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Abstract: 
In this article, I examine the second-order logical framework of Peano’s arithmetic and its categoricity. I do so 

in two parts: 

Firstly, I provide an exposition of the axiomatic system; and I prove the categoricity of second-order logic Peano 

arithmetic within standard semantics. For the sake of this exposition, a particular proof which makes use of 

induction models has been chosen. Through the categoricity analysis, I shall prove that second-order standard 

semantics lacks some of the meta-properties like compactness and Löwenheim-Skolem-Tarski theorem. 

Secondly, I make use of the non-standard semantics defined by Henkin (1950). Within this new framework, doubly 

non-standard models are found. On the one hand, these models are non-standard ones because Henkin’s 

semantics are not standard. On the other hand, these models are non-standard models because these ones are 

not isomorphic to the standard arithmetic model. A new concept of internal categoricity is introduced in order to 

characterize classes of isomorphic structures through an isomorphism that is defined in the formal language of 

second-order logic. Through this procedure, we recover metaproperties of first-order logic in second-order logic 

with Henkin’s general models, and we maintain a particular form of categoricity, i.e. internal categoricity. 
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I. Introduction 
A diferencia de la lógica de primer orden, la lógica de segundo orden posee la capacidad de generar 

teorías categóricas, aunque la cardinalidad que precisa el dominio de las estructuras que sirven de modelo a tales 

teorías no sea finita. Sobre esta afirmación podemos hacer dos observaciones. 

En primer lugar, qué entendemos cuando nos referimos a la capacidad de la lógica de segundo orden. 

Cuando hablamos de la capacidad de la lógica de segundo orden nos referimos a la capacidad expresiva de su 

lenguaje. Como es bien sabido, la lógica de segundo orden difiere de la lógica de primer orden en que su lenguaje 

posee variables y cuantificadores para propiedades, relaciones y funciones, aparte de las variables y los 

cuantificadores sobre individuos. La capacidad expresiva del lenguaje de una lógica, sea ésta proposicional, de 

primer o segundo orden, mantiene un juego de equilibrios, un contrapunto, con las metapropiedades de la lógica 

de tal lenguaje. Por ejemplo, la capacidad que tiene el lenguaje de segundo orden para expresar el infinito bajo la 

fórmula que es satisfecha solo por modelos cuya cardinalidad (la cardinalidad de su dominio) es infinita, 

expresando la existencia de una relación binaria 𝑋2 que es irreflexiva, transitiva y sin elementos maximales: 

 

∃(𝑋2)(∀(𝑣1)(¬𝑋
2(𝑣1, 𝑣1) ∧ ∀(𝑣1, 𝑣2, 𝑣3)(𝑋

2(𝑣1, 𝑣2) ∧ 𝑋
2(𝑣2, 𝑣3) → 𝑋2(𝑣1, 𝑣3)) ∧ ∀(𝑣1)∃(𝑣2)(𝑋

2(𝑣1, 𝑣2))) 
 

contraviene a la compacidad; y viceversa, no hay una sentencia 𝜙 que exprese la infinitud en la lógica 

de primer orden ya que ésta es compacta. 

Precisamente la piedra de toque que bascula el tránsito del sistema axiomático de la aritmética de Peano 

en primer orden a su formulación en el marco de segundo orden consiste en formular uno de sus axiomas mediante 

un lenguaje de segundo orden apropiado: el axioma de inducción. En particular, en su formulación en el marco 

de la lógica de primer orden el axioma de inducción no es, propiamente dicho, un axioma, sino el siguiente 

esquema axiomático de inducción (E.A.I.): 

𝜙(𝔠) ∧ ∀(𝑣1)(𝜙(𝑣1) → 𝜙(𝚂(𝑣1))) → ∀(𝑣1)𝜙(𝑣1) 
 

donde 𝜙 es una fórmula del lenguaje de la aritmética de primer orden en la cual ninguna variable, excepto 

𝑣1, ocurre libre; 𝔠 es una constante y 𝚂 es una función monaria. Sin entrar en más especificaciones por el momento, 

debemos notar que existe un axioma por cada fórmula 𝜙 que podamos formular en el lenguaje aritmético de 

primer orden. De este último hecho podemos extraer dos observaciones: en primer lugar, que la aritmética de 

Peano en lógica de primer orden no es finitamente axiomátizable; en segundo lugar, el alcance de E.A.I. se 

restringe a conjuntos definibles mediante el lenguaje de la aritmética de Peano de primer orden, una cantidad a lo 
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sumo infinita numerable de conjuntos (tantos como fórmulas de su lenguaje). La situación en la aritmética de 

Peano con la formulación del axioma de inducción mediante un lenguaje de segundo orden cambia estos hechos, 

ya que el E.A.I. se transforma en A.I.: 

 

∀(𝑋)(𝑋(𝔠) ∧ ∀(𝑣1)(𝑋(𝑣1) → 𝑋(𝚂(𝑣1))) ⇒ ∀(𝑣1)𝑋(𝑣1)) 
 

Al sustituir E.A.I. por A.I., la aritmética de Peano es finitamente axiomatizable al tiempo que el alcance 

de A.I. no se restringe a conjuntos definibles; de hecho el dominio de la cuantificación de A.I. tiene una 

cardinalidad de 2𝜔, siendo no numerable. La ventaja expresiva de A.I. con respecto a E.A.I. trae consigo otras 

consecuencias que veremos a lo largo de este trabajo. 

En segundo lugar, qué quiere decir que una teoría es categórica. En la sección 2.1 de este trabajo nos 

ocuparemos de precisar en mayor detalle estas nociones, pero en rasgos generales una teoría 𝔗 es un conjunto de 

sentencias de un lenguaje apropiado al que pertenecen, a su vez, todas sus consecuencias lógicas (o los teoremas 

que se deducen de 𝔗, si la tratamos en su sentido sintáctico). 

