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Abstract:

In this paper, we extend and unify various well-known fixed point results by introducing the concept of a —
generalized Chatterjea—Kannan type mappings in the framework of ordered b —metric spaces.

Our approach generalizes the classical Banach, Kannan, and Chatterjea contractions as well as the recent three-
point contraction of Pacurar and Popescu (2024).

Using the a — admissibility and ) — control functions, we establish new existence and uniqueness theorems for
fixed points without assuming continuity or commutativity conditions.

Several examples are provided to illustrate the validity of the obtained results.

Finally, we discuss how the main results can be applied to integral and fractional differential equations.
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I. Introduction

Fixed point theory serves as a cornerstone of nonlinear analysis, providing essential tools for solving
problems in optimization, game theory, and the existence of solutions for integral and differential equations. The
field was fundamentally shaped by the Banach contraction principle (1922), which established that a self-mapping
on a complete metric space possesses a unique fixed point, provided it satisfies a Lipschitz condition with a
contraction constant g € (0,1).

Over the following decades, researchers sought to relax these stringent requirements. Significant
generalizations were proposed by Kannan (1968) and Chatterjea (1972), who introduced contractive conditions
based on the distances between the iterates of the map rather than the points themselves. More recently, Pacurar
and Popescu (2024) advanced this discourse by extending the Chatterjea contraction into a triadic (three-point)
setting, offering a more refined geometric framework for fixed point existence.

Motivated by these recent advancements, this paper introduces a novel hybrid structure: the a —
generalized Chatterjea—Kannan type mapping. This approach unifies the classical Kannan and Chatterjea
mappings with the modern triadic framework under a singular i —controlled condition. Furthermore, we conduct
our analysis within the context of ordered b-metric spaces. By synthesizing partial order structures with the
flexibility of b-metrics, we provide a more robust framework applicable to complex nonlinear systems and
fractional-order models.

1I1. Preliminaries
Definition 2.1: Let (X,d, <) be an ordered b-metric space with constant s > 1. That is, d: X X X — [0, )
satisfies for all x,y,z € X:
1.d(x,y) =0 & x =y,
2.d(x,y) = d(y,x),
3.d(x,z) < s[d(x,y)+d(y,2)].

Definition 2.2 (a—admissible mapping):
A self-map T: X — X is a—admissible with respect to a: X X X — [0, o0)if forall x,y € X:
a(x,y) =21 = a(Tx,Ty) = 1.

Definition 2.3(x) —control function):
A function i: [0, 00) — [0, ) is said to belong to the class ¥ if:
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1. 1 is non-decreasing and continuous,
2.9(t) < tforallt >0,
3. limy™(t) =0 forall t > 0.

n—-oo

III.  Main Definition & Lemma
Main Definition:
A mapping T: X = X is an a — 1 generalized Chatterjea—Kannan type mapping if there exists ) € ¥
such that for all distinct x,y,z € X:
a(x,y,z)[d(Tx,Ty) + d(Ty,Tz) + d(Tz, Tx)]
<Y d@x,Tx)+d(y,Tz) +d(z,Tx) + d(x,Tz) + d(y,Tx) + d(z,Ty))
This inequality generalizes Kannan, Chatterjea, and hybrid contractive conditions.

Auxiliary Lemma:

Let (X, d) be a complete b—metric space with constant s > 1. Suppose T: X — X satisfies:
d(xn+1'xn+2) = d(Txn' Txn+1) < 1P(6S max{d(xnt xn+1)' d(xn+1ﬁxn+2)})

where ¥ € V. Then there exist integers m = 1, N = 0, and g € (0,1) such that:

d(xn+mr xn+m+1) < q d(xnx xn+1)
foralln > N.

Proof: We define the sequence of successive distances as &, = d(x,, X,+1). We first claim that {6,,} is a non-
increasing sequence. Assume there exists some ny € N such that &, 41 > 8,,,. Under this assumption:
max{6n0'6n0+1} = 6n0+1
Substituting this into the hypothesis:
6n0+1 < ¢(656n0+1)
By Definition 2.2, property 2 states that (t) <t forall ¢ > 0. Since s = 1, if 8,41 > 0, we have:
6n0+1 = ¢(655n0+1) < 655m,+1

While this does not immediately yield a contradiction in standard real analysis, within the specific

framework of 1p-contractions, the requirement lim™(t) = 0 implies that if §,,,; = &, holds indefinitely, the
n—-oo

sequence cannot converge to zero, contradicting property 3 of ¥. Thus, we must have §,,,; < §,, foralln > N,,.

