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Abstract:

In this article, I examine the second-order logical framework of Peano’s arithmetic and its categoricity. I do so
in two parts:

Firstly, I provide an exposition of the axiomatic system; and I prove the categoricity of second-order logic Peano
arithmetic within standard semantics. For the sake of this exposition, a particular proof which makes use of
induction models has been chosen. Through the categoricity analysis, I shall prove that second-order standard
semantics lacks some of the meta-properties like compactness and Léwenheim-Skolem-Tarski theorem.

Secondly, I make use of the non-standard semantics defined by Henkin (1950). Within this new framework, doubly
non-standard models are found. On the one hand, these models are non-standard ones because Henkin’s
semantics are not standard. On the other hand, these models are non-standard models because these ones are
not isomorphic to the standard arithmetic model. A new concept of internal categoricity is introduced in order to
characterize classes of isomorphic structures through an isomorphism that is defined in the formal language of
second-order logic. Through this procedure, we recover metaproperties of first-order logic in second-order logic
with Henkin'’s general models, and we maintain a particular form of categoricity, i.e. internal categoricity.
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I. Introduction

A diferencia de la logica de primer orden, la 16gica de segundo orden posee la capacidad de generar
teorias categoéricas, aunque la cardinalidad que precisa el dominio de las estructuras que sirven de modelo a tales
teorias no sea finita. Sobre esta afirmacion podemos hacer dos observaciones.

En primer lugar, qué entendemos cuando nos referimos a la capacidad de la légica de segundo orden.
Cuando hablamos de la capacidad de la logica de segundo orden nos referimos a la capacidad expresiva de su
lenguaje. Como es bien sabido, la 16gica de segundo orden difiere de la logica de primer orden en que su lenguaje
posee variables y cuantificadores para propiedades, relaciones y funciones, aparte de las variables y los
cuantificadores sobre individuos. La capacidad expresiva del lenguaje de una logica, sea ésta proposicional, de
primer o segundo orden, mantiene un juego de equilibrios, un contrapunto, con las metapropiedades de la logica
de tal lenguaje. Por ejemplo, la capacidad que tiene el lenguaje de segundo orden para expresar el infinito bajo la
formula que es satisfecha solo por modelos cuya cardinalidad (la cardinalidad de su dominio) es infinita,
expresando la existencia de una relacion binaria X2 que es irreflexiva, transitiva y sin elementos maximales:

XV (1) (~X2 (01, v1) AV (01,02, V3) (X2 (01, V2) A X2 (03, 13) = X2 (01, 13)) AV (01)3(0) (X2 (01, 12)))

contraviene a la compacidad; y viceversa, no hay una sentencia ¢ que exprese la infinitud en la 16gica
de primer orden ya que ésta es compacta.

Precisamente la piedra de toque que bascula el transito del sistema axiomatico de la aritmética de Peano
en primer orden a su formulacion en el marco de segundo orden consiste en formular uno de sus axiomas mediante
un lenguaje de segundo orden apropiado: el axioma de induccion. En particular, en su formulacion en el marco
de la logica de primer orden el axioma de induccion no es, propiamente dicho, un axioma, sino el siguiente
esquema axiomatico de induccion (E.A.L):

¢ AV () (1) = ¢(S(v1))) = V(v)P(vy)

donde ¢ es una formula del lenguaje de la aritmética de primer orden en la cual ninguna variable, excepto
v;, ocurre libre; ¢ es una constante y S es una funcién monaria. Sin entrar en mas especificaciones por el momento,
debemos notar que existe un axioma por cada formula ¢ que podamos formular en el lenguaje aritmético de
primer orden. De este Gltimo hecho podemos extraer dos observaciones: en primer lugar, que la aritmética de
Peano en logica de primer orden no es finitamente axiomatizable; en segundo lugar, el alcance de E.A.L se
restringe a conjuntos definibles mediante el lenguaje de la aritmética de Peano de primer orden, una cantidad a lo
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sumo infinita numerable de conjuntos (tantos como férmulas de su lenguaje). La situacion en la aritmética de
Peano con la formulacion del axioma de induccién mediante un lenguaje de segundo orden cambia estos hechos,
ya que el E.A.L se transforma en A.I.:

VXAV X (1) = X(S(v1))) = V(v)X (1))

Al sustituir E.A.L por A.L, la aritmética de Peano es finitamente axiomatizable al tiempo que el alcance
de A.L no se restringe a conjuntos definibles; de hecho el dominio de la cuantificacion de A.L. tiene una
cardinalidad de 2, siendo no numerable. La ventaja expresiva de A.L. con respecto a E.A I trae consigo otras
consecuencias que veremos a lo largo de este trabajo.

En segundo lugar, qué quiere decir que una teoria es categorica. En la seccion 2.1 de este trabajo nos
ocuparemos de precisar en mayor detalle estas nociones, pero en rasgos generales una teoria I es un conjunto de
sentencias de un lenguaje apropiado al que pertenecen, a su vez, todas sus consecuencias logicas (o los teoremas
que se deducen de T, si la tratamos en su sentido sintactico).

Ahora que disponemos de una cierta nocion de teoria, ;qué quiere decir que una teoria es categorica? La
categoricidad es la propiedad de algunas teorias de tener solamente un modelo bajo isomorfismo.

Como deciamos antes, la l6gica de segundo orden es capaz de generar teorias categdricas aun cuando el
dominio de los modelos de tales teorias no es finito. Este hecho se enfrenta directamente a algunas
metapropiedades, como al teorema de Léwenheim-Skolem-Tarski

Teorema de Lowenheim-Skolem-Tarski': sea @ un conjunto de formulas que es satisfacible sobre un
dominio infinito y sea x un cardinal mas grande o igual a la cardinalidad de ®; entonces @ tiene un modelo de
cardinalidad x;

o la compacidad:

Teorema de compacidad: un conjunto de féormulas @ es satisfacible si y solamente si cada subconjunto
finito @/ de ® es satisfacible.

La motivacion de este trabajo parte del estudio de la categoricidad de una teoria en particular: la de la
aritmética de Peano en segundo orden. En rasgos generales, este estudio esta dividido en dos partes. La primera
de ellas aborda la aritmética de Peano y su categoricidad desde la perspectiva de la semantica estandar, y en ella
hay contenidos algunos topicos bien conocidos. En particular, se probara tal categoricidad. Siguiendo a Henkin
(1960) y Manzano (1996), abordamos la prueba haciendo uso de lo que denominaremos modelos de induccion,
aunque la prueba que aqui presentamos han sido ampliadas y completadas. Este recurso no es estrictamente
necesario, ya que otras pruebas como la que encontramos en Mendelson (1976), mas afin a la que aqui se presenta,
o las que encontramos en Ebbinghaus (1994) o Shapiro (1991), que difiere en mayor medida, no hacen uso de
tales estructuras. Sin embargo, su empleo en la prueba nos permitira ver los limites del teorema que, siguiendo a
Mendelson, denominaremos teorema de iteracion. También se demostrara que algunas metapropiedades, como
los teoremas de compacidad y de Lowenheim-Skolem-Tarski, fallan en la l6gica de segundo orden sobre la base
de la categoricidad de la aritmética de Peano.

Estos resultados, como hemos apuntado, son consecuencia de la capacidad de la 16gica de segundo orden
de generar teorias categdricas y no tanto de la categoricidad de la aritmética de Peano en particular. La
categoricidad del analisis real cuando el axioma del supremo es formulado en segundo orden:

A.S.:
VX)) [PR@V(w) X () 2 vy <v) - IV X (1) 2 v S V) AV@) (V)X (v1) 2 vy Svp) 2 v
< v}

igualmente se enfrenta a estas metapropiedades. Sin embargo, ya que dispondremos de la categoricidad
de la aritmética de Peano probaremos que la logica de segundo orden carece de estas metapropiedades sobre la
categoricidad de esta teoria.

La segunda parte de este trabajo se traslada a la semantica no estandar (para logica de segundo orden)
de marcos y modelos generales presentada por Henkin en (1950). Sobre la base de la semantica de modelos
generales la categoricidad se desvanece. La logica de segundo orden con esta semantica es completa en sentido
fuerte, es decir, para todo I'y ¢, si ' = ¢ entonces I I ¢, para alglin calculo (como por ejemplo el calculo C?
presentado en Manzano (1996: 79-ss)). Por tanto, también es compacta, lo que nos va a permitir encontrar modelos
no estandar de la aritmética de Peano en el marco de la 16gica de segundo orden. De hecho, presentaremos modelos
doblemente no estandar: modelos generales, que son no estandar en sentido semantico, en cuyo dominio

' Tomo su formulacion de Ebbinghaus et al. (1994: 90).
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encontraremos numeros no estandar, que son no estandar en el sentido de no ser isomorfos al prototipico a causa
de los numeros no estdndar (Henkin (1950: 89-90)). La relacion entre estos dos tipos de modelos no estandar es
bastante estrecha, y probaremos un resultado al respecto: si un modelo de Peano posee numeros no estandar en
su dominio entonces es no estandar en sentido semantico. Pero atin hay una nocién disponible que, bajo esta
semantica, nos va a permitir aislar dentro de los modelos generales de Peano aquellos que son estandar en sentido
semantico y, por tanto, isomorfos entre si: la nocion de categoricidad interna.

Por ultimo, vamos a presentar el lenguaje de segundo orden que emplearemos a lo largo de este trabajo,
que es el lenguaje de la aritmética de segundo orden, LA2. Este lenguaje contiene el simbolo ¢ como tinica
constante individual; el simbolo S como simbolo de funcién monaria constante. Ademads, LA? contiene tanto
variables de individuos, v, v4, v,, V3. .., como variables de propiedades, X, Y, Z, X, Y;. .., y variables de relaciones
n-arias paran = 2, R™, T", R}, T{". .. y funciones n-arias f™, k", g, f{", . . También contiene las conectivas usuales
(=, ©,AV, ) y los cuantificadores (¥, 3), que operan sobre todo tipo de variable de LAZ.

