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Abstract: 
In this paper, we extend and unify various well-known fixed point results by introducing the concept of 𝛼 − 𝜓 

generalized Chatterjea–Kannan type mappings in the framework of ordered 𝑏 −metric spaces. 

Our approach generalizes the classical Banach, Kannan, and Chatterjea contractions as well as the recent three-

point contraction of Păcurar and Popescu (2024). 

Using the 𝛼 − admissibility and 𝜓 − control functions, we establish new existence and uniqueness theorems for 

fixed points without assuming continuity or commutativity conditions. 

Several examples are provided to illustrate the validity of the obtained results. 

Finally, we discuss how the main results can be applied to integral and fractional differential equations. 

Key Word: Ordered 𝑏 − metric spaces, 𝛼 − 𝜓 generalized Chatterjea–Kannan type mappings, Fixed point 

results 𝛼 − admissibility 𝜓 −control functions, Banach, Kannan, and Chatterjea contractions, Integral and 

fractional differential equations 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 12-01-2026                                                                           Date of Acceptance: 22-01-2026 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Fixed point theory serves as a cornerstone of nonlinear analysis, providing essential tools for solving 

problems in optimization, game theory, and the existence of solutions for integral and differential equations. The 

field was fundamentally shaped by the Banach contraction principle (1922), which established that a self-mapping 

on a complete metric space possesses a unique fixed point, provided it satisfies a Lipschitz condition with a 

contraction constant 𝑞 ∈  (0,1). 

Over the following decades, researchers sought to relax these stringent requirements. Significant 

generalizations were proposed by Kannan (1968) and Chatterjea (1972), who introduced contractive conditions 

based on the distances between the iterates of the map rather than the points themselves. More recently, Păcurar 

and Popescu (2024) advanced this discourse by extending the Chatterjea contraction into a triadic (three-point) 

setting, offering a more refined geometric framework for fixed point existence. 

Motivated by these recent advancements, this paper introduces a novel hybrid structure: the 𝛼 − 𝜓 

generalized Chatterjea–Kannan type mapping. This approach unifies the classical Kannan and Chatterjea 

mappings with the modern triadic framework under a singular 𝜓 −controlled condition. Furthermore, we conduct 

our analysis within the context of ordered b-metric spaces. By synthesizing partial order structures with the 

flexibility of b-metrics, we provide a more robust framework applicable to complex nonlinear systems and 

fractional-order models. 

 

II. Preliminaries 
Definition 2.1: Let (𝑋, 𝑑, ⪯) be an ordered b-metric space with constant 𝑠 ≥ 1. That is, 𝑑: 𝑋 × 𝑋 → [0, ∞) 

satisfies for all 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

1. 𝑑(𝑥, 𝑦) = 0 ⇔  𝑥 = 𝑦, 

2. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 

3. 𝑑(𝑥, 𝑧)  ≤  𝑠[𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)]. 
 

Definition 2.2 (𝛼–admissible mapping):  

A self-map 𝑇: 𝑋 → 𝑋 is 𝛼–admissible with respect to 𝛼: 𝑋 × 𝑋 → [0, ∞)if for all 𝑥, 𝑦 ∈ 𝑋: 
𝛼(𝑥, 𝑦) ≥ 1 ⇒  𝛼(𝑇𝑥, 𝑇𝑦) ≥ 1. 

 

Definition 2.3(𝜓 −control function): 

A function 𝜓: [0, ∞) → [0, ∞) is said to belong to the class 𝛹 if: 
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1. 𝜓 is non-decreasing and continuous, 

2. 𝜓(𝑡) < 𝑡 for all 𝑡 > 0, 

3. 𝑙𝑖𝑚
𝑛→∞

𝜓𝑛(𝑡) = 0 for all 𝑡 > 0. 

 

III. Main Definition & Lemma 
Main Definition: 

A mapping 𝑇: 𝑋 → 𝑋 is an 𝛼 − 𝜓 generalized Chatterjea–Kannan type mapping if there exists 𝜓 ∈ 𝛹 

such that for all distinct 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

𝛼(𝑥, 𝑦, 𝑧)[𝑑(𝑇𝑥, 𝑇𝑦) + 𝑑(𝑇𝑦, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑇𝑥)]
≤ 𝜓(𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑧) + 𝑑(𝑧, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑧) + 𝑑(𝑦, 𝑇𝑥) + 𝑑(𝑧, 𝑇𝑦)) 

This inequality generalizes Kannan, Chatterjea, and hybrid contractive conditions. 