Ahora que disponemos de una cierta noción de teoría, ¿qué quiere decir que una teoría es categórica? La 

categoricidad es la propiedad de algunas teorías de tener solamente un modelo bajo isomorfismo. 

Como decíamos antes, la lógica de segundo orden es capaz de generar teorías categóricas aun cuando el 

dominio de los modelos de tales teorías no es finito. Este hecho se enfrenta directamente a algunas 

metapropiedades, como al teorema de Löwenheim-Skolem-Tarski 

Teorema de Löwenheim-Skolem-Tarski1: sea Φ un conjunto de fórmulas que es satisfacible sobre un 

dominio infinito y sea 𝜅 un cardinal más grande o igual a la cardinalidad de Φ; entonces Φ tiene un modelo de 

cardinalidad 𝜅; 

 

o la compacidad: 

Teorema de compacidad: un conjunto de fórmulas Φ es satisfacible si y solamente si cada subconjunto 

finito Φ𝑓𝑖𝑛 de Φ es satisfacible. 

La motivación de este trabajo parte del estudio de la categoricidad de una teoría en particular: la de la 

aritmética de Peano en segundo orden. En rasgos generales, este estudio está dividido en dos partes. La primera 

de ellas aborda la aritmética de Peano y su categoricidad desde la perspectiva de la semántica estándar, y en ella 

hay contenidos algunos tópicos bien conocidos. En particular, se probará tal categoricidad. Siguiendo a Henkin 

(1960) y Manzano (1996), abordamos la prueba haciendo uso de lo que denominaremos modelos de inducción, 

aunque la prueba que aquí presentamos han sido ampliadas y completadas. Este recurso no es estrictamente 

necesario, ya que otras pruebas como la que encontramos en Mendelson (1976), más afín a la que aquí se presenta, 

o las que encontramos en Ebbinghaus (1994) o Shapiro (1991), que difiere en mayor medida, no hacen uso de 

tales estructuras. Sin embargo, su empleo en la prueba nos permitirá ver los límites del teorema que, siguiendo a 

Mendelson, denominaremos teorema de iteración. También se demostrará que algunas metapropiedades, como 

los teoremas de compacidad y de Löwenheim-Skolem-Tarski, fallan en la lógica de segundo orden sobre la base 

de la categoricidad de la aritmética de Peano. 

Estos resultados, como hemos apuntado, son consecuencia de la capacidad de la lógica de segundo orden 

de generar teorías categóricas y no tanto de la categoricidad de la aritmética de Peano en particular. La 

categoricidad del análisis real cuando el axioma del supremo es formulado en segundo orden: 

 

A.S.: 

∀(𝑋)[∃(𝑣)∀(𝑣1)(𝑋(𝑣1) → 𝑣1 ≤ 𝑣) → ∃(𝑣){∀(𝑣1)(𝑋(𝑣1) → 𝑣1 ≤ 𝑣) ∧ ∀(𝑣2)(∀(𝑣1)(𝑋(𝑣1) → 𝑣1 ≤ 𝑣2) → 𝑣
≤ 𝑣2)}] 

 

igualmente se enfrenta a estas metapropiedades. Sin embargo, ya que dispondremos de la categoricidad 

de la aritmética de Peano probaremos que la lógica de segundo orden carece de estas metapropiedades sobre la 

categoricidad de esta teoría. 

La segunda parte de este trabajo se traslada a la semántica no estándar (para lógica de segundo orden) 

de marcos y modelos generales presentada por Henkin en (1950). Sobre la base de la semántica de modelos 

generales la categoricidad se desvanece. La lógica de segundo orden con esta semántica es completa en sentido 

fuerte, es decir, para todo Γ y 𝜙, si Γ ⊨ 𝜙 entonces Γ ⊢ 𝜙, para algún cálculo (como por ejemplo el cálculo 𝐶2 

presentado en Manzano (1996: 79-ss)). Por tanto, también es compacta, lo que nos va a permitir encontrar modelos 

no estándar de la aritmética de Peano en el marco de la lógica de segundo orden. De hecho, presentaremos modelos 

doblemente no estándar: modelos generales, que son no estándar en sentido semántico, en cuyo dominio 

 
1 Tomo su formulación de Ebbinghaus et al. (1994: 90). 
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encontraremos números no estándar, que son no estándar en el sentido de no ser isomorfos al prototípico a causa 

de los números no estándar (Henkin (1950: 89-90)). La relación entre estos dos tipos de modelos no estándar es 

bastante estrecha, y probaremos un resultado al respecto: si un modelo de Peano posee números no estándar en 

su dominio entonces es no estándar en sentido semántico. Pero aún hay una noción disponible que, bajo esta 

semántica, nos va a permitir aislar dentro de los modelos generales de Peano aquellos que son estándar en sentido 

semántico y, por tanto, isomorfos entre sí: la noción de categoricidad interna. 

Por último, vamos a presentar el lenguaje de segundo orden que emplearemos a lo largo de este trabajo, 

que es el lenguaje de la aritmética de segundo orden, 𝐿𝐴2. Este lenguaje contiene el símbolo 𝔠 como única 

constante individual; el símbolo 𝚂 como símbolo de función monaria constante. Además, 𝐿𝐴2 contiene tanto 

variables de individuos, 𝑣, 𝑣1, 𝑣2, 𝑣3. .., como variables de propiedades, 𝑋, 𝑌, 𝑍, 𝑋1, 𝑌1. .., y variables de relaciones 

n-arias para 𝑛 ≥ 2, 𝑅𝑛, 𝑇𝑛 , 𝑅1
𝑛 , 𝑇1

𝑛. .. y funciones n-arias 𝑓𝑛, ℎ𝑛 , 𝑔𝑛 , 𝑓1
𝑛, . .. También contiene las conectivas usuales 

(→,↔,∧,∨, ¬) y los cuantificadores (∀, ∃), que operan sobre todo tipo de variable de 𝐿𝐴2. 