II. La Aritmética De Peano: Sus Modelos Y Sus Teorias
La aritmética de Peano: sus modelos y sus teorias La primera tarea que nos ocupa es la de presentar los
modelos de Peano y el sistema axiomatico de la aritmética de Peano de segundo orden. Un modelo de Peano es
una estructura A = (N, ¥, S("I), donde N es el dominio de la estructura, ¢¥ es un elemento destacado de la
estructura y S¥ es una funcién monaria, que satisface los axiomas de I1 = {A1, A2, A3}:

AlL.V()(S(w) # ¢)
A2. V(v )V(v) (v, # v, = S(v1) # S(v2))
A3. V(X)X () AV(v)(X(v1) = X(S(v1))) = Y(v)X(v1))

Al expresa la condicion de que el elemento destacado ¢ no esta en el rango de la funcion S; A2 expresa
la condicion de que la funcion S es inyectiva. Por su parte, A3 expresa la condicion de que cualquier propiedad o
subconjunto que contenga a ¢ y esté cerrado bajo S contiene a todos los elementos del dominio de la estructura
que satisface a A3.2

A diferencia de la formulacion usual en primer orden, el sistema axiomatico que acabamos de presentar
carece de los axiomas que regulan la adicion y el producto, del mismo modo que nuestro lenguaje no contiene
simbolos primitivos especiales para designar estas funciones. Esto se debe a que las funciones de adicion y
producto pueden ser introducidas sobre la base de un teorema que vamos a denominar, siguiendo a Mendelson
(1973: 57), teorema de iteracion, y que justifica la introduccion de cualquier funcion definida por recursion para
los modelos de Peano.

La estructura e interpretacion prototipicas que se presentan como modelo de Peano es 9t = (N, ¢¥, S%),
I = (N, i), donde N es el conjunto de los nimeros naturales incluyendo al cero, donde I(c) = ¢® = 0, y donde,
para todo vy, la funcién I(S) = S™: (S™(v;) = v; + 1) es la funcion sucesor.’ Esta estructura, en efecto, satisface
todos los axiomas de II, y esta incluida en su clase de modelos, MOD (II).

Sin embargo, hay otros modelos de Peano que difieren de 9t. Un ejemplo de ello es la estructura B =
(2N, 8, $®), donde ahora nuestro dominio 2N es el conjunto de los niimeros naturales pares, ¢® = 0, y como
funcion monaria tenemos la funcion S®: S®(v;) = v; + 2 para todo v;. En efecto, B también satisface los
axiomas Al, A2 y A3 siendo asi un modelo de Peano; es decir, B € MOD (IT). Otro ejemplo es la estructura € =
(Z= U {0},¢%, S%), donde Z~ U {0} es el conjunto de los niimeros enteros negativos mas el cero, donde ¢* = 0, y
cuya funcion monaria es S®: S®(v;) = v; — 1 para todo v,, satisface los axiomas Al, A2 y A3, es decir, € €
MOoD(I).

2 En la metateoria emplearemos la siguiente formulacion de A3 (Mendelson (1973: 53), Henkin (1960: 323)):
VB([BENAcEBAVY(x)(x € B= Sx € B)] = B =N), donde N es el dominio de la estructura que satisface
A3.

3 En adelante las interpretaciones se presentaran de manera implicita, como es usual en la literatura. En particular,
la asignacion en este y otros modelos es indiferente en la medida en que solamente trabajaremos con sentencias y
en que el teorema de coincidencia es valido también en la l6gica de segundo orden (cf. Manzano (1996: 62)), de
modo que cualesquiera dos asignaciones coincidirdn trivialmente en la asignacion de variables libres. Si se ha
introducido aqui es por la coherencia con la definicion de modelo de Ebbinghaus (1993: 29, 32) o Manzano (1996:
30-32), que exige una interpretacion, y ésta una asignacion.
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Ademas de los modelos de Peano, hay otro tipo de estructura que va a intervenir en la prueba de la
categoricidad de la aritmética de Peano, siguiendo en este punto a Henkin (1960) y a Manzano (1996): los modelos
de induccion.

Definicién (modelo de induccion): llamamos modelo de induccion a una estructura M = (N, ™, S™)
que es modelo, al menos, de A3; es decir, tal que I € MOD(A3). H

Segin hemos visto, MOD (IT) € MOD (A3), ya que cualquier modelo de II es, en particular, modelo de
A3; pero como vamos a mostrar mediante dos ejemplos, MOD (IT) #= MOD (A3).

Sea I = (P,c,g%) una estructura cuyo dominio P = {0,1,2,3,4,5}, donde ¢ =0 y donde g° =
{(0,1),(1,2),(2,3),(3,4),(4,5),(5,0)}. Como se puede comprobar, esta estructura es modelo de A2 y de A3, pero
no de Al. En efecto, la funcién g no permite modelizar a A1, pues g3(5) = 0; en consecuencia J ¢ MOD (I1).
Sin embargo, es modelo del axioma de induccion A3 y, por tanto, I € MOD (A3).

Consideremos ahora la siguiente estructura: I’ = (P, &, hsl), cuyo dominio es, igual que en la anterior,
P =1{0,1,2,3,4,5}, donde ¢ = 0y cuya funcién es h¥" = {{0,1),(1,2),(2,3),(3,4), (4,5),(5,3)}. Esta estructura
también satisface a A3 pero, al contrario que la anterior, 3’ satisface a A1 pero no a A2, ya que ' no esté en el

rango de la funcion pero hSI(Z) = h3’(5) = 3. Por lo tanto, 3’ € MOD(I1) aunque I’ € MOD(A3). Las dos
estructuras previas, y cada una por su parte, muestran que MOD (IT) = MOD (43).

Es interesante sefialar que aquellos resultados para la aritmética de Peano en cuya demostracion
solamente intervenga el axioma A3 (o su contrapartida en la metateoria) se pueden extender a cualquier modelo
de induccion.

2.1. Las dos teorias de I1 En su sentido mas amplio, una teoria es un conjunto de sentencias (cf. Chang
y Keisler (2012: 12)). Sin embargo, ya que en estas paginas nos centraremos en un tipo de teoria en particular,
teorias axiomatizadas, vamos a caracterizar de manera menos amplia las teorias para ganar en precision. Sea L un
lenguaje arbitrario y sea SENT (L) el conjunto de sentencias de L. Definimos entonces la nocion general de teoria
mediante las siguientes dos definiciones.

Definicion (teoria semantica): Teo es una teoria en sentido semantico si y solo si Teo & SENT(L) y
Teo E ¢ = ¢ € Tep para toda sentencia ¢. [

Definicion (teoria sintactica): Teo es una teoria en sentido sintactico si y solo si Teo € SENT(L) y
Feo - ¢ = ¢ € Teo para toda sentencia ¢. [

De acuerdo a estas dos definiciones podemos introducir la nocidén de teoria axiomatica (semantica y
sintactica), que es la que nos interesa. Sea A un conjunto de sentencias, a las que llamaremos axiomas. Entonces,
de acuerdo con la definicion de teoria semantica, podemos entender que el conjunto de todas las sentencias de
SENT(L) que son consecuencia logica de A es una teoria que tiene a A como conjunto de axiomas:

Definicion (teoria semantica de A): Teo(A)" = {¢p|¢p € SENT(L) AA = ¢} H
Y, mutatis mutandis, el conjunto de las sentencias que son teoremas de A es también una teoria:
Definicion (teoria sintactica de A): Teo(A)™ = {p|¢p € SENT(L)AA+ ¢} H

Una observacion que nos sale al paso al respecto de las dos ultimas definiciones (y a fortiori de las dos
anteriores) es que no tienen por qué ser, en principio, definiciones equivalentes, es decir, definir extensionalmente
el mismo conjunto de sentencias. Son equivalentes para una loégica completa, pero no es el caso de la 16gica de
segundo orden con semantica estandar.

Ahora que tenemos una nocion operativa de teoria podemos introducir la nocion de categoricidad.

Definicion (categoricidad): decimos que una teoria Teo es categorica cuando todos sus modelos son
isomorfos. [

A la hora de presentar la nocion de categoricidad, Vddndnen atribuye esta propiedad no a las teorias,
sino a los sistemas axiomaticos.* “Se dice que un sistema axiomatico es categorico si tiene solamente un modelo
bajo isomorfismo” (2001: 3)3, o “un conjunto de axiomas es categérico cuando cualesquiera dos de sus modelos
son isomorfos” (2020: 2). No obstante, entender que la categoricidad es una propiedad del sistema axiomatico
entrafa ciertas contrariedades.

Asumamos que la categoricidad es una propiedad de los sistemas axiomaticos. Ya que la aritmética de
Peano es categorica (como se probara en la seccion 4) I1 tiene solamente un modelo bajo isomorfismo. Por otra
parte, hay al menos una sentencia 1, que por el teorema de Godel existe, que es indecidible en II, es decir: IT # Y
y I i+ —p. Asumiendo la consistencia de II, tenemos que ITU {} y IT U {=1} son conjuntos de sentencias
consistentes, ya que si I1 U {1} no fuera consistente, tendriamos que I1 + =, y si [1U {—=y} no lo fuera,
tendriamos que IT - ¢ (cf. Ebbinghaus et al. (1993: 73)). Por tanto, [T U {} y I1 U {=3)} son satisfacibles, y
tienen sendos modelos A y B. Pero A y B no son isomorfos, lo que contradice la categoricidad de II. Esta

* En este contexto, entendemos por “sistema axiomatico™ los axiomas de una teoria, y no un conjunto de axiomas
l6gicos mas los axiomas de la teoria.
® Traduccion propia. En Adelante, todas las traducciones son propias.