 

Auxiliary Lemma: 

Let (𝑋, 𝑑) be a complete b–metric space with constant 𝑠 ≥ 1. Suppose 𝑇: 𝑋 → 𝑋 satisfies: 

𝑑(𝑥𝑛+1, 𝑥𝑛+2) = 𝑑(𝑇𝑥𝑛 , 𝑇𝑥𝑛+1) ≤ 𝜓(6𝑠 𝑚𝑎𝑥{𝑑(𝑥𝑛 , 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}) 

where 𝜓 ∈ 𝛹. Then there exist integers 𝑚 ≥ 1, 𝑁 ≥ 0, and 𝑞 ∈ (0,1) such that: 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛+𝑚+1)  ≤ 𝑞 𝑑(𝑥𝑛 , 𝑥𝑛+1) 

for all 𝑛 ≥ 𝑁. 

 

Proof: We define the sequence of successive distances as 𝛿𝑛 = 𝑑(𝑥𝑛 , 𝑥𝑛+1). We first claim that {𝛿𝑛} is a non-

increasing sequence. Assume there exists some 𝑛0 ∈ ℕ such that 𝛿𝑛0+1 > 𝛿𝑛0
. Under this assumption: 

𝑚𝑎𝑥{𝛿𝑛0
, 𝛿𝑛0+1} = 𝛿𝑛0+1 

Substituting this into the hypothesis: 

𝛿𝑛0+1 ≤ 𝜓(6𝑠𝛿𝑛0+1) 

By Definition 2.2, property 2 states that 𝜓(𝑡) < 𝑡 for all 𝑡 > 0. Since 𝑠 ≥ 1, if 𝛿𝑛0+1 > 0, we have: 

𝛿𝑛0+1 ≤ 𝜓(6𝑠𝛿𝑛0+1) < 6𝑠𝛿𝑛0+1 

While this does not immediately yield a contradiction in standard real analysis, within the specific 

framework of 𝜓-contractions, the requirement 𝑙𝑖𝑚
𝑛→∞

𝜓𝑛(𝑡) = 0 implies that if 𝛿𝑛+1 ≥ 𝛿𝑛 holds indefinitely, the 

sequence cannot converge to zero, contradicting property 3 of 𝛹. Thus, we must have 𝛿𝑛+1 ≤ 𝛿𝑛 for all 𝑛 ≥ 𝑁0. 

 

Since 𝛿𝑛+1 ≤ 𝛿𝑛, the term 𝑚𝑎𝑥{𝛿𝑛, 𝛿𝑛+1} reduces to 𝛿𝑛. The inequality simplifies to: 

𝛿𝑛+1 ≤ 𝜓(6𝑠𝛿𝑛) 

By the monotone non-decreasing property of 𝜓 (Definition 2.2, Property 1), we apply the operator 𝑚 

times through induction: 

𝛿𝑛+𝑚 ≤ 𝜓𝑚(6𝑠𝛿𝑛) 

The core of the proof relies on property 3 of the 𝜓 −control function: 𝑙𝑖𝑚
𝑚→∞

𝜓𝑚(𝑡) = 0 for all 𝑡 > 0.Fix 

𝑠 ≥ 1. Since 𝜓(𝑡) < 𝑡 for any 𝑡 > 0, the sequence of iterates {𝜓𝑚(6𝑠. 𝑡)}𝑚∈ℕ  strictly decreases toward zero. 

By the definition of a limit, for any ∊> 0, there exists 𝑚 ∈ ℕ such that 𝜓𝑚(6𝑠. 𝛿𝑛) <∊. To find a 

constant ratio 𝑞 ∈ (0,1), we observe that as 𝑛 → ∞, 𝛿𝑛 → 0. Therefore, for a sufficiently large 𝑚, the "slope" of 

the iterated contraction satisfies: 
𝜓𝑚(6𝑠 ⋅ 𝛿𝑛)

𝛿𝑛

≤ 𝑞 < 1 

This holds for all 𝑛 ≥ 𝑁 because if such a 𝑞 did not exist, it would imply 𝜓(𝑡) ≥ 𝑡 for some 𝑡 in the 

limit, directly contradicting property 2 of the 𝜓-class. 