 

II. La Aritmética De Peano: Sus Modelos Y Sus Teorías 
La aritmética de Peano: sus modelos y sus teorías La primera tarea que nos ocupa es la de presentar los 

modelos de Peano y el sistema axiomático de la aritmética de Peano de segundo orden. Un modelo de Peano es 

una estructura 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩, donde 𝑁 es el dominio de la estructura, 𝔠𝔄 es un elemento destacado de la 

estructura y 𝚂𝔄 es una función monaria, que satisface los axiomas de Π = {𝐴1, 𝐴2, 𝐴3}: 
 

A1. ∀(𝑣)(𝚂(𝑣) ≠ 𝔠) 
A2. ∀(𝑣1)∀(𝑣2)(𝑣1 ≠ 𝑣2 → 𝚂(𝑣1) ≠ 𝚂(𝑣2)) 
A3. ∀(𝑋)(𝑋(𝔠) ∧ ∀(𝑣1)(𝑋(𝑣1) → 𝑋(𝚂(𝑣1))) → ∀(𝑣1)𝑋(𝑣1)) 

 

A1 expresa la condición de que el elemento destacado 𝔠 no está en el rango de la función 𝚂; A2 expresa 

la condición de que la función 𝚂 es inyectiva. Por su parte, A3 expresa la condición de que cualquier propiedad o 

subconjunto que contenga a 𝔠 y esté cerrado bajo 𝚂 contiene a todos los elementos del dominio de la estructura 

que satisface a A3.2 

A diferencia de la formulación usual en primer orden, el sistema axiomático que acabamos de presentar 

carece de los axiomas que regulan la adición y el producto, del mismo modo que nuestro lenguaje no contiene 

símbolos primitivos especiales para designar estas funciones. Esto se debe a que las funciones de adición y 

producto pueden ser introducidas sobre la base de un teorema que vamos a denominar, siguiendo a Mendelson 

(1973: 57), teorema de iteración, y que justifica la introducción de cualquier función definida por recursión para 

los modelos de Peano. 

La estructura e interpretación prototípicas que se presentan como modelo de Peano es 𝔑 = ⟨ℕ, 𝔠𝔑, 𝚂𝔑⟩, 
𝐼 = ⟨𝔑, 𝑖⟩, donde ℕ es el conjunto de los números naturales incluyendo al cero, donde 𝐼(𝔠) = 𝔠𝔑 = 0, y donde, 

para todo 𝑣1, la función 𝐼(𝚂) = 𝚂𝔑: (𝚂𝔑(𝑣1) = 𝑣1 + 1) es la función sucesor.3 Esta estructura, en efecto, satisface 

todos los axiomas de Π, y está incluida en su clase de modelos, 𝑀𝑂𝐷(Π). 
Sin embargo, hay otros modelos de Peano que difieren de 𝔑. Un ejemplo de ello es la estructura 𝔅 =

⟨2ℕ, 𝔠𝔅, 𝚂𝔅⟩, donde ahora nuestro dominio 2ℕ es el conjunto de los números naturales pares, 𝔠𝔅 = 0, y como 

función monaria tenemos la función 𝚂𝔅: 𝚂𝔅(𝑣1) = 𝑣1 + 2 para todo 𝑣1. En efecto, 𝔅 también satisface los 

axiomas A1, A2 y A3 siendo así un modelo de Peano; es decir, 𝔅 ∈ 𝑀𝑂𝐷(Π). Otro ejemplo es la estructura ℭ =
⟨ℤ− ∪ {0}, 𝔠ℭ, 𝚂ℭ⟩, donde ℤ− ∪ {0} es el conjunto de los números enteros negativos más el cero, donde 𝔠ℭ = 0, y 

cuya función monaria es 𝚂ℭ: 𝚂ℭ(𝑣1) = 𝑣1 − 1 para todo 𝑣1, satisface los axiomas A1, A2 y A3, es decir, ℭ ∈
𝑀𝑂𝐷(Π). 

 
2 En la metateoría emplearemos la siguiente formulación de A3 (Mendelson (1973: 53), Henkin (1960: 323)): 

∀𝐵([𝐵 ⊆ 𝑁 ∧ 𝔠 ∈ 𝐵 ∧ ∀(𝑥)(𝑥 ∈ 𝐵 ⇒ 𝑆𝑥 ∈ 𝐵)] ⇒ 𝐵 = 𝑁), donde 𝑁 es el dominio de la estructura que satisface 

A3. 

 
3 En adelante las interpretaciones se presentarán de manera implícita, como es usual en la literatura. En particular, 

la asignación en este y otros modelos es indiferente en la medida en que solamente trabajaremos con sentencias y 

en que el teorema de coincidencia es válido también en la lógica de segundo orden (cf. Manzano (1996: 62)), de 

modo que cualesquiera dos asignaciones coincidirán trivialmente en la asignación de variables libres. Si se ha 

introducido aquí es por la coherencia con la definición de modelo de Ebbinghaus (1993: 29, 32) o Manzano (1996: 

30-32), que exige una interpretación, y ésta una asignación. 
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Además de los modelos de Peano, hay otro tipo de estructura que va a intervenir en la prueba de la 

categoricidad de la aritmética de Peano, siguiendo en este punto a Henkin (1960) y a Manzano (1996): los modelos 

de inducción. 