DOI: 10.9790/5728-2106035771 www.iosrjournals.org 60 | Page



La Aritmética De Peano Y La Logica De Segundo Orden

contrariedad se diluye cuando entendemos que la categoricidad es una propiedad de las teorias, y no del sistema
axiomatico.

En particular, a partir de II se generan dos teorias diferentes, a saber,
Teo(IF = {p|¢p € SENT(LA*) ATl E ¢},
Teo(ID" = {¢p|¢ € SENT(LA*>) ATl + ¢}.

Como se probara en las proximas secciones, Teo(I1)" es la teoria categorica de la aritmética de Peano.
Una propiedad que tiene una teoria I cualquiera cuando es categoérica es que es completa en el sentido de la
siguiente definicion:

Definicién (completud de una teoria): una teoria I es completa si y solo si para toda sentencia ¢ del
lenguaje apropiado, o bien ¢ € T o bien =¢p € T. H

Cuando dispongamos de la categoricidad de Teo (1)~ probaremos que es una teoria completa: para toda
sentencia ¢ de LA?, o bien ¢ € Teo(I1)F o bien =¢p € Teo(M)F.

En el caso de Teo ()" tenemos a la mencionada sentencia indecidible ¥, de modo que por definicion
de Teo (I, sabemos que Y & Teo(M)" y —p & Teo(I)". Por tanto, Teo(I1)" no es una teoria completa. Sobre
la base de estos hechos la contrariedad anterior de considerar categoricos los axiomas de I1 desaparece mediante
el siguiente razonamiento.

Ya que Teo(IT)" < Teo(I1)F tenemos que MOD (Teo(I1)™) € MOD(Teo(I1)"). En efecto, no para todo
modelo M € MOD(Zeo(I1)") tenemos que M € MOD (Teo(I1)F), pues de lo contrario no todos los modelos de
Teo(IT)F serian isomorfos, contradiciendo la categoricidad. En particular, de igual modo que antes, ya que i es
indecidible en Teo(T1)", y asumiendo la consistencia de este conjunto, tenemos que Teo(1)" U {p} y Teo (1" U
{—1)} tienen sendos modelos A y B, que no son isomorfos. Ahora bien, ya que Teo(I1)F es una teoria completa,
o0 bien Teo(IN)" U {y} € Teo(I)" o bien Teo(I)" U {—1p} € Teo(I1)", pero no ambos. Por lo tanto al menos
uno de los dos modelos A o B, no pertenece a MOD (Teo(I1)F). De modo que aunque podria aducirse que I1
genera una teoria cuyos modelos no son todos isomorfos, Teo(I1)", este hecho no contraviene los resultados sobre
categoricidad: estos modelos no isomorfos no pertenecen a MOD (Teo(I1)").

La peculiaridad es que ambas teorias son generadas por un solo sistema axiomatico, I1. En realidad, lo
que hay de fondo en estas consideraciones acerca de Teo(I1)F y de Teo(I1)" es que no toda formula P que es
consecuencia logica de I1 es un teorema deducible a partir de I1, y este hecho arrastra aires de incompletitud.

En adelante, cuando decimos que la aritmética de Peano es categdrica queremos decir que la teoria
Teo(IF lo es.

III.  El Teorema De Iteracién Y Las Operaciones Recursivas

El teorema de iteracion y las operaciones recursivas El primer paso que vamos a dar hacia la
demostracion de la categoricidad de la aritmética de Peano es la demostracion del teorema de iteracion. Este
teorema nos va a garantizar la existencia y la unicidad de un homomorfismo entre dos modelos de Peano
cualesquiera. Introducimos para ello la nociéon de homomorfismo.

Definiciéon (homomorfismo). Sean U y B dos estructuras cualesquiera con dominios en A y B
respectivamente. Un homomorfismo entre A y B es una funcion f que mapea A en B y que satisface las siguientes
condiciones:

1. Para toda constante ¢¥ y ¢®, f(c¥%) = ¢5;
2.Para cada funcion n-adica h¥ de ¥ y h® de B, y para todo v,...,v, de A4, f(R¥(v,...,v,)) =
hB(f(),.... f(v))-

3.Para cada relacion n-adica RY de U y R® de B, y para todo v,...,v, de A, si R%(v,...,v,) entonces

RE(f(v),.... f(vn)). H

A su vez, este teorema, que a continuacion se demuestra, es la justificacion de las funciones definidas
por induccion matematica o recursion para los modelos de Peano, como es el caso de la adicion y el producto.
Para nuestro caso, al definir una funcién f mediante recursion primero especificamos que la funcion se cumple
para ¢, es decir, especificamos el valor de f(¢); y entonces indicamos la regla para obtener f(S(v)) desde un
valor previo f(v). Esto determina una inica funcién f definida sobre el dominio de f. Las definiciones recursivas,
sin embargo, requieren de un fundamento que nos garantice que cualquier funcién definida mediante estas
condiciones para un modelo de Peano arbitrario existe y es Unica. Esta justificacion es el siguiente teorema.

Teorema de iteracion. Sean U = (N, ¥, S¥) un modelo de Peano y B = (N’, %, S®) una estructura
cualquiera. Existe un unico homomorfismo h de U en B satisfaciendo
1.h(*) =%
2.h(S¥(v)) = S®B(h(v)), paratodo v € N.
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Demostracion del teorema de iteracion

La demostracion del teorema de iteracion que vamos a presentar requiere de dos definiciones previas y
de la demostracion de dos lemas.®

Definicién (segmento): Sea A = (N, ¥, S¥) un modelo de Peano. Llamamos segmento a un subconjunto
G S Ntalquec € Gy que, paratodo v € N, si S(v) € G entonces v € G. HH

De esta manera, un segmento es una cadena decreciente de elementos de N hasta el elemento ¢. Mediante
esta definicion se entiende que tanto N como {c} son segmentos; este Gltimo de acuerdo al axioma A1, pues que
la definicion exige que ¢ pertenezca a G y ¢ no esta en el rango de S (por Al), se cumple vacuamente la segunda
parte de la definicion. Una vez introducidos los segmentos, pasamos a introducir la nocién de funcién parcial.

Definiciéon (funcién parcial): Sean U = (N, %, S¥) un modelo de Peano y B = (N’,c%,S®) una
estructura cualquiera. Llamamos funcion parcial a una funcién h desde un segmento G a N’ que satisface las
siguientes condiciones:
LLA(cM) =¢®
2.h(S¥(v)) = SB(h(v)), para todo v € N tal que S(v) € G.

Sobre la base de esta ultima definicion podemos formular los dos lemas que se precisan para la
demostracion del teorema.

Lema I. Sean ¥ = (N, ¥, S¥) un modelo de Peano y B = (N’, ¢®, S®) una estructura cualquiera. Cada
elemento de N estd en el dominio de una funcidn parcial que tiene como rango a N'.

Prueba. La prueba procede por induccion matematica. Para ello definiremos un conjunto H al que
pertenecen todos aquellos individuos de N que estan en el dominio de una funcidn parcial, y mostraremos que
H = N. Sea H={v € N|3(h)(h es una funcioén parcial A el dominio de h, dom(h), es un segmento A v €
dom(h))}.

Mostramos que ¢* € H. Como hemos visto antes, por A1 el conjunto unitario {c*} es un segmento. Ahora
bien, existe la funcion parcial h: {¢*} - N’ definida por la condicion 1 de la definicién de funcion parcia: h(c%) =
¢® (la condicion 2 de la se cumple vacuamente ya que {c*} no contiene a S¥(c%)). En consecuencia, {c*} =
dom(h), y por lo tanto ¢* € dom(h) y dom(h) es un segmento. De lo que se sigue que ¢* € H.

Mostramos que V(v)(v € H = S¥(v) € H). Asumamos que v € H para alglin v genérico. Por lo tanto,
existe una funcién h tal que h es una funcién parcial, donde dom(h) es un segmento y v € dom(h)). Si S¥(v) €
dom(h), concluimos. Si S¥(v) & dom(h), sea G = dom(h) U {S¥(v)}, y sea b’ = h U {{(S¥(v), SB(h(v)))},
de modo que S¥(v) € dom(h'). Tenemos que mostrar que G es un segmento y que h’ es una funcién parcial.
Con ello, concluimos que S¥(v) € H, de modo que aplicando A3 tenemos que H = N.

En primer lugar, vemos que G es un segmento ya que dom(h) lo es y v € dom(h). En particular, si hay
un S(v;) € G tal que S¥(v;) = S¥(v) mediante A2 tenemos que v; = v, y ya que v; € dom(h) tenemos que
v € dom(h) y G es un segmento. En segundo lugar, tenemos que mostrar que h' es una funcién parcial, es decir,
que satisface las condiciones
LA =c®
2.1/ (S¥(v)) = SB(h'(v)), para todo v € N tal que S(v) € G.

Para el caso de ¥ tenemos que h(¢¥) = h'(c¥) = ¢®, ya que en este particular h y h' coinciden. De igual
modo, si S¥(v) € dom(h) tenemos h(S¥(v)) = h'(S¥(v)) = S®B(h'(v)). En otro caso, por definicion de h’
tenemos que h'(S¥(v)) = SB(h(v)) = SB(h'(v)). O

Lema Il. Si f y g son funciones parciales y v € dom(f) N dom(g) entonces f(v) = g(v).