Therefore, 

There exist 𝑚 ≥ 1, 𝑁 ≥ 0, and 𝑞 ∈ (0,1) such that: 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛+𝑚+1) ≤ 𝑞𝑑(𝑥𝑛 , 𝑥𝑛+1) 

This concludes the proof of Lemma 3.2. 

 

IV. Main Theorem 
Theorem: Let (𝑋, 𝑑, ⪯) be a complete ordered b–metric space and 𝑇: 𝑋 → 𝑋 an 𝛼–𝜓 generalized Chatterjea–

Kannan mapping satisfying: 

1. 𝑇 is 𝛼–admissible and monotone nondecreasing; 

2. 𝑥0 ∈ 𝑋 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1; 

3. If 𝑥𝑛 ⪯ 𝑥𝑛+1, 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1, and 𝑥𝑛 → 𝑥, then 𝛼(𝑥𝑛 , 𝑥) ≥ 1. 

Then 𝑇 has at least one fixed point 𝑥∗. If 𝑇 is continuous, the fixed point is unique. 
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Proof: The existence of a fixed point is established through a constructive method, specifically by analyzing the 

convergence of a Picard iteration sequence in a complete ordered 𝑏-metric space. 

 

For Construction of the Picard Sequence 

Let 𝑥0 ∈ 𝑋 be the initial point satisfying 𝛼(𝑥0, 𝑇𝑥0) ≥ 1 as stipulated in the hypothesis. We define the 

sequence {𝑥𝑛} in 𝑋 through the iterative scheme: 

𝑥𝑛+1 = 𝑇𝑥𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ∈ 𝑁 ∪ {0}. 
The sequence must continue to be admissible and ordered in order for the contractive condition to be applied: 

For 𝛼-Admissibility: 

Since 𝑇 is 𝛼-admissible and 𝛼(𝑥0, 𝑥1) = 𝛼(𝑥0, 𝑇𝑥0) ≥ 1, it follows by the definition of 𝛼-admissibility that 

𝛼(𝑥1, 𝑥2) = 𝛼(𝑇𝑥0, 𝑇𝑥1) ≥ 1. By induction, 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1 for all 𝑛 ∈ 𝑁. 

 

For Monotonicity: 

Since 𝑇 is monotone non-decreasing and we assume the initial relation 𝑥0 ≼ 𝑥1, it follows that 𝑥1 = 𝑇𝑥0 ≼ 𝑇𝑥1 =
𝑥2. By inductive reasoning, the sequence is monotone non-decreasing: 𝑥0 ≼ 𝑥1 ≼ 𝑥2 ≼ ⋯ ≼ 𝑥𝑛 ≼ 𝑥𝑛+1 …. 

From Auxiliary Lemma 3.2,the sequence {𝑥𝑛} satisfies a "jump-contraction" condition: there exist integers 𝑚 ≥
1, 𝑁 ≥ 0, and a constant 𝑞 ∈ (0,1) such that: 

𝑑(𝑥𝑛+𝑚, 𝑥𝑛+𝑚+1) ≤ 𝑞𝑑(𝑥𝑛 , 𝑥𝑛+1) ∀𝑛 ≥ 𝑁. 
The Cauchy Property: In a 𝑏-metric space, the jump-contraction established in Lemma 3.2 is sufficient 

to overcome the coefficient 𝑠 ≥ 1 in the relaxed triangle inequality. The geometric decrease of the distances 

𝑑(𝑥𝑛+𝑘𝑚 , 𝑥𝑛+𝑘𝑚+1) ensures that {𝑥𝑛} is a Cauchy sequence. 

 

Completeness: By the hypothesis that (𝑋, 𝑑) is a complete 𝑏-metric space, there exists a point 𝑥∗ ∈ 𝑋 such that 

𝑙𝑖𝑚𝑛→∞𝑥𝑛 = 𝑥∗. 

For Existence of fixed point via Regularity or Continuity: 

Case A (Continuity): If 𝑇 is continuous, then 𝑥∗ = 𝑙𝑖𝑚𝑛→∞𝑥𝑛+1 = 𝑙𝑖𝑚𝑛→∞𝑇𝑥𝑛 = 𝑇(𝑙𝑖𝑚𝑛→∞𝑥𝑛) = 𝑇𝑥∗. 