Definición (modelo de inducción): llamamos modelo de inducción a una estructura 𝔐 = ⟨𝑁, 𝔠𝔐 , 𝚂𝔐⟩ 
que es modelo, al menos, de A3; es decir, tal que 𝔐 ∈ 𝑀𝑂𝐷(𝐴3). ⊞ 

Según hemos visto, 𝑀𝑂𝐷(Π) ⊆ 𝑀𝑂𝐷(𝐴3), ya que cualquier modelo de Π es, en particular, modelo de 

A3; pero como vamos a mostrar mediante dos ejemplos, 𝑀𝑂𝐷(Π) ≠ 𝑀𝑂𝐷(𝐴3). 
Sea ℑ = ⟨𝑃, 𝔠ℑ, gℑ⟩ una estructura cuyo dominio 𝑃 = {0,1,2,3,4,5}, donde 𝔠ℑ = 0 y donde gℑ =

{⟨0,1⟩, ⟨1,2⟩, ⟨2,3⟩, ⟨3,4⟩, ⟨4,5⟩, ⟨5,0⟩}. Como se puede comprobar, esta estructura es modelo de A2 y de A3, pero 

no de A1. En efecto, la función gℑ no permite modelizar a A1, pues gℑ(5) = 0; en consecuencia ℑ ∉ 𝑀𝑂𝐷(Π). 
Sin embargo, es modelo del axioma de inducción A3 y, por tanto, ℑ ∈ 𝑀𝑂𝐷(𝐴3). 

Consideremos ahora la siguiente estructura: ℑ′ = ⟨𝑃, 𝔠ℑ
′
, hℑ

′
⟩, cuyo dominio es, igual que en la anterior, 

𝑃 = {0,1,2,3,4,5}, donde 𝔠ℑ
′
= 0 y cuya función es hℑ

′
= {⟨0,1⟩, ⟨1,2⟩, ⟨2,3⟩, ⟨3,4⟩, ⟨4,5⟩, ⟨5,3⟩}. Esta estructura 

también satisface a A3 pero, al contrario que la anterior, ℑ′ satisface a A1 pero no a A2, ya que 𝔠ℑ
′
 no está en el 

rango de la función pero hℑ
′
(2) = hℑ

′
(5) = 3. Por lo tanto, ℑ′ ∉ 𝑀𝑂𝐷(Π) aunque ℑ′ ∈ 𝑀𝑂𝐷(𝐴3). Las dos 

estructuras previas, y cada una por su parte, muestran que 𝑀𝑂𝐷(Π) ≠ 𝑀𝑂𝐷(𝐴3). 
Es interesante señalar que aquellos resultados para la aritmética de Peano en cuya demostración 

solamente intervenga el axioma A3 (o su contrapartida en la metateoría) se pueden extender a cualquier modelo 

de inducción. 

2.1. Las dos teorías de Π En su sentido más amplio, una teoría es un conjunto de sentencias (cf. Chang 

y Keisler (2012: 12)). Sin embargo, ya que en estas páginas nos centraremos en un tipo de teoría en particular, 

teorías axiomatizadas, vamos a caracterizar de manera menos amplia las teorías para ganar en precisión. Sea 𝐿 un 

lenguaje arbitrario y sea 𝑆𝐸𝑁𝑇(𝐿) el conjunto de sentencias de 𝐿. Definimos entonces la noción general de teoría 

mediante las siguientes dos definiciones. 

Definición (teoría semántica): 𝔗𝔢𝔬 es una teoría en sentido semántico si y solo si 𝔗𝔢𝔬 ⊆ 𝑆𝐸𝑁𝑇(𝐿) y 

𝔗𝔢𝔬 ⊨ 𝜙 ⇒ 𝜙 ∈ 𝔗𝔢𝔬 para toda sentencia 𝜙. ⊞ 

Definición (teoría sintáctica): 𝔗𝔢𝔬 es una teoría en sentido sintáctico si y solo si 𝔗𝔢𝔬 ⊆ 𝑆𝐸𝑁𝑇(𝐿) y 

𝔗𝔢𝔬 ⊢ 𝜙 ⇒ 𝜙 ∈ 𝔗𝔢𝔬 para toda sentencia 𝜙. ⊞ 

De acuerdo a estas dos definiciones podemos introducir la noción de teoría axiomática (semántica y 

sintáctica), que es la que nos interesa. Sea Δ un conjunto de sentencias, a las que llamaremos axiomas. Entonces, 

de acuerdo con la definición de teoría semántica, podemos entender que el conjunto de todas las sentencias de 

SENT(L) que son consecuencia lógica de Δ es una teoría que tiene a Δ como conjunto de axiomas: 

Definición (teoría semántica de Δ): 𝔗𝔢𝔬(Δ)⊨ = {𝜙|𝜙 ∈ 𝑆𝐸𝑁𝑇(𝐿) ∧ Δ ⊨ 𝜙} ⊞ 

Y, mutatis mutandis, el conjunto de las sentencias que son teoremas de Δ es también una teoría: 

Definición (teoría sintáctica de Δ): 𝔗𝔢𝔬(Δ)⊢ = {𝜙|𝜙 ∈ 𝑆𝐸𝑁𝑇(𝐿) ∧ Δ ⊢ 𝜙} ⊞ 

Una observación que nos sale al paso al respecto de las dos últimas definiciones (y a fortiori de las dos 

anteriores) es que no tienen por qué ser, en principio, definiciones equivalentes, es decir, definir extensionalmente 

el mismo conjunto de sentencias. Son equivalentes para una lógica completa, pero no es el caso de la lógica de 

segundo orden con semántica estándar. 