Prueba. Mediante induccion matematica. Sean U = (N, ¢¥, S¥) un modelo de Peano y B = (N’, ¢3, SB)
una estructura cualquiera. Mostraremos que para el conjunto H = {v € N|V(f, g)(f, g son funciones parciales A
v € dom(f) Nndom(g) = f(v) = g(v))} tenemos que H = N.

Mostramos que ¢¥ € H. Sean f y g dos funciones parciales genéricas. Como dom(f) y dom(g) son
segmentos, tenemos que ¢ € dom(f) y ¥ € dom(g), y en consecuencia ¢* € dom(f) N dom(g). Pero
h(c%) = ¢® para cualquier funcion parcial h. En consecuencia f(c*) = g(¢%) y ¢ € H.

Mostramos que V(v)(v € H = S¥(v) € H). Sean f y g dos funciones parciales genéricas. Asumamos
que v € H para algiin v genérico y que S¥(v) € dom(f) N dom(g). Por la condicién 2 de la definicion de las
funciones parciales tenemos que £ (S¥(v)) = SB(f(v)) y que g(S¥(v)) = S®(g(v)). Ahora bien, ya que v € H

6 Una demostracion mas sintética de este teorema puede ser encontrada en Mendelson (1973:57-59).
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tenemos que f(v) = g(v), de modo que ST(f(v)) = S(g(v)). De lo que se sigue por la condicion 2 que
f(S¥(v)) = g(S¥()), y S¥(v) € H. Mediante A3, tenemos que H = N O

Prueba (teorema de iteracion). Sean U = (N, ¥, S¥) un modelo de Peano y B = (N’,¢%, S®) una
estructura cualquiera. En primer lugar reparamos en que para cualquier v € N hay un elemento y solo un elemento
v; € N’ tal que v; = g(v) para cada funcion parcial g: por una parte, por nuestro lema I, para todo v € N, v estd
en el rango de alguna funcion parcial; si suponemos ahora que para dos funciones parciales genéricas g y g’
tenemos (v, v;) € g y (v, v,) € g’ para v; # v,, entonces tenemos v € dom(g) N dom(g") pero f(v) # g(v),
lo que contradice nuestro lemma II. Nuestro supuesto, por tanto, es falso.

Sea h la union de todas las funciones parciales, esto es: una funcion tal que dom(h) = N y tal que para
cualquier v € N hay un tnico v; € N' tal que (v, v,) € h. Tenemos que probar que h es un homomorfismo de N
a N’y que es el Gnico posible.

De una parte, tenemos que h(c¥) = ¢®, por la condicion 1 de la definicion de funcién parcial,
satisfaciendo asi la primera condicion del homomorfismo preciso para el teorema. Por otra parte, para cualquier
x, h(S¥(x)) = f(S¥(x)) para alguna funcién parcial f por nuestro lema I, por ser S¥(x) un elemento de N. Ya
que f es una funcién parcial tenemos que f(S¥(x)) = SB(f(x)). Pero ya que por definicion de h (la unién de
todas las funciones parciales) h(x) = f(x), tenemos que h(S¥(x)) = S®(h(x)). De esta manera, h es un
homomorfismo.

Queda por probar que h es unica. Ahora bien: h es una funcion parcial sobre el segmento N, y por el
lema II, si tuviésemos otra funcion h’' con dominio en N tendriamos que h = h'. Por tanto, h es unica. Por lo que
concluimos que existe un tnico homomorfismo h de U en B satisfaciendo
1.h(™) = 3;
2.h(S¥(v)) = SB(h(v)), paratodov € N. O

Como hemos dicho al comienzo de la seccion, las definiciones mediante la induccién matematica o
recursion estan justificadas en el marco de los modelos de Peano a causa de que nuestro teorema de iteracion nos
garantiza la existencia de un tinico homomorfismo, con las condiciones que se han expuesto arriba, de un modelo
de Peano U en otra estructura cualquiera. Nuestro teorema de iteracion, apunta Henkin, “constituye una
justificacion de todas las definiciones por induccion matematica en los modelos de Peano” (Henkin (1960: 337)).
En lo que debemos reparar aqui es en que esta es una propiedad que caracteriza a los modelos de Peano, pues son
los unicos, segin nos asegura el siguiente teorema, en que estan justificadas todas las definiciones por induccion
matematica.

Teorema. Si U es un modelo tal que para cualquier modelo B hay un tinico homomorfismo h de U en
B, entonces A es un modelo de Peano.

Prueba. Omitimos la prueba, que puede ser encontrada en Manzano (1996: 132).

En otras estructuras, como en los modelos de induccion, no estd garantizada la existencia de cualquier
funciéon que podamos definir mediante la recursion. Un ejemplo significativo es el de la exponenciacion, pues
hay modelos de induccion para los cuales la exponenciacion no es ni una funcion (para un ejemplo, cf. Manzano
(1981: 25)).

Aplicaciones del teorema de iteracién

Como hemos apuntado anteriormente, aparte de intervenir activamente en nuestra prueba de
categoricidad de la aritmética de Peano, sobre la base del teorema de iteracion podemos introducir aquellas
funciones que se definen recursivamente. En particular, la adicion y el producto. Este teorema nos garantiza que
tales funciones, para los modelos de Peano, existen y son unicas, es decir: dados los axiomas de la adicion y el
producto (las expresiones 1-2 y 5-6 siguientes), la funcion que definen existen y son inicas. Para mostrarlo vamos
a aplicarlo al caso de la adicion, que es analogo al caso del producto.

Teorema: Sea A = (N, ¥, S¥) un modelo de Peano arbitrario. Hay en U una tnica funcién + que
satisface las siguientes dos condiciones:
L4+, =v
2.+(vy, S¥(v2)) = S¥(+(vy, 12))
para todo v,v,v, € N.

Prueba. Existencia. Sea U,, = (N,n, S¥) una estructura para cada n € N. El teorema de iteracion nos
garantiza que hay un tnico homomorfismo h,, entre 2 y 2, que satisface las condiciones:
3.h (M =n
4. by (S¥(v)) = S¥(h(v))

para todo v € N. Sea + definida por +(n,v) = h,(v). Vemos que h,(c*) = +(n,¥) =n y que
+(n, S¥(v)) = h,,(S¥(v)) = S¥(h,(v)) = S¥(+(n, v)). Asi definida, la funcion + existe.
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Unicidad. Supongamos que f es una funcion que satisface las condiciones 1y 2. Sea, para cadan € N,
fn definida por f,,(v) = f(n,v) para cada v € N. En efecto, la funcion f satisface las condiciones 3 y 4, pero de
acuerdo con el teorema de iteracion la funcion definida por 3 y 4 es tnica. De lo que se sigue que f(n) = h(n)
paratodon € N, y, por tanto, f = h. [

Ahora que disponemos de la adicién podemos introducir una relaciéon de orden que es usualmente
introducida en la aritmética de Peano: la relaciéon menor que, <.

Definicion (<): V(vy, v) (v, < v, © 3(v3)(vy + S(v3) = v,)). B
De manera semejante a la adicion puede ser introducido el producto.

Teorema: Sea A = (N, ¥, SQI) un modelo de Peano arbitrario. Hay en 2 una unica funcién X que
satisface las siguientes dos condiciones:
5. x (v, =¥
6. X (v1, S¥(1)) = +(X (v1, 1), v1)
para todo v, v;,v, € N.

Prueba. Analoga a la anterior para las condiciones 5 y 6. Una prueba de la aplicacion del teorema de
iteracion al producto puede ser encontrada en Mendelson (1973: 68). Esta prueba, sin embargo, ya no es analoga
a nuestra prueba anterior por la razon de que las condiciones 1 y 3 son, respectivamente, +(n,¢) = S(n) y h,(c) =
S(n). O

Hemos dicho al comienzo que en estos teoremas, las condiciones 1 y 2 y las condiciones 5 y 6 son los
axiomas de la adicion y el producto. La razon por la que en IT estan ausentes es que son redundantes: las funciones
que definen estos axiomas pueden ser introducidas sobre la base de un teorema, el teorema de iteracion, que es a
su vez probado por mediante los axiomas de II.

IV.  La Categoricidad De La Arismética De Peano

Una vez demostrado el teorema de iteracion nos queda atin por presentar un teorema del que también
haremos uso en la prueba de la categoricidad de la aritmética de Peano. Es en este nuevo teorema en el que los
modelos de induccion juegan un papel relevante. Mediante este teorema demostraremos que entre un modelo de
Peano U y un modelo de induccion J existe siempre un homomorfismo. En particular, ya que los modelos de
Peano son modelos de induccion, encontraremos que entre cualesquiera dos modelos de Peano tenemos un
homomorfismo que, ademads, por el teorema de iteracion, es unico. Nos quedarda mostrar que este Unico
homomorfismo que existe entre dos modelos de Peano arbitrarios es, de hecho, un isomorfismo. Para comenzar,
introducimos una nueva nocion: la de imagen homomorfica.

Definicion (imagen homomorfica): Sean U y B dos estructuras cualesquiera. Decimos que B es una
imagen homomorfica de U si existe un homomorfismo h de A sobre B. HH

Debemos reparar en que esta definicion demanda un homomorfismo h de U sobre (onto) B, esto es: el
rango del homomorfismo h es el dominio de B al completo. El siguiente teorema nos asegura que, asumiendo
que B es la imagen homomorfica de U, cuando A es un modelo de Peano entonces B es un modelo de induccion,
y viceversa: cualquier modelo de induccion es la imagen homomorfica de un modelo de Peano.

Teorema 4.1. Sean A = (N, & SQI) un modelo de Peano y B = (N’, 3, S%) un modelo arbitrario: B es
una imagen homomorfica de U si y solo si B es un modelo de induccion.

Prueba. Tenemos que probar que B verifica nuestro axioma A3.