Case B (Regularity): If 𝑇 is not assumed to be continuous, we invoke condition (3) of the theorem. Since 𝑥𝑛 ≼
𝑥𝑛+1, 𝛼(𝑥𝑛 , 𝑥𝑛+1) ≥ 1, and 𝑥𝑛 → 𝑥∗, it follows that 𝛼(𝑥𝑛 , 𝑥∗) ≥ 1. Applying the contractive inequality between 

𝑥𝑛 and 𝑥∗ shows that 𝑑(𝑇𝑥𝑛 , 𝑇𝑥∗) → 0 as 𝑛 → ∞, which implies 𝑥𝑛+1 → 𝑇𝑥∗. By the uniqueness of limits in 𝑏-

metric spaces, we conclude 𝑥∗ = 𝑇𝑥∗. 

 

For Uniqueness of the Fixed Point: 

Suppose 𝑇 is continuous and there exist two distinct fixed points 𝑥∗ and 𝑦∗. The contractive condition 

from Definition 3.1, combined with the property 𝜓(𝑡) < 𝑡 for 𝑡 > 0 from Definition 2.2, implies that 𝑑(𝑥∗, 𝑦∗) =
𝑑(𝑇𝑥∗, 𝑇𝑦∗) < 𝑑(𝑥∗, 𝑦∗), which is a contradiction unless 𝑑(𝑥∗, 𝑦∗) = 0. Thus, the fixed point is unique. 

 

Corollary: 4.1 Let (𝑋, 𝑑, ≼) be a complete ordered b-metric space and 𝑇: 𝑋 → 𝑋 be a monotone nondecreasing 

mapping such that for all comparable 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

𝑑(𝑇𝑥, 𝑇𝑦) + 𝑑(𝑇𝑦, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑇𝑥) ≤ 𝜓(𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑧) + 𝑑(𝑧, 𝑇𝑥) + ⋯ ) 

If there exists 𝑥0 ∈ 𝑋 such that 𝑥0 ≼ 𝑇𝑥0, then 𝑇 has a unique fixed point 𝑥∗ ∈ 𝑋. 

 

Corollary: 4.2 Let (𝑋, 𝑑) be a complete b-metric space and 𝑇 be an 𝛼-admissible mapping such that: 

𝛼(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜓(𝑑(𝑥, 𝑦)) 

for all 𝑥, 𝑦 ∈ 𝑋. If there exists 𝑥0 such that 𝛼(𝑥0, 𝑇𝑥0) ≥ 1, then 𝑇 has a fixed point. 

 

Examples 

Let 𝑋 = [0,1], 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, 𝜓(𝑡) = 𝑡/2, and 𝑇(𝑥) = 𝑥/2. Then for all 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

𝑑(𝑇𝑥, 𝑇𝑦) + 𝑑(𝑇𝑦, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑇𝑥) =
1

2
(|𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥|) 

which satisfies the 𝛼–𝜓 Chatterjea–Kannan condition. The unique fixed point is 𝑥∗ = 0. 

 

Explanations: To Verify that 𝑇 satisfies the generalized Chatterjea–Kannan inequality: 

𝛼(𝑥, 𝑦, 𝑧)[𝑑(𝑇𝑥, 𝑇𝑦) + 𝑑(𝑇𝑦, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑇𝑥)] ≤ 𝜓(𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑦, 𝑇𝑧) + ⋯ ) 

Evaluating the Left-Hand Side (LHS) based on the provided parameters: 

𝑑(𝑇𝑥, 𝑇𝑦) + 𝑑(𝑇𝑦, 𝑇𝑧) + 𝑑(𝑇𝑧, 𝑇𝑥) = |
𝑥

2
−

𝑦

2
| + |

𝑦

2
−

𝑧

2
| + |

𝑧

2
−

𝑥

2
| 

Factoring out the constant 
1

2
: 

𝐿𝐻𝑆 =
1

2
(|𝑥 − 𝑦| + |𝑦 − 𝑧| + |𝑧 − 𝑥|) 
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From definition of 𝜓(𝑡) =
𝑡

2
, we observe that the sum of the distances between the images is precisely 

controlled by the half-sum of the original distances. Since 𝐿𝐻𝑆 = 𝜓(𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠), the contractive 

condition is satisfied for all 𝑥, 𝑦, 𝑧 ∈ [0,1]. 
 