Ahora que tenemos una noción operativa de teoría podemos introducir la noción de categoricidad. 

Definición (categoricidad): decimos que una teoría 𝔗𝔢𝔬 es categórica cuando todos sus modelos son 

isomorfos. ⊞ 

A la hora de presentar la noción de categoricidad, Väänänen atribuye esta propiedad no a las teorías, 

sino a los sistemas axiomáticos.4 “Se dice que un sistema axiomático es categórico si tiene solamente un modelo 

bajo isomorfismo” (2001: 3)5, o “un conjunto de axiomas es categórico cuando cualesquiera dos de sus modelos 

son isomorfos” (2020: 2). No obstante, entender que la categoricidad es una propiedad del sistema axiomático 

entraña ciertas contrariedades. 

Asumamos que la categoricidad es una propiedad de los sistemas axiomáticos. Ya que la aritmética de 

Peano es categórica (como se probará en la sección 4) Π tiene solamente un modelo bajo isomorfismo. Por otra 

parte, hay al menos una sentencia 𝜓, que por el teorema de Gödel existe, que es indecidible en Π, es decir: Π ⊬ 𝜓 

y Π ⊬ ¬𝜓. Asumiendo la consistencia de Π, tenemos que Π ∪ {𝜓} y Π ∪ {¬𝜓} son conjuntos de sentencias 

consistentes, ya que si Π ∪ {𝜓} no fuera consistente, tendríamos que Π ⊢ ¬𝜓, y si Π ∪ {¬𝜓} no lo fuera, 

tendríamos que Π ⊢ 𝜓 (cf. Ebbinghaus et al. (1993: 73)). Por tanto, Π ∪ {𝜓} y Π ∪ {¬𝜓} son satisfacibles, y 

tienen sendos modelos 𝔄 y 𝔅. Pero 𝔄 y 𝔅 no son isomorfos, lo que contradice la categoricidad de Π. Esta 

 
4 En este contexto, entendemos por “sistema axiomático” los axiomas de una teoría, y no un conjunto de axiomas 

lógicos más los axiomas de la teoría. 
5 Traducción propia. En Adelante, todas las traducciones son propias. 
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contrariedad se diluye cuando entendemos que la categoricidad es una propiedad de las teorías, y no del sistema 

axiomático. 

 

En particular, a partir de Π se generan dos teorías diferentes, a saber, 

𝔗𝔢𝔬(Π)⊨ = {𝜙|𝜙 ∈ 𝑆𝐸𝑁𝑇(𝐿𝐴2) ∧ Π ⊨ 𝜙}, 
𝔗𝔢𝔬(Π)⊢ = {𝜙|𝜙 ∈ 𝑆𝐸𝑁𝑇(𝐿𝐴2) ∧ Π ⊢ 𝜙}. 

 

Como se probará en las próximas secciones, 𝔗𝔢𝔬(Π)⊨ es la teoría categórica de la aritmética de Peano. 

Una propiedad que tiene una teoría 𝔗 cualquiera cuando es categórica es que es completa en el sentido de la 

siguiente definición: 

Definición (completud de una teoría): una teoría 𝔗 es completa si y solo si para toda sentencia 𝜙 del 

lenguaje apropiado, o bien 𝜙 ∈ 𝔗 o bien ¬𝜙 ∈ 𝔗. ⊞ 

Cuando dispongamos de la categoricidad de 𝔗𝔢𝔬(Π)⊨ probaremos que es una teoría completa: para toda 

sentencia 𝜙 de 𝐿𝐴2, o bien 𝜙 ∈ 𝔗𝔢𝔬(Π)⊨ o bien ¬𝜙 ∈ 𝔗𝔢𝔬(Π)⊨. 

En el caso de 𝔗𝔢𝔬(Π)⊢ tenemos a la mencionada sentencia indecidible 𝜓, de modo que por definición 

de 𝔗𝔢𝔬(Π)⊢, sabemos que 𝜓 ∉ 𝔗𝔢𝔬(Π)⊢ y ¬𝜓 ∉ 𝔗𝔢𝔬(Π)⊢. Por tanto, 𝔗𝔢𝔬(Π)⊢ no es una teoría completa. Sobre 

la base de estos hechos la contrariedad anterior de considerar categóricos los axiomas de Π desaparece mediante 

el siguiente razonamiento. 

Ya que 𝔗𝔢𝔬(Π)⊢ ⊂ 𝔗𝔢𝔬(Π)⊨ tenemos que 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨) ⊂ 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊢). En efecto, no para todo 

modelo 𝑀 ∈ 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊢) tenemos que 𝑀 ∈ 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨), pues de lo contrario no todos los modelos de 

𝔗𝔢𝔬(Π)⊨ serían isomorfos, contradiciendo la categoricidad. En particular, de igual modo que antes, ya que 𝜓 es 

indecidible en 𝔗𝔢𝔬(Π)⊢, y asumiendo la consistencia de este conjunto, tenemos que 𝔗𝔢𝔬(Π)⊢ ∪ {𝜓} y 𝔗𝔢𝔬(Π)⊢ ∪
{¬𝜓} tienen sendos modelos 𝔄 y 𝔅, que no son isomorfos. Ahora bien, ya que 𝔗𝔢𝔬(Π)⊨ es una teoría completa, 

o bien 𝔗𝔢𝔬(Π)⊢ ∪ {𝜓} ⊆ 𝔗𝔢𝔬(Π)⊨ o bien 𝔗𝔢𝔬(Π)⊢ ∪ {¬𝜓} ⊆ 𝔗𝔢𝔬(Π)⊨, pero no ambos. Por lo tanto al menos 

uno de los dos modelos 𝔄 o 𝔅, no pertenece a 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨). De modo que aunque podría aducirse que Π 

genera una teoría cuyos modelos no son todos isomorfos, 𝔗𝔢𝔬(Π)⊢, este hecho no contraviene los resultados sobre 

categoricidad: estos modelos no isomorfos no pertenecen a 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨). 
La peculiaridad es que ambas teorías son generadas por un solo sistema axiomático, Π. En realidad, lo 

que hay de fondo en estas consideraciones acerca de 𝔗𝔢𝔬(Π)⊨ y de 𝔗𝔢𝔬(Π)⊢ es que no toda fórmula 𝜓 que es 

consecuencia lógica de Π es un teorema deducible a partir de Π, y este hecho arrastra aires de incompletitud. 