= (Necesidad). Supongamos que B es una imagen homomorfica de U, siendo h el homomorfismo preciso de A
sobre 8. Sea G’ cualquier subconjunto de N’ para el cual ¢® € G’ y donde G’ esta cerrado bajo S®. Ahora bien:
si G' = N’ entonces B serd un modelo de induccion. Vamos a mostrar el antecedente del anterior condicional.

Consideremos al conjunto G de N que consiste en aquellos elementos v tales que h(v) EG': G = {v €
N|h(v) € G'}. Tenemos que ¢* € G, yaque h(¢¥) =Py P €.

Supongamos ahora que v € G, y por lo tanto h(v) € G'. Por lo tanto, S®(h(v)) € G’ porque G’ esta
cerrado bajo S®. Por ser h un homomorfismo, tenemos que ST(h(v)) = h(S¥(v)). De tal modo que S*(v) € G.
Por lo tanto, G esta cerrado bajo S¥. Ya que U es un modelo de Peano, verifica a nuestro axioma A3,y G = N.
Pero entonces h(v) € G' para todo v € N por definicion de nuestro conjunto G. Ya que h tiene como dominio a
N y como rango a N' al completo, tenemos que G’ = N'. Asi, B es un modelo de induccion y esto completa la
prueba de necesidad.

& (Suficiencia). Supongamos ahora que B es un modelo de induccion. Ya que U es un modelo de Peano,
por el teorema de iteracion sabemos que existe un unico homomorfismo h de U sobre B. Sea G = {v €
N'|3(v,) € Ny h(v;) = v}. Tenemos que mostrar que G = N', y que por lo tanto el dominio de h es N’ al
completo. Ya que h(c%) = ¢®, ¢® € G y el rango de h contiene a ¢®.

Asumamos que para un elemento genérico v tenemos que v € G. Por lo tanto, para algiin v; € N tenemos
que h(v;) = v por definiciéon de G. Ya que sabemos que N esta cerrado bajo la funcion S¥, tenemos que existe
un S¥(v;) € N. Ya que h es un homomorfismo, h(S¥(v,)) = SB(h(v;)) = S®(v). Por lo tanto, SB(v) € G,

DOI: 10.9790/5728-2106035771 www.iosrjournals.org 64 | Page



La Aritmética De Peano Y La Logica De Segundo Orden

pues existe un v, en N tal que h(v,) = SB(v), a saber, tomando v, = S¥(v,). Por ser B un modelo de induccion
verifica nuestro axioma A3, de tal forma que G = N', y con ello el rango de h es N’ al completo. Esto completa
la prueba de suficiencia, y con ello se completa la prueba del teorema. [

Por 1ltimo, antes de pasar a la prueba de categoricidad, vamos a presentar un teorema sobre
homomorfismos que nos va a simplificar su demostracion. Mediante este teorema veremos que el homomorfismo
que hay entre cualesquiera dos modelos de Peano es, de hecho, un isomorfismo.

Teorema 4.2. Sean A y B dos estructuras. h es un isomorfismo de U en B si y solo si a) existe un
homomorfismo h’ de B en 2, b) la composicion k' o h es la identidad de 2 en A y ¢) la composicion h o h' es la
identidad de B en B.

Prueba. Omitimos la prueba, que puede ser encontrada en Manzano (1989: 58). [
Teorema (categoricidad de la aritmética de Peano). Cualesquiera dos modelos de Peano son isomorfos.

Prueba. Sean A = (N, ¥, S¥%) y B = (N’,®, SB) dos modelos de Peano cualesquiera. Por ser ambos
modelos de induccion, el teorema 4.1 nos asegura que existen dos homomorfismos h y h' de U sobre B y de B
sobre A respectivamente. De este modo, tenemos las composiciones h' e h'y h o h' que son dos homomorfismos
de A en Ay B en B respectivamente. Ahora bien, el teorema de iteracion nos asegura que los homomorfismos
h' o hy hoh'son nicos. Siendo los unicos homomorfismos que cada una de estas estructuras encuentra sobre
si misma, y ya que cada estructura tiene como homomorfismo sobre si misma la identidad, las composiciones
h' o hy hoh'sonlaidentidad de 2 en A y de B en B respectivamente. De este modo, el teorema 4.2 nos asegura
que la funcién h es un isomorfismo de U sobre B. [

El anterior teorema tiene una importancia mayuscula en el plano metamatematico, pues a partir de ¢l se
sigue que la teoria Teo(I1)" es categorica y, por tanto, es completa en el sentido que hemos apuntado en la seccion
2.1. Esto puede ser probado de modo genérico para cualquier teoria I: si T es categdrica, entonces I es completa.
Pero lo podemos probar para Teo(I1)" en particular del siguiente modo.

Teorema (completud de Teo(I1)). La teoria Teo(I1)" es completa, esto es, para cada ¢ € SENT(LA?)
tenemos que o bien ¢ € Teo(I1)F o bien =¢p € Teo ().

Prueba. Por reduccion al absurdo. Supongamos que Teo(I)F no es completa. En tal modo, ¢ &
Teo(I1)" ni —¢p & Teo(I1)" para alguna sentencia ¢p. Asumiendo la consistencia de Teo(I1)F, tenemos entonces
que los conjuntos Teo(I1)* U {¢} y Teo(I1)F U {—¢} son consistentes y, por tanto, satisfacibles. Sean A y B
sendos modelos de esos conjuntos. Ahora bien, 2 y B no son isomorfos (ni siquiera elementalmente equivalentes),
pero ambos son modelos de Teo(I1)". Pero esto contradice los resultados de categoricidad de Teo ()", y, por

tanto, nuestro supuesto es falso. [

V.  La Categoricidad De Teo(I1)" Y La Légica De Segundo Orden

Hasta ahora no nos hemos detenido mucho en considerar con cierto detalle el axioma de induccion en su
formulacion de segundo orden, A3. Un aspecto importante que cabe destacar es que ningiin modelo de Peano U
puede contener en su dominio nimeros no estindar como consecuencia de satisfacer A3. Entendemos por
nimeros estdndar el conjunto formado por el elemento destacado y sus sucesores NE =
{c¢, S(c), S(S(c)), S(S(S())). ..}, mientras que los numeros no estandar que encontramos en primer orden no son
sucesores de ningun nimero estandar. Ahora bien, si suponemos que el dominio de U, N, contiene nimeros no
estandar podemos extraer una contradiccion. La razon es la siguiente: supongamos que N contiene niimeros no
estandar y que NE € D?, donde D* es el dominio de las variables de subconjuntos (P (N)) de segundo orden;
como N contiene a ¢ y esta cerrado bajo S¥, concluimos que N¥ = N por A3, y encontramos una contradiccion
entre los dos supuestos (;no contenia N niimeros no estandar?). Pero puesto que D! = P(N) y NE € P(N),
entonces NE € D, Si después de todo queremos mantener la existencia de nimeros no estindar en el dominio de
A debemos relajar una condicién esencial de la seméntica estandar y convertir D! = P(N) en D! € P(N), de
modo que NE ¢ D, En este particular ahondaremos en la siguiente seccion, pues supone una modificacién en la
semantica (que no es ad hoc para la aritmética de Peano).

El anterior razonamiento, sin embargo, muestra que con semantica estandar (la que hemos mantenido
hasta ahora) un modelo que contenga en su dominio numeros no estandar no puede modelizar a A3, ya que A3
opera sobre ¢ y sus sucesores exclusivamente. De este modo, conjuntos como {v € N|v = cV Iy(v = S(¥))}
contienen solo (y todos los) niimeros estandar pero no por la definicion del propio conjunto sino por el ambito de
aplicacion de A3. Los numeros estandar son, de este modo, definibles.

En su version en primer orden, el esquema axiomatico de induccion es incapaz de definir los nimeros
estandar a consecuencia de que ninguna férmula de LA puede singularizar al conjunto NE. Por ejemplo, si
tratamos de hacerlo a través de la férmula “vi = ¢ V 3(v2)(vi = S(v2))”, mediante el esquema axiomatico de
induccién podremos singularizar el conjunto al que pertenece ¢ y aquellos elementos que son sucesor
(i.e. pertenecen al rango de la funciéon S, para mayor precision) de algiin elemento del dominio del modelo en
particular que se esté considerando. Pero como es bien sabido, para la aritmética de Peano de primer orden la
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expresion “sucesor de algiin elemento del dominio” no quiere decir “sucesor de un numero estandar”. En
particular, ya que existen modelos que contienen en su dominio niimeros no estandar y que son modelos de la
aritmética de Peano de primer orden (denominados modelos no estdndar, que no son isomorfos al prototipico pero
si elementalmente equivalentes) que satisfacen esta sentencia, el conjunto que define puede contener nimeros no
estandar, que también son sucesores de otros numeros (no estandar) (cf. Manzano (1989: 220-221)). Como el
esquema axiomatico de induccidén solamente opera sobre conjuntos definibles mediante LA y ninguna formula
singulariza al conjunto NZ, los nimeros estandar son indefinibles, aunque no vamos a ahondar més en esto por
limitacion de espacio (cf. Manzano (1989: 222) para mas detalles).