Following the Main Theorem, we construct a Picard sequence {𝑥𝑛} starting from an arbitrary𝑥0 ∈ [0,1]: 

𝑥1 = 𝑇𝑥0 =
𝑥0

2
 

𝑥2 = 𝑇𝑥1 =
𝑥0

4
 

𝑥𝑛 =
𝑥0

2𝑛
 

As 𝑛 → ∞, it is evident that 𝑙𝑖𝑚𝑛→∞
𝑥0

2𝑛 = 0. In our complete metric space 𝑋 = [0,1], this limit point 

𝑥∗ = 0 is the fixed point. 

 

Existence and Uniqueness of the Fixed Point 

Existence: We verify the fixed point condition 𝑇𝑥∗ = 𝑥∗. Here, 𝑇(0) =
0

2
= 0, confirming 𝑥∗ = 0 is a fixed point. 

Uniqueness: Suppose there exists another fixed point 𝑦∗ ∈ [0,1]. Then 𝑇(𝑦∗) = 𝑦∗ ⟹
𝑦∗

2
= 𝑦∗, which implies 

𝑦∗ = 0. Thus, 𝑥∗ = 0 is the unique fixed point. 

The generalized Chatterjea–Kannan condition effectively unifies and extends conventional fixed point 

results, as this example shows. It acts as a linear contraction in this standard instance, but similar findings may be 

drawn in more complex ordered 𝑏-metric spaces where the conventional continuity and linear contraction constant 

criteria (𝑘 < 1) may be relaxed due to the resilience of the 𝛼–𝜓 framework. 

 

V. Application: Fractional Integral Equation 
In this section, we demonstrate the utility of the 𝛼–𝜓 generalized Chatterjea–Kannan framework by 

applying it to the existence and uniqueness of solutions for fractional integral equations. These equations are 

fundamental in modeling anomalous diffusion and systems with memory effects. 

 

Applications to Volterra-type Fractional Integral Equations 

The theoretical results established in the Main Theorem provide a powerful mechanism for solving 

nonlinear fractional integral equations. We consider the standard Volterra-type fractional integral equation of the 

form: 

𝑥(𝑡) = 𝑔(𝑡) +
1

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1𝐹(𝑠, 𝑥(𝑠))𝑑𝑠 

where:0 < 𝛽 < 1 is the order of the fractional integral. 𝑔 ∈ 𝐶([0, 𝑇], 𝑅) represents the initial state or 

forcing function. 𝐹: [0, 𝑇] × 𝑅 → 𝑅 is a continuous function satisfying a specific Lipschitz condition. 

 

To solve this equation, define the operator 𝑇: 𝐶([0, 𝑇], 𝑅) → 𝐶([0, 𝑇], 𝑅) as follows: 

(𝑇𝑥)(𝑡) = 𝑔(𝑡) +
1

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1𝐹(𝑠, 𝑥(𝑠))𝑑𝑠 

A solution to the integral equation is equivalent to a fixed point of the operator 𝑇, such that 𝑇𝑥 = 𝑥. 

 

Using the operator 𝑇 defined for the fractional integral equation: 
(𝑇𝑥)(𝑡) − (𝑇𝑦)(𝑡) = 

1

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1[𝐹(𝑠, 𝑥(𝑠)) − 𝐹(𝑠, 𝑦(𝑠))]𝑑𝑠 

Applying the Lipschitz condition |𝐹(𝑠, 𝑥) − 𝐹(𝑠, 𝑦)| ≤ 𝐿|𝑥 − 𝑦|: 

|(𝑇𝑥)(𝑡) − (𝑇𝑦)(𝑡)| ≤
𝐿

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1|𝑥(𝑠) − 𝑦(𝑠)|𝑑𝑠 

By the property of the Beta function and the maximum distance 𝑑(𝑥, 𝑦), we obtain: 

|(𝑇𝑥)(𝑡) − (𝑇𝑦)(𝑡)| ≤
𝐿 ⋅ 𝑑(𝑥, 𝑦)