En adelante, cuando decimos que la aritmética de Peano es categórica queremos decir que la teoría 

𝔗𝔢𝔬(Π)⊨ lo es. 

 

III. El Teorema De Iteración Y Las Operaciones Recursivas 
El teorema de iteración y las operaciones recursivas El primer paso que vamos a dar hacia la 

demostración de la categoricidad de la aritmética de Peano es la demostración del teorema de iteración. Este 

teorema nos va a garantizar la existencia y la unicidad de un homomorfismo entre dos modelos de Peano 

cualesquiera. Introducimos para ello la noción de homomorfismo. 

Definición (homomorfismo). Sean 𝔄 y 𝔅 dos estructuras cualesquiera con dominios en 𝐴 y 𝐵 

respectivamente. Un homomorfismo entre 𝔄 y 𝔅 es una función 𝑓 que mapea 𝐴 en 𝐵 y que satisface las siguientes 

condiciones: 

1. Para toda constante 𝔠𝔄 y 𝔠𝔅, 𝑓(𝔠𝔄) = 𝔠𝔅; 

2. Para cada función 𝑛-ádica ℎ𝔄 de 𝔄 y ℎ𝔅 de 𝔅, y para todo 𝑣, . . . , 𝑣𝑛 de 𝐴, 𝑓(ℎ𝔄(𝑣, . . . , 𝑣𝑛)) =
ℎ𝔅(𝑓(𝑣), . . . , 𝑓(𝑣𝑛)). 

3. Para cada relación 𝑛-ádica 𝑅𝔄 de 𝔄 y 𝑅𝔅 de 𝔅, y para todo 𝑣, . . . , 𝑣𝑛 de 𝐴, si 𝑅𝔄(𝑣, . . . , 𝑣𝑛) entonces 

𝑅𝔅(𝑓(𝑣), . . . , 𝑓(𝑣𝑛)). ⊞ 

 

A su vez, este teorema, que a continuación se demuestra, es la justificación de las funciones definidas 

por inducción matemática o recursión para los modelos de Peano, como es el caso de la adición y el producto. 

Para nuestro caso, al definir una función 𝑓 mediante recursión primero especificamos que la función se cumple 

para 𝔠, es decir, especificamos el valor de 𝑓(𝔠); y entonces indicamos la regla para obtener 𝑓(𝚂(𝑣)) desde un 

valor previo 𝑓(𝑣). Esto determina una única función 𝑓 definida sobre el dominio de 𝑓. Las definiciones recursivas, 

sin embargo, requieren de un fundamento que nos garantice que cualquier función definida mediante estas 

condiciones para un modelo de Peano arbitrario existe y es única. Esta justificación es el siguiente teorema. 

Teorema de iteración. Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ una estructura 

cualquiera. Existe un único homomorfismo ℎ de 𝔄 en 𝔅 satisfaciendo 

1. ℎ(𝔠𝔄) = 𝔠𝔅; 

2. ℎ(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ(𝑣)), para todo 𝑣 ∈ 𝑁. 
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Demostración del teorema de iteración 

La demostración del teorema de iteración que vamos a presentar requiere de dos definiciones previas y 

de la demostración de dos lemas.6 

Definición (segmento): Sea 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano. Llamamos segmento a un subconjunto 

𝐺 ⊆ 𝑁 tal que 𝔠 ∈ 𝐺 y que, para todo 𝑣 ∈ 𝑁, si 𝚂(𝑣) ∈ 𝐺 entonces 𝑣 ∈ 𝐺. ⊞ 

De esta manera, un segmento es una cadena decreciente de elementos de 𝑁 hasta el elemento 𝔠. Mediante 

esta definición se entiende que tanto 𝑁 como {𝔠} son segmentos; este último de acuerdo al axioma A1, pues que 

la definición exige que 𝔠 pertenezca a 𝐺 y 𝔠 no está en el rango de 𝚂 (por A1), se cumple vacuamente la segunda 

parte de la definición. Una vez introducidos los segmentos, pasamos a introducir la noción de función parcial. 

Definición (función parcial): Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ una 

estructura cualquiera. Llamamos función parcial a una función ℎ desde un segmento 𝐺 a 𝑁′ que satisface las 

siguientes condiciones: 

1. ℎ(𝔠𝔄) = 𝔠𝔅 

2. ℎ(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ(𝑣)), para todo 𝑣 ∈ 𝑁 tal que 𝚂(𝑣) ∈ 𝐺. ⊞ 

 

Sobre la base de esta última definición podemos formular los dos lemas que se precisan para la 

demostración del teorema. 

Lema I. Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ una estructura cualquiera. Cada 

elemento de 𝑁 está en el dominio de una función parcial que tiene como rango a 𝑁′. 