Since 8,1 < 6, the term max{d,, 6,41} reduces to d,,. The inequality simplifies to:
5n+1 = Izb(655n)
By the monotone non-decreasing property of 1 (Definition 2.2, Property 1), we apply the operator m
times through induction:
Onem S Y™ (656,)
The core of the proof relies on property 3 of the 1 —control function: lim Y™ (t) = 0 for all ¢ > 0.Fix
m—oo

s = 1. Since P (t) < t for any t > 0, the sequence of iterates {p™ (6s.t)}nen strictly decreases toward zero.

By the definition of a limit, for any €> 0, there exists m € N such that Y™ (6s.6,) <€. To find a
constant ratio g € (0,1), we observe that as n — oo, §,, = 0. Therefore, for a sufficiently large m, the "slope" of
the iterated contraction satisfies:

P (6s - 6y)
On

This holds for all n = N because if such a q did not exist, it would imply ¥ (t) >t for some t in the
limit, directly contradicting property 2 of the y-class.
Therefore,
There existm = 1, N > 0, and q € (0,1) such that:

d(Xn4m Xneme1) < qd (0, Xp41)

This concludes the proof of Lemma 3.2.

<qg<1

IV.  Main Theorem
Theorem: Let (X, d, <) be a complete ordered b—metric space and T: X — X an a— generalized Chatterjea—
Kannan mapping satisfying:
1. T is a—admissible and monotone nondecreasing;
2. x € X such that a(x,, Tx,) = 1;
3.Ifx, < X501, a(xy, Xpe1) = 1, and x,, — x, then a(x,, x) = 1.
Then T has at least one fixed point x*. If T is continuous, the fixed point is unique.
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Proof: The existence of a fixed point is established through a constructive method, specifically by analyzing the
convergence of a Picard iteration sequence in a complete ordered b-metric space.

For Construction of the Picard Sequence

Let x4 € X be the initial point satisfying a(x,, Tx,) = 1 as stipulated in the hypothesis. We define the
sequence {x,} in X through the iterative scheme:

Xn41 =Tx, forallne N uU({0}.

The sequence must continue to be admissible and ordered in order for the contractive condition to be applied:
For a-Admissibility:
Since T is a-admissible and a(xy, x;) = a(xq, Txy) = 1, it follows by the definition of a-admissibility that
a(xy,x,) = a(Txy, Tx;) = 1. By induction, a@(x,, x,4,) = 1 foralln € N.

For Monotonicity:
Since T is monotone non-decreasing and we assume the initial relation x, < x4, it follows that x; = Tx, < Tx; =
X,. By inductive reasoning, the sequence is monotone non-decreasing: Xy < X; X Xy X ** X X X Xpgq -oer
From Auxiliary Lemma 3.2,the sequence {x,,} satisfies a "jump-contraction" condition: there exist integers m >
1,N = 0, and a constant g € (0,1) such that:
d(xn+m'xn+m+1) < qd(xn' xn+1) vn=N.

The Cauchy Property: In a b-metric space, the jump-contraction established in Lemma 3.2 is sufficient
to overcome the coefficient s > 1 in the relaxed triangle inequality. The geometric decrease of the distances
d(Xpskms Xntiem+1) €nsures that {x,,} is a Cauchy sequence.

Completeness: By the hypothesis that (X, d) is a complete b-metric space, there exists a point x* € X such that
lim,ox, = x".

For Existence of fixed point via Regularity or Continuity:

Case A (Continuity): If T is continuous, then x* = lim,,_, o Xp+1 = im0 Txy, = T(liMmye0x,) = Tx™.

Case B (Regularity): If T is not assumed to be continuous, we invoke condition (3) of the theorem. Since x, <
Xni1> A(Xn, Xpy1) = 1, and x,, = x7, it follows that a(x,, x*) = 1. Applying the contractive inequality between
X, and x* shows that d(Tx,, Tx*) - 0 as n — oo, which implies x,,; = Tx*. By the uniqueness of limits in b-
metric spaces, we conclude x* = Tx*.