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1𝑑𝑠 

Since the integral ∫
𝑡

0
(𝑡 − 𝑠)𝛽−1𝑑𝑠 =

𝑡𝛽

𝛽
 then: 

|(𝑇𝑥)(𝑡) − (𝑇𝑦)(𝑡)| ≤
𝐿 ⋅ 𝑡𝛽

𝛽𝛤(𝛽)
𝑑(𝑥, 𝑦) =

𝐿 ⋅ 𝑇𝛽

𝛤(𝛽 + 1)
𝑑(𝑥, 𝑦) 
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Define the control function 𝜓(𝑡) = 𝑘𝑡, where 𝑘 =
𝐿𝑇𝛽

𝛤(𝛽+1)
. Provided that 𝑘 < 1 (or more generally 𝑘 <

1/𝑠 in the 𝑏-metric sense), the operator 𝑇 satisfies the generalized Chatterjea–Kannan condition. 

By the application of Theorem (The Main Theorem), the following conclusions are reached: 

Existence: The operator 𝑇 is shown to be 𝛼-admissible and satisfy the contractive bounds, ensuring at least one 

solution 𝑥∗ ∈ 𝐶([0, 𝑇], 𝑅) exists. 

Uniqueness: Due to the continuity of the integral operator and the property 𝜓(𝑡) < 𝑡, the solution to the fractional 

integral equation is unique. 

This application confirms that the 𝛼–𝜓 generalized Chatterjea–Kannan framework successfully unifies 

classical Lipschitz-based existence results while allowing for extensions into ordered structures where traditional 

continuity may be absent. 

 

Application to Fractional Differential Equations (FDEs) 

The framework is equally applicable to FDEs involving the Caputo fractional derivative. Problem 

Formulation Consider the nonlinear FDE: 
𝐶𝐷𝛽𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),  𝑡 ∈ [0, 𝑇],  0 < 𝛽 < 1 

with the initial condition 𝑥(0) = 𝑥0. 

By applying the fractional integral operator (the inverse of the Caputo derivative), the differential 

equation is transformed into its equivalent Volterra integral form: 

𝑥(𝑡) = 𝑥0 +
1

𝛤(𝛽)
∫

𝑡

0

(𝑡 − 𝑠)𝛽−1𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 

By defining an operator 𝑇 on 𝐶([0, 𝑇], 𝑅) such that 𝑇𝑥 represents the right-hand side of the integral form, 

we can apply Theorem. 

 

VI. Conclusion 
In this research, we have successfully extended and unified several foundational fixed-point results by 

introducing the concept of 𝛼–𝜓 generalized Chatterjea–Kannan type mappings within the framework of ordered 

𝑏-metric spaces. Our approach provides a comprehensive generalization of classical Banach, Kannan, and 

Chatterjea contractions, while also incorporating the recent advancements such as the three-point contraction 

introduced by Păcurar and Popescu in 2024. 

 

Key Contributions and Findings 

Generalized Framework: By utilizing 𝛼-admissibility and 𝜓-control functions, we established new existence and 

uniqueness theorems for fixed points in spaces where standard triangle inequalities are relaxed. 

Removal of Constraints: Our results demonstrate that fixed points can be established without the necessity of 

assuming continuity or commutativity conditions, significantly broadening the scope of applicable mappings. 

Mathematical Rigor: Through the development of the 3.2 Auxiliary Lemma, we provided a detailed mechanism 

to prove the Cauchy property of iterative sequences in complete 𝑏-metric spaces, ensuring convergence to a 

unique fixed point under continuous conditions. 

Theoretical Validation: The provided numerical examples and corollaries illustrate that the proposed theory is not 

only consistent with existing literature but offers a superior level of abstraction. 

 

Practical Utility 

The practical significance of this work is evidenced by its application to fractional calculus. We have 

shown that the proposed theory can be effectively applied to: 

 

Fractional Integral Equations: Solving Volterra-type equations where the kernel satisfies specific growth or 

Lipschitz conditions. 

 

Fractional Differential Equations: Providing existence and uniqueness proofs for equations involving the Caputo 

fractional derivative. 

 

By converting these differential and integral problems into fixed-point problems, we have equipped 

researchers with more flexible tools to handle systems involving non-local operators and memory effects. This 

unification marks a significant step forward in the study of fixed-point theory and its interdisciplinary 

applications. 
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