Prueba. La prueba procede por inducción matemática. Para ello definiremos un conjunto 𝐻 al que 

pertenecen todos aquellos individuos de 𝑁 que están en el dominio de una función parcial, y mostraremos que 

𝐻 = 𝑁. Sea 𝐻 = {𝑣 ∈ 𝑁|∃(ℎ)(ℎ es una función parcial ∧ el dominio de ℎ, 𝑑𝑜𝑚(ℎ), es un segmento ∧ 𝑣 ∈
𝑑𝑜𝑚(ℎ))}. 

Mostramos que 𝔠𝔄 ∈ 𝐻. Como hemos visto antes, por A1 el conjunto unitario {𝔠𝔄} es un segmento. Ahora 

bien, existe la función parcial ℎ: {𝔠𝔄} → 𝑁′ definida por la condición 1 de la definición de función parcia: ℎ(𝔠𝔄) =
𝔠𝔅 (la condición 2 de la se cumple vacuamente ya que {𝔠𝔄} no contiene a 𝚂𝔄(𝔠𝔄)). En consecuencia, {𝔠𝔄} =
𝑑𝑜𝑚(ℎ), y por lo tanto 𝔠𝔄 ∈ 𝑑𝑜𝑚(ℎ) y 𝑑𝑜𝑚(ℎ) es un segmento. De lo que se sigue que 𝔠𝔄 ∈ 𝐻. 

Mostramos que ∀(𝑣)(𝑣 ∈ 𝐻 ⇒ 𝚂𝔄(𝑣) ∈ 𝐻). Asumamos que 𝑣 ∈ 𝐻 para algún 𝑣 genérico. Por lo tanto, 

existe una función ℎ tal que ℎ es una función parcial, donde 𝑑𝑜𝑚(ℎ) es un segmento y 𝑣 ∈ 𝑑𝑜𝑚(ℎ)). Si 𝚂𝔄(𝑣) ∈
𝑑𝑜𝑚(ℎ), concluimos. Si 𝚂𝔄(𝑣) ∉ 𝑑𝑜𝑚(ℎ), sea 𝐺 = 𝑑𝑜𝑚(ℎ) ∪ {𝚂𝔄(𝑣)}, y sea ℎ′ = ℎ ∪ {⟨𝚂𝔄(𝑣), 𝚂𝔅(ℎ(𝑣))⟩}, 
de modo que 𝚂𝔄(𝑣) ∈ 𝑑𝑜𝑚(ℎ′). Tenemos que mostrar que 𝐺 es un segmento y que ℎ′ es una función parcial. 

Con ello, concluimos que 𝚂𝔄(𝑣) ∈ 𝐻, de modo que aplicando A3 tenemos que 𝐻 = 𝑁. 

En primer lugar, vemos que 𝐺 es un segmento ya que 𝑑𝑜𝑚(ℎ) lo es y 𝑣 ∈ 𝑑𝑜𝑚(ℎ). En particular, si hay 

un 𝚂(𝑣1) ∈ 𝐺 tal que 𝚂𝔄(𝑣1) = 𝚂𝔄(𝑣) mediante A2 tenemos que 𝑣1 = 𝑣, y ya que 𝑣1 ∈ 𝑑𝑜𝑚(ℎ) tenemos que 

𝑣 ∈ 𝑑𝑜𝑚(ℎ) y 𝐺 es un segmento. En segundo lugar, tenemos que mostrar que ℎ′ es una función parcial, es decir, 

que satisface las condiciones 

1. ℎ′(𝔠𝔄) = 𝔠𝔅 

2. ℎ′(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ′(𝑣)), para todo 𝑣 ∈ 𝑁 tal que 𝚂(𝑣) ∈ 𝐺. 

 

Para el caso de 𝔠𝔄 tenemos que ℎ(𝔠𝔄) = ℎ′(𝔠𝔄) = 𝔠𝔅, ya que en este particular ℎ y ℎ′ coinciden. De igual 

modo, si 𝚂𝔄(𝑣) ∈ 𝑑𝑜𝑚(ℎ) tenemos ℎ(𝚂𝔄(𝑣)) = ℎ′(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ′(𝑣)). En otro caso, por definición de ℎ′ 

tenemos que ℎ′(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ(𝑣)) = 𝚂𝔅(ℎ′(𝑣)). ☐ 

 

Lema II. Si 𝑓 y 𝑔 son funciones parciales y 𝑣 ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝑑𝑜𝑚(𝑔) entonces 𝑓(𝑣) = 𝑔(𝑣). 
Prueba. Mediante inducción matemática. Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ 

una estructura cualquiera. Mostraremos que para el conjunto 𝐻 = {𝑣 ∈ 𝑁|∀(𝑓, 𝑔)(𝑓, 𝑔 son funciones parciales ∧ 

𝑣 ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝑑𝑜𝑚(𝑔) ⇒ 𝑓(𝑣) = 𝑔(𝑣))} tenemos que 𝐻 = 𝑁. 

Mostramos que 𝔠𝔄 ∈ 𝐻. Sean 𝑓 y 𝑔 dos funciones parciales genéricas. Como 𝑑𝑜𝑚(𝑓) y 𝑑𝑜𝑚(𝑔) son 

segmentos, tenemos que 𝔠𝔄 ∈ 𝑑𝑜𝑚(𝑓) y 𝔠𝔄 ∈ 𝑑𝑜𝑚(𝑔), y en consecuencia 𝔠𝔄 ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝑑𝑜𝑚(𝑔). Pero 

ℎ(𝔠𝔄) = 𝔠𝔅 para cualquier función parcial ℎ. En consecuencia 𝑓(𝔠𝔄) = 𝑔(𝔠𝔄) y 𝔠𝔄 ∈ 𝐻. 

