and McKendrick proposed, as a particular case of a more general model presented in their 

seminal work [1]. Many epidemiological models have a disease free equilibrium (DFE) at which the population 

remains in the absence of disease [2]. The classical SIR models are very important as conceptual models 

(similar to predator-prey and competing species models in ecology). The SIR epidemic modeling yields the 

useful concept of the threshold quantity which determines when an epidemic occurs and formulas for the peak 

infective fraction and the final susceptible fraction [3]. There are two major types of control strategies available 

to curtail the spread of infectious diseases: pharmaceutical interventions (drugs, vaccines) and non-

pharmaceutical interventions (social distancing, quarantine). Vaccination, when it is available, is an effective 
preventive strategy. Arino et al. [4] introduced vaccination of susceptible individuals into an SIRS model and 

also considered vaccinating a fraction of newborns. Buonomo et al. [5] studied the traditional SIR model with 

100% efficacious vaccine. Effective vaccines have been used successfully to control smallpox, polio and 

measles.  In this paper, we try to present a model for the transmission dynamics of an infectious disease with a 

preventive vaccine. In order to control or eradicate the disease, we discus about various parameters used in this 

model except the natural death rater   (which is not controlled by human). 

 

II. Model formulation: 
In our model, we have divided the population into three compartments (susceptible, vaccinated 

susceptible and infectious) depending on the epidemiological status of individuals. We denote the population of 

those who are susceptible as S, who are vaccinated susceptible as V and those who subsequently infected as I. 

The model transfer diagram indicating the possible transitions between these compartments is shown in Fig 1. 
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Fig 1: Model Structure. 
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Populations enter the susceptible class at constant rate  . Natural death rate is assumed to be  . The 

population is assumed to undergo homogeneous mixing. We assume that each infective individual contacts an 

average number   with other individuals per unit time. Hence, the total number of contact by infective per unit 

time is I . Susceptible individuals are vaccinated at the rate  . Since the vaccine only provides partial 

protection to the infection, vaccinated individuals may still become infected but at the lower infection rate c  

than fully susceptible individuals. Here 10  c  and c1  describes vaccine efficacy, i.e., probability of a 

vaccinated person to get immunity by the vaccine. When 0c , the vaccine is perfectly effective and 

when 1c , the vaccine has no effect at all on the immunity of vaccinated individuals. In this paper we 

consider all parameters are positive.  

 

The differential equations of the model are given by: 

  SSSI
dt

dS
   

VIcVS
dt

dV
       (1) 

ISIVIc
dt

dI
   

 

III. Stability analysis of  DFE: 
The model has a disease-free equilibrium (DFE), obtained by setting the right hand sides of (1) to zero, 

given by 

  0 SSSI       (2) 

0 VIcVS        (3) 

0 ISIVIc        (4) 
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Now linearize the system (1) about the point 0p  we get 
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Which can be written in matrix form as 
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So the Jacobean matrix of the model (1) at the point 0p  is  

 

























































)(
00

)(

0)(

0

c

c
J p

 

The eigenvalues of 
0pJ are )(1   ,  2  and 








 







)(
3

c
. Since all 

parameters are positive then clearly 01   and 02  . So the DFE 









 0,

)(
,0








p  is 

locally asymptotically stable if and only if 03  .  

 

IV. Basic reproductive number: 

The basic reproduction number 0R  is “the expected number of secondary cases produced, in a 

completely susceptible population, by a typical infective individual” [6].  

 

4.1. Lemma: The DFE  0p  is locally asymptotically stable if  10 R  and unstable if 10 R [7]. i.e., if 

10 R , then the number of  infectious populations is decreasing and there is no epidemic. Otherwise if 

10 R , then the number of infectious populations is increasing and there is an epidemic. 
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V. Controlling the epidemic: 
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control the epidemic. 

 

5.1. Step 1: 
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0c  of c  such that if 0cc  , then 10 R  and if 0cc  , then 10 R ,  i.e., if 

0cc  , then 0P  is locally asymptotically stable and if 0cc   then unstable. Therefore if all parameters except 

c  are constant, then we can control the epidemic by decreasing the value of c  (increasing the vaccine 

efficiency) so that 0cc  . 
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5.2. Step 2: 

Suppose 0R  is a function of  , i.e., 
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then 0P  is locally asymptotically stable and if 0   then unstable. Therefore if all parameters except   are 

constant, then we can control the epidemic by decreasing the value of   (decreasing the contact rate with 

infected individual) so that 0  . 