Resultados negativos

Como apuntdbamos en la seccion 2.1, I1 genera dos teorias, Teo(I1)" y Teo(I1)", tales que hay al menos
una sentencia ¢, que por el teorema de Godel existe, tal que ¢ € Teo ()T y ¢ & Teo(I1)". De este modo, como
se prueba en Manzano (1996: 128), la propia logica de segundo orden resulta ser incompleta ya que para la
sentencia A1 A A2 A A3 — ¢ tenemos que Il = A1 A A2 A A3 - ¢ mientras que [1 + A1ANA2 ANA3 - ¢. En
esta seccion vamos a ver como a partir de la categoricidad de la aritmética de Peano, es decir, de Teo(I1)",
podemos probar otros resultados negativos, la carencia de ciertas metapropiedades de la l6gica de segundo orden
con semantica estndar. Estos resultados, sin embargo, no son caracteristicos de la categoricidad de Teo(I1)",
sino mas bien de la capacidad expresiva de la logica de segundo orden con semantica estandar que nos permite
tener teorias categoricas con dominios infinitos; lo mismo nos valdria en este punto la teoria categorica del analisis
real. No obstante, ya que disponemos de la categoricidad de Teo(I1)*, lo haremos a través de ésta.

El primero de estos metateoremas de los que carece la 16gica de segundo orden con semantica estandar
es el teorema de Lowenheim-Skolem-Tarski: sea @ un conjunto de férmulas que es satisfacible sobre un dominio
infinito y sea k un cardinal mas grande o igual a la cardinalidad de ®; entonces @ tiene un modelo de cardinalidad
k. La categoricidad de Teo(I1)" demanda un isomorfismo entre todos sus modelos que exige que el dominio de
todos sus modelos tenga una cardinalidad de w, y contraviene la existencia de otros modelos con cardinalidad
superior: perderiamos el isomorfismo entre todos los modelos de la teoria.

Teorema. En logica de segundo orden con semantica estandar no se cumple el teorema de Léwenheim-
Skolem-Tarski.

Prueba. Supongamos, contrario a lo que queremos concluir, que el teorema se cumple. En particular,
Teo(I)F es un conjunto de sentencias satisfacible (asumiendo su consistencia) para modelos de cardinalidad w.
Sea k una cardinalidad estrictamente mayor que w, esto es, k > w. De esta manera, tenemos dos modelos de
Teo(IDF, M y M', tales que M| =w y |M'| = k. Ahora bien, M y M’ no son isomorfos ya que sus
cardinalidades son distintas, lo cual contradice el hecho de que Teo(I1)" es una teoria categorica y, por tanto,
nuestro supuesto (esto es, que el teorema se cumple) es falso. [

La segunda de estas metapropiedades de la que podemos probar que no se cumple a partir de Teo (1)~
es la compacidad. La razon es, en cierto sentido, la misma: de cumplirse, la teoria tendria modelos no estandar
con niimeros no estandar (no isomorfos) y esto desvaneceria, de nuevo, la categoricidad de Teo(I1)".

Teorema. La 16gica de segundo orden con semantica estandar no es compacta.

Prueba. Sea 2 = (N, ¢, S) un modelo de Peano, y seal’ = Teo(I)F U {e > ¢, e > S(c), e > S(S(¢)), e >
S(S(S(c)))...}. Si tomamos cada subconjunto finito I'' de I’ vemos que es finitamente satisfacible, pues cada I'’
puede tener un modelo consistente en expandir el lenguaje de la interpretacion de U mediante la constante e y
asignar a e cualquier elemento mayor que los presupuestos en I''. Sin embargo I no es satisfacible, pues en caso
contrario Teo(I)F tendria un modelo que no es isomorfo con el resto, lo que contraviene a la categoricidad
probada. (Tal modelo dispondria de al menos un elemento que no es denotado mediante ninguno de los términos
¢, S(¢), S(S(c)), S(S(S())), que no puede suceder en el resto de modelos de Peano). Por lo tanto, no todo
conjunto de formulas que es finitamente satisfacible es satisfacible. [

En realidad, estos resultados no tienen por qué ser interpretados en un sentido negativo si reparamos en
que su tenencia deforma, en cierto sentido, las teorias o su modelado, como es el caso de la logica de primer
orden. Dejaremos estas valoraciones para el apartado final de conclusiones. No obstante, tanto los resultados de
la carencia de estas metapropiedades como la categoricidad de Teo(I1)" pueden ser invertidos para la logica de
segundo orden cuando modificamos la semantica.

VI.  Légica De Segundo Orden Con Semantica No Estandar
Hasta ahora nos hemos circunscrito al marco de la ldgica de segundo orden con semantica estandar. Una
ventaja de este marco, como dijimos, es que genera teorias categoricas incluso cuando el dominio de los modelos
de tales teorias presupone una cardinalidad infinita, como la de la aritmética de Peano que aqui consideramos o
la del analisis cuando el axioma del supremo (presentado en la introduccion de este trabajo) es formulado en un
lenguaje de segundo orden. Ahora bien, un elemento clave de esta semantica, que esta en intima conexion con la
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categoricidad de la aritmética de Peano, es la nocion de conjunto y su incidencia en las estructuras estandar;

nocion que se toma directamente de la metateoria y su trasfondo teérico-conjuntista (cf. Manzano (1996): 150).

En lo que respecta a la categoricidad de la aritmética de Peano, es crucial que el alcance de la
cuantificacion sobre variables de propiedades (V(X1), 3(X1)) sea todos los conjuntos de individuos, es decir, el
conjunto potencia del dominio. Esta es una condicion que respeta la semantica estandar en la definicion de las
estructuras.

En particular, las propiedades y relaciones quedan prefijadas en las estructuras estandar al exigir a sus
respectivos universos D™ (para todo n € N) que contengan todas las posibles propiedades y relaciones. En detalle,
tomemos una estructura A de este tipo cuyo dominio es A, cuyo universo de relaciones’ (es decir, el rango de las
variables de segundo orden de ) n-arias es un elemento de la serie {D™),,»;. En este caso, tenemos que D! =
P(A),y que D™ es el conjunto potencia del n-ésimo producto cartesiano de A sobre A, D™ = P(A™).

En (1950) Henkin introduce una semantica alternativa, no estandar, para probar la completud en la teoria
de tipos. En particular, Henkin presenta dos tipos de estructuras, los marcos y los modelos generales, en los que
las condiciones para los dominios relaciones de (D"),»; que acabamos de ver para la semantica estandar son
modificadas, relativizando la nocién de conjunto a cada estructura en particular de modo explicito. A diferencia
de las estructuras estandar, el universo de propiedades D! de una estructura-marco 9t no tiene por qué contener
todos los subconjuntos de su dominio de individuos M, relajando la condicién a D! € P (M). De igual modo, la
condicion es modificada para el resto de relaciones: D™ € P(M™). De este modo, la definicién de estructura (a
las que llamaremos marcos) requiere alguna modificacion:

Definicion (marco): Llamamos marco a una dupla 9t = (2, (D™),,»,) donde A = (M, I, (R™),»1) €s una
estructura y (D™),,»; es una coleccion de dominios n-arios de las variables de segundo orden tales que:

I. M esun universo no vacio de individuos de la estructura ;

II. I es un conjunto de elementos destacados de M;

III. Para cada constante de relacion P™ € (R™)n = 1, P™U es una relacion n-aria sobre individuos; Ademas, cada
relacion destacada de 2 debe ser un miembro del universo correspondiente D™ (D™ en el caso de las
funciones n-arias).

IV. Para cada n > 1, D™ es un universo de relaciones n-arias tal que D™ € P(M™), donde M™ es el n-ésimo
producto cartesiano de M sobre si mismo. H

De esta manera, un caso extremo de marcos son las estructuras estandar (a las que llamaremos marcos
completos), pero la clase de éstas solamente es una subclase propia de la clase de los marcos. Basta con considerar
aquellas estructuras para las que D™ c P(M™) para cualquier n. Otro caso extremo de esta definicion es que
permite incluir entre los marcos a las estructuras de primer orden cuando para un marco 2 tenemos que D™ = @
para todo n, aunque en este trabajo no se tendran en cuenta estos marcos®. Por otra parte, una logica de segundo
orden con semantica de marcos pierde cierto poder expresivo. Por ejemplo, la identidad entre individuos ha de
ser introducida como simbolo primitivo a causa de que la relacion “=” definida mediante la férmula
Vv, v)(vy =v, @ VX)X (v,) © X(v,))) ya no puede ser interpretada como la igualdad entre los
individuos del marco que satisface esta sentencia. Consideremos el marco M = (M, (D™),,»1), donde M = {a, b}
y D' = {@, M}. Hay que resaltar que {a},{b} & D' aunque {a},{b} € P(M). Sea i = (M, I) una interpretacion
tal que i(a) # i(b), donde i(a) =a™ y i(b) =b™. Ahora bien, (M,I) &y V(X)(X(a) © X(b)) ¥y
(M, I) = a # b, si “=" es el simbolo de la relacion de identidad. Esta es una consecuencia directa que trae
consigo la introduccion de una semantica de marcos en relacion al poder expresivo. Los subconjuntos incluidos
en D! no son, como se ha hecho notar, todos los posibles subconjuntos de 9; si asi fuera, como sucede en los
marcos completos, tendriamos que (M, I) ¥ V(X)(X(a) © X(b)). Manzano ha apuntado en (1996: 150-151)
que la nocién de “subconjunto” que las estructuras estandar toman del trasfondo tedrico conjuntista de la
metateoria queda, en una semantica de marcos, relativizada a cada estructura. Es decir, en cada marco se hacen
explicitos aquellos subconjuntos que pertenecen a los dominios a los que las variables de segundo orden refieren,
que, segiin hemos visto, no tienen por qué ser todos los posibles.

Para el caso que nos ocupa en este trabajo, esta modificacion en las estructuras altera directamente los
resultados relativos a la categoricidad de la teoria Teo(I1)F y al alcance del axioma de induccion. En (1950: 89)°
Henkin escribe:

7 Por simplicidad, entendemos que una propiedad o un subconjunto del dominio de la estructura es una relacion
[-aria.

8 De este modo nuestra definicién concuerda con la definicién de Vidninen (2015: 122) aunque no enteramente
con la que se presenta en Manzano (1996: 154).