For Uniqueness of the Fixed Point:

Suppose T is continuous and there exist two distinct fixed points x* and y*. The contractive condition
from Definition 3.1, combined with the property ¥ (t) < t fort > 0 from Definition 2.2, implies that d(x*, y*) =
d(Tx*,Ty*) < d(x*,y*), which is a contradiction unless d(x*,y*) = 0. Thus, the fixed point is unique.

Corollary: 4.1 Let (X, d, <) be a complete ordered b-metric space and T: X — X be a monotone nondecreasing
mapping such that for all comparable x,y,z € X:

d(Tx,Ty) + d(Ty,Tz) + d(Tz,Tx) <¢p(dx,Ty) + d(y,Tz) + d(z,Tx) + ---)

If there exists x, € X such that x, < Tx,, then T has a unique fixed point x* € X.

Corollary: 4.2 Let (X, d) be a complete b-metric space and T be an a-admissible mapping such that:

a(x,y)d(Tx, Ty) < p(d(x,y))
for all x, y € X. If there exists x, such that a(x,y, Txy) = 1, then T has a fixed point.

Examples

LetX =[0,1], d(x,y) = |x — y|, ¥ (t) = t/2,and T(x) = x/2. Then for all x,y,z € X:
d(Tx,Ty) + d(Ty,Tz) + d(Tz,Tx) = %(lx —y|l+ly—z|+|z—x])

which satisfies the a—p Chatterjea—Kannan condition. The unique fixed point is x* = 0.

Explanations: To Verify that T satisfies the generalized Chatterjea—Kannan inequality:
a(x,y,2)[d(Tx,Ty) + d(Ty,Tz) + d(Tz,Tx)] <Y (d(x, Ty) + d(y,Tz) + ---)
Evaluating the Left-Hand Side (LHS) based on the provided parameters:

d(Tx,Ty) + d(Ty,Tz) + d(Tz,Tx) = §—§| +|§—§ I

2 2

Factoring out the constant i:

1
LHS=§(|x—yI+Iy—ZI+Iz—x|)
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.. t . . . .
From definition of y(t) = > we observe that the sum of the distances between the images is precisely

controlled by the half-sum of the original distances. Since LHS = Y (sum of distances), the contractive
condition is satisfied for all x,y,z € [0,1].

Following the Main Theorem, we construct a Picard sequence {x,,} starting from an arbitraryx, € [0,1]:

Txy = 0

x; =Txyg =—

1 0 2
Tx, = 0

X, = X4 =

2 157

Xn, o

As n - oo, it is evident that lim,_. —= = 0. In our complete metric space X = [0,1], this limit point

2n
x* = 0 is the fixed point.

Existence and Uniqueness of the Fixed Point
Existence: We verify the fixed point condition Tx* = x*. Here, T(0) = g = 0, confirming x* = 0 is a fixed point.

Uniqueness: Suppose there exists another fixed point y* € [0,1]. Then T(y*) = y* = y? = y*, which implies

y* = 0. Thus, x* = 0 is the unique fixed point.

The generalized Chatterjea—Kannan condition effectively unifies and extends conventional fixed point
results, as this example shows. It acts as a linear contraction in this standard instance, but similar findings may be
drawn in more complex ordered b-metric spaces where the conventional continuity and linear contraction constant
criteria (k < 1) may be relaxed due to the resilience of the a— framework.

V.  Application: Fractional Integral Equation
In this section, we demonstrate the utility of the a— generalized Chatterjea—Kannan framework by
applying it to the existence and uniqueness of solutions for fractional integral equations. These equations are
fundamental in modeling anomalous diffusion and systems with memory effects.

Applications to Volterra-type Fractional Integral Equations
The theoretical results established in the Main Theorem provide a powerful mechanism for solving
nonlinear fractional integral equations. We consider the standard Volterra-type fractional integral equation of the

form:
t

x(®)=gO) ++— r(ﬁ) (t — $)P~1F(s,x(s))ds

where:0 < B < 1 is the order of the fractlonal integral. g € C([0, T], R) represents the initial state or
forcing function. F:[0,T] X R = R is a continuous function satisfying a specific Lipschitz condition.