 

5.3. Step 3: 

Similarly (as step 2) We can reduce the value of 0R  by decreasing the value of   and we get a 

bifurcation value 
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that if 0   then 0P  is locally asymptotically stable and if 0   then the system is unstable. Therefore 

we can control the epidemic by increasing the value of   so that 0  . 

 

VI. Numerical simulation: 
In order to illustrate the various theoretical results, numerical experiments (using Matlab) were carried 

out to compute the solutions of  linear system (5) using the parameter values as follows:  

 

6.1. For step 1: 

Table 1: Results for step-1. 
 

 Example-1 Example-3 

 (constant) 0.8 0.8 

 (constant) 0.006 0.006 

 (constant) 0.008 0.008 

c  0.1 0.3 

  (constant) 0.003 0.003 

0c  0.184453125 0.184453125 

Relation between c and 0c  0cc   0cc   

Comment I is decreasing (Fig 2 (a)) I is increasing (Fig 2 (b)) 
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Fig 2: Graph of )(tI  for step-1. 

6.2. For step 2: 

Table 2: Results for step-2. 
 

 Example-1 Example-3 

 (constant) 0.8 0.8 

  0.003 0.007 

 (constant) 0.008 0.008 

c (constant) 0.18 0.18 

  (constant) 0.003 0.003 

0  0.006145408163265 0.006145408163265 

Relation between  and 0  0   0   

Comment I Is decreasing (Fig 3 (a)) I is increasing (Fig 3 (b)) 

 

 
Fig 3: Graph of )(tI  for step-2. 

6.3. For step 3: 

Table 3: Results for step-3 
 

 Example-1 Example-3 

 (constant) 0.8 0.8 

 (constant) 0.006 0.006 

  0.004 0.009 

c (constant) 0.18 0.18 

  (constant) 0.003 0.003 

0  0.00702332361516 0.00702332361516 

Relation between  and 0  0   0   

Comment I Is decreasing (Fig 4 (a)) I is increasing (Fig 4 (b)) 
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Fig 4: Graph of )(tI  for step-3. 

 

6.4. For step 4: 
Table 4: Results for step-4 

 Example-1 Example-3 

  0.1 0.3 

 (constant) 0.007 0.007 

 (constant) 0.008 0.008 

c  (constant) 0.003 0.003 

  (constant) 0.003 0.003 

0  0.015964673913043 0.015964673913043 

Relation between  and 0  0   0   

Comment I Is increasing (Fig 5 (a)) I is decreasing (Fig 5 (b)) 

 

 
Fig 5: Graph of )(tI  for step-4. 

 

VII. Discussion: 

In the above simulations we consider the initial value of infected individual is 1, i.e., 10 I  . We see 

from the Table 1 that if all parameters except c  are fixed there exist a bifurcation value 0c . If  0cc  , then the 

number of infected individuals is is decreasing (Fig 2 (a)) as t . On the other hand if 0cc  , then the 

number of infected individuals  is increasing (Fig 2 (b)) as t . Similarly from the Table 2 we see that if all 

parameters except   are fixed there exist a bifurcation value 0 . If  0  , then the number of infected 

individuals is is decreasing (Fig 3 (a)) as t . On the other hand if 0  , then the number of infected 

individuals  is increasing (Fig 3 (b)) as t . from the Table 3 there exist a bifurcation value 0 . If  0  , 

then the number of infected individuals is  decreasing (Fig 4 (a)) as t . On the other hand if 0  , then 
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the number of infected individuals  is increasing (Fig 4 (b)) as t . Finally from the Table 4 there exist a 

bifurcation value 0 . If  0  , then the number of infected individuals is increasing (Fig 5 (a)) as t . 

On the other hand if 0  , then the number of infected individuals is decreasing (Fig 5 (b)) as t . 

 

VIII. Conclusion: 

A new deterministic model is constructed and used to analyze the effect of a preventive vaccine on the 

transmission dynamics of an infectious disease. The model is thoroughly analyzed to investigate the stability at 

DFE. From the theoretical discussion and numerical simulations, we see that if the parameter value 0cc   or 

0   or 0   or 0   then there is no epidemic. So, in the initial stage (when the number of infected 

individuals is not large), we shall control the epidemic successfully by controlling the parameters.   
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