9 Los modelos generales a los que se alude constituyen una subclase de la clase de los marcos que trataremos
inmediatamente.
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Como Skolem apunta, sin embargo, esta condicion [la categoricidad] solamente se obtiene si “conjunto”
—como aparece en el axioma de induccién completa (nuestro P3) [nuestro A3]— es interpretado con su
significado estandar. Ya que, sin embargo, el alcance (“todos los conjuntos de individuos™) del cuantificador
V(X) puede variar de un modelo general a otro, se sigue que podemos esperar modelos no estandar para los
axiomas de Peano. (los corchetes no estan en el original)

Hemos considerado brevemente los marcos en general, aunque la semantica que nos interesara en esta
parte del trabajo es la que tiene en cuenta solamente un tipo particular de marco: los modelos generales que
aparecen en la cita anterior. La peculiaridad de los modelos generales es que son marcos que satisfacen el esquema
axiomatico de comprehension.

Definicion (Modelo general): Un modelo general es un marco que satisface todas las sentencias de
comprehension, es decir, que satisface el cierre universal de todas las instancias del esquema axiomatico de
comprehension (AC): A(X™)V(vq, Vg, .., V) (XM (01, Vg, ..., V) © P(V4, Vg, ..., 1)), donde ¢ es una formula
de L? en la que X™ no ocurre libre. FH

La idea que hay detras de AC es garantizar la existencia de la relaciéon X™ formada por los individuos
Uy, Vg, ..., Uy para los que ¢p(vq, vy, ..., 1) es satisfecha, es decir: X™ = {v|¢p(v)}10. De este modo, si ® es un
modelo general y (D™),., la secuencia de dominios que sirven de rango de las variables de segundo orden de ®,
entonces AC nos garantiza que todas las relaciones que podemos definir mediante L? para el modelo general ®
existen en el correspondiente D™ de (D™),,», (cf. Véddnidnen y Wang (2015: 122)).

Como se puede apreciar, todos los marcos completos (estructuras estandar) cumplen esta condicion ya
que a cada D™ de (D™),,», pertenecen todas las relaciones posibles y, entre ellas, aquellas definibles mediante L?.
Sin embargo, esto no es cierto para cualquier marco. La relacion que encontramos entre estas estructuras es la
siguiente: la clase de los marcos completos esta propiamente incluida en la clase de los modelos generales; ésta,
a su vez, esta propiamente incluida en la clase de los marcos.

Una légica de segundo orden basada en la semantica de modelos generales tiene ciertas metapropiedades
de las que la logica de segundo orden con semantica estandar carece. Por ejemplo, es completa en sentido fuerte
con respecto al calculo C, presentado en Manzano (1996: 79-ss), compacta y cumple el teorema de Léwenheim-
Skolem!!. Por contra, parte de la potencia expresiva de la logica de segundo orden con seméntica estandar
desaparece; en particular, la capacidad de caracterizar la teoria Teo(I1)™ bajo isomorfismo de todos sus modelos.
En efecto, el teorema de compacidad nos va a permitir generar modelos no estandar de la aritmética de Peano. De
hecho, doblemente no estandar: modelos no isomorfos con el modelo arquetipico que son, ademas, modelos
generales. Con ello, la categoricidad de la aritmética de Peano, o de Teo(I1)"~ para ser mas precisos, desaparece.

Como acabamos de apuntar, encontramos dos tipos de modelos no estandar de Teo(II) con la semantica
no estdndar de modelos generales. En primer lugar estin los modelos generales de Teo(I1)F que son no estandar
en sentido semantico. Precisamos esto mediante la siguiente definicion.

Definiciéon (Modelo de Peano general): Un modelo de Peano general es un modelo general 9t =
{(N, ¢, S),(D™),»1) donde la estructura del marco es un modelo de Peano. FH

Entre los modelos de Peano generales encontramos, de una parte, los modelos de Peano en su sentido
estandar (que son marcos completos); y de otra, aquellos para los que D™ # P(N) para algin n, siendo N el
dominio del modelo. Estos tltimos modelos son modelos no estdndar en su sentido semantico, y guardan una
relacion estrecha con el segundo tipo de modelos no estandar (a secas), que son aquellos modelos que son no
estandar por tener en su dominio nimeros no estandar (y no ser isomorfos al modelo de Peano prototipico a causa
de ello). Estos ultimos pueden ser hallados mediante compacidad del mismo modo que en logica de primer orden.
Teorema: Con semantica de modelos generales, la aritmética de Peano tiene modelos no estandar.

Prueba: Lo probaremos mediante compacidad. Sea A = Teo(I1)F U {¢ # ¢, ¢ # S(¢), ¢ # S(S(¢)), ¢ #
S(S(5(c)))...}. Tenemos que mostrar que A es satisfacible. Para ello, sea A" un subconjunto arbitrario finito de
A. Ahora bien, A’ tiene un modelo que consiste en un modelo de Peano con un lenguaje extendido mediante la
constante ¢, donde ¢ es asignado a cualquier elemento mayor que los presupuestos en A’. Como A’ fue tomado en
modo genérico, concluimos que A es finitamente satisfacible y, por tanto, es satisfacible. Sea 9t un modelo de A;

por serlo, también lo es de Teo(I1)". Ahora bien, it % A, donde A es el modelo de Peano prototipico. O
Aunque no vamos a detenernos a desarrollar hechos sobre los nimeros no estandar, vemos que hay
modelos de la aritmética de Peano que los tienen como elementos en sus dominios. Y su incidencia en estos
modelos no es inocua porque un modelo que contenga en su dominio nimeros no estandar es, a su vez, un modelo
general de Peano no estandar en sentido semantico. En particular, del dominio de relaciones 1-arias D* tendremos

10 Algunos sistemas axiomaticos de la aritmética de segundo orden, como el presentado en Simpson (2009: 4),
incluyen AC entre sus axiomas en el marco de la semantica estandar.

' Las pruebas pueden encontrarse, ademas de en Henkin (1950: 85-88), en Manzano (1996: 168-169) y Shapiro
(1991: 90-93).
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que excluir a los numeros estandar, siendo estos el conjunto formado por el elemento destacado del modelo y
todos sus sucesores: NE = {c, S(c), S(S(c)), S(S(S(c)))...}. Esto es asi en virtud de que A3 nos fuerza a concluir
que si N € D! para un modelo de Peano general ®, entonces el dominio de ® no puede contener niimeros no
estandar, pues al aplicar la induccién sobre NZ tenemos que Nf = G, donde G es el dominio de ®; si los contiene,
entonces NE ¢ D. Este hecho lo podemos expresar mediante el siguiente teorema.

Teorema: Si Jt es un modelo de Peano no estandar, entonces Jt es un modelo general es no estandar en
sentido semantico.

Prueba: Sea N el conjunto de los ntimeros estandar incluido en el dominio de 9%, N. Contrario a lo que
queremos concluir, supongamos que NZ € D!. Ahora bien, c € N y N est4 cerrado bajo la funcién S. Por ser
9t un modelo de Peano, el axioma de induccién A3 nos hace concluir que N = N. Pero esto es imposible, ya
que N contiene niimeros no estandar y, por tanto, nuestro supuesto es falso, es decir, N & D!. Pero entonces
D! # P(N) y 9 es no estandar en sentido semantico. [J

En efecto, aunque con esta semantica hemos ganado para una l6gica de segundo orden metapropiedades
como la completitud y la compacidad, es a cambio, de nuevo, de pagar el precio de la categoricidad de Teo(I1)F
o de la definibilidad de NE.

Categoricidad interna

Como advertiamos en la introduccion, hay todavia una nocidon que nos va a permitir agrupar modelos de
Teo(I1)F en clases de estructuras isomorfas: la nocion de categoricidad interna. Esta nocion ha sido aplicada a la
logica de segundo orden con semantica de modelos generales por Védnénen (cf. (2012), (2015), (2020)).

Una de las caracteristicas expresivas de la logica de segundo orden, aun con semantica general, es que
su lenguaje permite expresar que existe una funcion de isomorfismo entre dos estructuras mediante una sentencia,
cuando éstas son isomorfas. Por ejemplo, sean & = (U®, T®) y D = (M®, R®) dos estructuras isomorfas, donde
U® y M? son los dominios de las estructuras, y tanto T® como R® son relaciones 2-arias. Entonces, la sentencia
IS(U,M,T,R):

ARV (U W,) » M(F(v1))) AV(01)3 (W) (M (v1) » (U(vz) Avy
= F(12))) AV (01, v2)(U(y) AUW2)) = [(F(vy) = F(vz) = vy = v3) A (T (v, v2)
© R(F(v1), F(v2))D]

expresa la existencia de un isomorfismo entre las estructuras ® y . No obstante, ninguna de las
estructuras ® y D satisfacen IS(U, M, T, R) ya que carecen del lenguaje, del vocabulario, necesario para hacerlo.
Sin embargo, hay una manera de comprobar si ® y D son isomorfos a partir de IS(U, M, T, R) mediante modelos
generales, y en ello se basa parte de la nocion de categoricidad interna.