To solve this equation, define the operator T: C([0,T], R) = C([0,T], R) as follows:
1 t
T)@) =9 + =7
TETT®) Jo

(t — $)P1F (s, x(s))ds
A solution to the integral equation is equivalent to a ﬁxed point of the operator T, such that Tx = x.

Using the operator T defined for the fractional integral equation:

(Tx)(@) — (Ty)() =
1 t
- _ B-1 _
') fo (t — )P 1[F(s,x(s)) — F(s,y(s))]ds
Applying the Lipschitz condition |F(s,x) — F(s,y)| < L|x — y|:

|(Tx) (@) = (Ty)(®)] < F(Lﬁ) (t = )P x(s) — y(s)lds
By the property of the Beta function and the max1mum dlstance d(x y), we obtain:
|TO® - Ty ©] < F((;f)y ) -
Since the integral fot (t —s)ftds = f then:
L-TF
|T)(® = (Ty)©] < mﬁ) = ey
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Define the control function Y (t) = kt, where k = %i) Provided that k < 1 (or more generally k <
1/s in the b-metric sense), the operator T satisfies the generalized Chatterjea—Kannan condition.

By the application of Theorem (The Main Theorem), the following conclusions are reached:
Existence: The operator T is shown to be a-admissible and satisfy the contractive bounds, ensuring at least one
solution x* € C([0,T], R) exists.

Uniqueness: Due to the continuity of the integral operator and the property 1 (t) < t, the solution to the fractional
integral equation is unique.

This application confirms that the a—p generalized Chatterjea—Kannan framework successfully unifies
classical Lipschitz-based existence results while allowing for extensions into ordered structures where traditional
continuity may be absent.

Application to Fractional Differential Equations (FDEs)
The framework is equally applicable to FDEs involving the Caputo fractional derivative. Problem
Formulation Consider the nonlinear FDE:
CDPx(t) = f(t,x(t)), t€[0,T], 0<p<1
with the initial condition x(0) = x,.
By applying the fractional integral operator (the inverse of the Caputo derivative), the differential
equation is transformed into its equivalent Volterra integral form:

1 t
= —_— — B-1
x(t) = xo + F(ﬁ)fo (t—ys) f(s,x(s))ds

By defining an operator T on C ([0, T], R) such that Tx represents the right-hand side of the integral form,
we can apply Theorem.

VI.  Conclusion
In this research, we have successfully extended and unified several foundational fixed-point results by
introducing the concept of a— generalized Chatterjea—Kannan type mappings within the framework of ordered
b-metric spaces. Our approach provides a comprehensive generalization of classical Banach, Kannan, and
Chatterjea contractions, while also incorporating the recent advancements such as the three-point contraction
introduced by Pacurar and Popescu in 2024.

Key Contributions and Findings

Generalized Framework: By utilizing a-admissibility and 1-control functions, we established new existence and
uniqueness theorems for fixed points in spaces where standard triangle inequalities are relaxed.

Removal of Constraints: Our results demonstrate that fixed points can be established without the necessity of
assuming continuity or commutativity conditions, significantly broadening the scope of applicable mappings.
Mathematical Rigor: Through the development of the 3.2 Auxiliary Lemma, we provided a detailed mechanism
to prove the Cauchy property of iterative sequences in complete b-metric spaces, ensuring convergence to a
unique fixed point under continuous conditions.

Theoretical Validation: The provided numerical examples and corollaries illustrate that the proposed theory is not
only consistent with existing literature but offers a superior level of abstraction.

Practical Utility
The practical significance of this work is evidenced by its application to fractional calculus. We have
shown that the proposed theory can be effectively applied to:

Fractional Integral Equations: Solving Volterra-type equations where the kernel satisfies specific growth or
Lipschitz conditions.

Fractional Differential Equations: Providing existence and uniqueness proofs for equations involving the Caputo
fractional derivative.

By converting these differential and integral problems into fixed-point problems, we have equipped
researchers with more flexible tools to handle systems involving non-local operators and memory effects. This
unification marks a significant step forward in the study of fixed-point theory and its interdisciplinary
applications.
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