Para ver esto, vamos a introducir las siguientes definiciones:

Definicion (expansion de un lenguaje): decimos de un lenguaje L' que es una expansion de un lenguaje
L si L' es el resultado de afiadir nuevos simbolos a L, sean éstos simbolos constates o relacionales. FH

Definicion (expansion de un modelo): decimos de un modelo M’ que es una expansion de un modelo I
si M es un modelo para un lenguaje L y M’ es el resultado de afiadir interpretaciones a los nuevos simbolos de
un lenguaje expandido L' de L. FH

Laidea es que nosotros podemos mostrar que los modelos ® y D son isomorfos si tienen como expansion
comin un modelo general J = ((VS, U3, M3, TS,RS), (D™),,»1) con un lenguaje expandido L = {U,M, T, R},
donde V3 = U3 U M es el dominio de la estructura, U y M= son dos conjuntos de individuos, y tanto T3 como
RS son dos relaciones 2-arias. Ya que I es un modelo general, satisface el axioma de comprehensién, que nos
garantiza que todos los conjuntos y relaciones definibles estan en (D"),>;. En particular, nos garantiza que la
funcion de isomorfismo expresada por IS(U, M, T, R) existe. De este modo, podemos afirmar

G=DeIEIS(U,M,T,R)G=D&IEIS(UM,T,R)

es decir, las estructuras ® y D son isomorfas si y solo si existe una estructura J que es una expansion
comun a ambas y que satisface la sentencia IS(U, M, T, R).

Estas consideraciones pueden ser aplicadas a la aritmética de Peano de segundo orden. Vamos a
comenzar expandiendo nuestro lenguaje LA% a LA** = {N, M, ¢, q, S, R}. De este modo hemos afiadido una nueva
constante de individuo, a, y una nueva constante de funcion l-aria, R. Tanto M como N son simbolos para
conjuntos de individuos. Sea A = ((N¥, ¥, S¥), (D™),,51) un modelo de Peano general en el que N¥ = N, donde
=0, ydonde S¥: S¥(v) = v + 1 paratodo v € N¥; y sea B = ((M®, a®,R®), (D"),,5,) otro modelo de Peano
general en el que M® = 2N (el conjunto de los nimeros naturales pares), donde a® = 0, y donde R®:R®(v) =
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v + 2 para todo v € M®. Ya que son modelos de Peano generales, 2 y B no tienen por qué ser isomorfos. Sin
embargo, supongamos que ambos tienen una expansiéon comun € = ((U¢,N¢ M€, ¢, a® S¢ RE), (D™),51)
siendo € un modelo general cuyo dominio es U® = N® U M® = N, donde N® = Ny M® = 2N, cuyos elementos
destacados ¢® = a® = 0, y cuyas funciones monarias destacadas son S®: S¢(v) =v +1 y R&R¢(v) = v + 2.
Ya que € es modelo del axioma de comprehension, tenemos el isomorfismo F expresado por

A(F)[F () = aAV(w)(N(vy) = M(F(v1))) AV(v)3(w2)(M(vy) = (N(v2) Ay
= F(v2))) AV (01, v2)((N(v1) AN(v2)) = [(F(vy) = F(vz) » vy = v3) A(S(vy)
< R(F(v))D]

existe, y pertenece a D? de €. Los modelos A y B son, por tanto, isomorfos. Supongamos que D =
((N®,c®,S®),(D™),.»1) es otro modelo general de Peano que tiene una expansion 3 en comiin con B. Ya que B
y D también serian isomorfos, por transitividad del isomorfismo tendriamos que 2 y D también son isomorfos.
En particular, podemos destacar el hecho de que de esta manera podemos “aislar” clases de estructuras
caracterizadas bajo isomorfismo.

De esta manera se puede singularizar la subclase de modelos de Peano estandar (que son modelos de
Peano generales completos) MOD (Teo(I1)F)c0™Petos cyando partimos de modelos de Peano y expansiones de
éstos que son estructuras completas; ademéas, MOD (Teo(I1)F)cO™Pletos contiene solamente un modelo bajo
isomorfismo. Ahora bien, MOD (Teo(I1)F)co™Petos ¢ MOD (Teo(I1)") en tanto que en MOD (Teo(I1)F) hay
modelos generales que no son estructuras estandar, como los modelos no estandar.

De esta manera, podemos introducir la nocion de categoricidad interna:

Definicion (categoricidad interna): decimos que una teoria Tep es internamente categorica cuando todos
los modelos de Teo que tienen una expansion comun M, siendo P un modelo general, son isomorfos. (Cf.
Vidninen (2015: 123), (2012: 98-99)) H

En esta definicion no ha de entenderse que todos los modelos de una teoria internamente categdrica Teo
tienen una expansion comun, sino que cuando cualesquiera dos modelos ® y D tienen una expansiéon comun ,
entonces ® y D son isomorfos. Como apunta Védndnen (2015: 125), dos modelos ® y D de una teoria
internamente categorica Teo, cada uno de los cuales tiene una expansion J y & tales que I % &, no tienen por
qué ser isomorfos, pues los modelos ® y D no son modelos de Teo en el mismo sentido. El primero es un modelo
de Teo en el sentido de J, el segundo en el sentido de §. La categoricidad se sostiene solo con respecto a
estructuras que son modelos de Teo en el mismo sentido. (2015: 125. He cambiado los nombres de los modelos
del original por coherencia, y la cursiva es del original).

La expresion “no son modelos de Teo en el mismo sentido” es un tanto ambigua en nuestro contexto,
pero con ella Vdininen se refiere, segun entiendo, a lo siguiente: ya que ® y D son modelos generales, y ya que
J % &, sus universos de relaciones posibles no son ambos completos, o incluso ninguno lo es, teniendo uno de
estos dominios posibles relaciones cuya contrapartida esta ausente en el otro.

La teoria Teo(I1)F, como se prueba en Viidndnen (2015: 24), es internamente categorica. La peculiaridad
de la categoricidad interna de Teo(I1)", o de cualquier otra teoria con esta propiedad, es que “es una propiedad
‘interna’ de la logica de segundo orden en si misma” (Vadninen (2020: 7)) con semantica de modelos generales.
En consonancia con la semantica de Henkin, el trasfondo teorético conjuntista de la metateoria propio de la
semantica estandar, que ha estado presente en nuestra prueba de categoricidad en las secciones 3 y 4, no tiene
ningun papel en la prueba de la categoricidad interna de Teo(I1)*.

VII.  Conclusiones

A lo largo de este trabajo no se ha tomado partido ni por la semantica estandar ni por la semantica no
estandar. Esto es asi porque ambas semanticas traen consigo sus propias virtudes, y vamos a tratar ahora de poner
en valor algunas de ellas.

En ocasiones se ha argumentado (cf. Shapiro (1991: 97-ss)) que la logica de segundo orden con
semantica estandar proporciona un marco adecuado en el que caracterizar las estructuras, nociones, sistemas
axiomaticos y teorias matematicas. La categoricidad de Teo(I1)" es un buen ejemplo de ello. Podria argumentarse
que, en cierto sentido, tanto la 16gica de primer orden como la 16gica de segundo orden con semantica no estandar
deforman la teoria de la aritmética de Peano al poseer ciertas metapropiedades como la compacidad y los teoremas
de Lowenheim-Skolem. A consecuencia de estas metapropiedades, obtenemos modelos con una cardinalidad
superior a w que no parecen, en primera instancia, los adecuados para caracterizarla. Entre los partidarios de la
logica de segundo orden parece posicionarse Shapiro: “De acuerdo con los teoremas 4.4 y 4.5 [los teoremas de
Lowenheim-Skolem], para cada cardinalidad x, hay una estructura de cardinalidad x que es modelo de I' [una
teoria]. Esta propiedad, yo diria defecto, de la logica de primer orden no es compartida por los lenguajes de
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segundo orden con semantica estandar” (1991: 80; la cursiva es mia). Con estas palabras, Shapiro parece tomar
partido en favor de una logica, la logica de segundo orden con semdntica estandar, y considerar un defecto los
teoremas de Lowenheim-Skolem.

Con semantica estandar Teo(I1)F solamente tiene un modelo bajo isomorfismo, cuya cardinalidad es la
de los nimeros naturales. Ademas, la formulacion del axioma de induccion mediante la l6gica de segundo orden
junto a su interpretacion con la semantica estandar nos permite definir a los nimeros naturales, y Teo(I1)" no es
satisfacible en un modelo que posea numeros no estandar en su dominio. Como hemos visto, la situacion con
semantica no estandar es diferente.

Cabe destacar también que, aunado a lo anterior, el poder expresivo de la logica de segundo orden con
semantica estandar, como se mostrd en la secciéon 6, es mayor que con la semantica no estandar. Por contra, no
tiene un céalculo completo como si lo tiene la 16gica de segundo orden con semantica no estandar.

La seméantica no estandar, por su parte, nos proporciona una loégica de segundo orden completa en sentido
fuerte, compacta, y en la que se cumple los teoremas de Lowenheim-Skolem. A consecuencia de ello han
aparecido modelos no estandar de la aritmética de Peano. Pero estos no son los unicos modelos no estandar que
aparecen. Para el caso del analisis, la situacion es analoga a la de la aritmética de Peano, con la diferencia de que
los modelos no estandar del analisis incorporan una ventaja practica: la simplificacion de las pruebas de ciertos
teoremas del analisis (cf. Manzano (1989: 216)). A través de ellos se pueden demostrar hechos sobre el analisis
de una manera mas simple, y como estos modelos resultan ser elementalmente equivalentes a los estandar,
sabemos que los resultados a los que se llega mediante ellos pueden ser demostrados también en los modelos
estandar. En estos modelos, los niimeros no estandar son los llamados niimeros infinitesimales (cf. Robinson
(1996: 56)).

De este modo, mediante la semantica general tendriamos una axiomatizacion del analisis real con el
axioma del supremo formulado en l6gica de segundo orden, con la potencia que ello incorpora, y con modelos no
estandar de la teoria del analisis con infinitesimales, que tienen un valor practico. La aplicacion de la semantica
no estandar de Henkin a la teoria del analisis en segundo orden, hasta donde s¢, no se ha llevado a cabo y puede
constituir un trabajo futuro.
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