Mostramos que ∀(𝑣)(𝑣 ∈ 𝐻 ⇒ 𝚂𝔄(𝑣) ∈ 𝐻). Sean 𝑓 y 𝑔 dos funciones parciales genéricas. Asumamos 

que 𝑣 ∈ 𝐻 para algún 𝑣 genérico y que 𝚂𝔄(𝑣) ∈ 𝑑𝑜𝑚(𝑓) ∩ 𝑑𝑜𝑚(𝑔). Por la condición 2 de la definición de las 

funciones parciales tenemos que 𝑓(𝚂𝔄(𝑣)) = 𝚂𝔅(𝑓(𝑣)) y que 𝑔(𝚂𝔄(𝑣)) = 𝚂𝔅(𝑔(𝑣)). Ahora bien, ya que 𝑣 ∈ 𝐻 

 
6 Una demostración más sintética de este teorema puede ser encontrada en Mendelson (1973:57-59). 
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tenemos que 𝑓(𝑣) = 𝑔(𝑣), de modo que 𝚂𝔅(𝑓(𝑣)) = 𝚂𝔅(𝑔(𝑣)). De lo que se sigue por la condición 2 que 

𝑓(𝚂𝔄(𝑣)) = 𝑔(𝚂𝔄(𝑣)), y 𝚂𝔄(𝑣) ∈ 𝐻. Mediante A3, tenemos que 𝐻 = 𝑁 ☐ 

Prueba (teorema de iteración). Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ una 

estructura cualquiera. En primer lugar reparamos en que para cualquier 𝑣 ∈ 𝑁 hay un elemento y solo un elemento 

𝑣1 ∈ 𝑁
′ tal que 𝑣1 = 𝑔(𝑣) para cada función parcial 𝑔: por una parte, por nuestro lema I, para todo 𝑣 ∈ 𝑁, 𝑣 está 

en el rango de alguna función parcial; si suponemos ahora que para dos funciones parciales genéricas 𝑔 y 𝑔′ 
tenemos ⟨𝑣, 𝑣1⟩ ∈ 𝑔 y ⟨𝑣, 𝑣2⟩ ∈ 𝑔

′ para 𝑣1 ≠ 𝑣2, entonces tenemos 𝑣 ∈ 𝑑𝑜𝑚(𝑔) ∩ 𝑑𝑜𝑚(𝑔′) pero 𝑓(𝑣) ≠ 𝑔(𝑣), 
lo que contradice nuestro lemma II. Nuestro supuesto, por tanto, es falso. 

Sea ℎ la unión de todas las funciones parciales, esto es: una función tal que 𝑑𝑜𝑚(ℎ) = 𝑁 y tal que para 

cualquier 𝑣 ∈ 𝑁 hay un único 𝑣1 ∈ 𝑁
′ tal que ⟨𝑣, 𝑣1⟩ ∈ ℎ. Tenemos que probar que ℎ es un homomorfismo de 𝑁 

a 𝑁′ y que es el único posible. 

De una parte, tenemos que ℎ(𝔠𝔄) = 𝔠𝔅, por la condición 1 de la definición de función parcial, 

satisfaciendo así la primera condición del homomorfismo preciso para el teorema. Por otra parte, para cualquier 

𝑥, ℎ(𝚂𝔄(𝑥)) = 𝑓(𝚂𝔄(𝑥)) para alguna función parcial 𝑓 por nuestro lema I, por ser 𝚂𝔄(𝑥) un elemento de 𝑁. Ya 

que 𝑓 es una función parcial tenemos que 𝑓(𝚂𝔄(𝑥)) = 𝚂𝔅(𝑓(𝑥)). Pero ya que por definición de ℎ (la unión de 

todas las funciones parciales) ℎ(𝑥) = 𝑓(𝑥), tenemos que ℎ(𝚂𝔄(𝑥)) = 𝚂𝔅(ℎ(𝑥)). De esta manera, ℎ es un 

homomorfismo. 

Queda por probar que ℎ es única. Ahora bien: ℎ es una función parcial sobre el segmento 𝑁, y por el 

lema II, si tuviésemos otra función ℎ′ con dominio en 𝑁 tendríamos que ℎ = ℎ′. Por tanto, ℎ es única. Por lo que 

concluimos que existe un único homomorfismo ℎ de 𝔄 en 𝔅 satisfaciendo 

1. ℎ(𝔠𝔄) = 𝔠𝔅; 

2. ℎ(𝚂𝔄(𝑣)) = 𝚂𝔅(ℎ(𝑣)), para todo 𝑣 ∈ 𝑁. ☐ 

 

Como hemos dicho al comienzo de la sección, las definiciones mediante la inducción matemática o 

recursión están justificadas en el marco de los modelos de Peano a causa de que nuestro teorema de iteración nos 

garantiza la existencia de un único homomorfismo, con las condiciones que se han expuesto arriba, de un modelo 

de Peano 𝔄 en otra estructura cualquiera. Nuestro teorema de iteración, apunta Henkin, “constituye una 

justificación de todas las definiciones por inducción matemática en los modelos de Peano” (Henkin (1960: 337)). 

En lo que debemos reparar aquí es en que esta es una propiedad que caracteriza a los modelos de Peano, pues son 

los únicos, según nos asegura el siguiente teorema, en que están justificadas todas las definiciones por inducción 

matemática. 

Teorema. Si 𝔄 es un modelo tal que para cualquier modelo 𝔅 hay un único homomorfismo ℎ de 𝔄 en 

𝔅, entonces 𝔄 es un modelo de Peano. 

Prueba. Omitimos la prueba, que puede ser encontrada en Manzano (1996: 132). 

En otras estructuras, como en los modelos de inducción, no está garantizada la existencia de cualquier 

función que podamos definir mediante la recursión. Un ejemplo significativo es el de la exponenciación, pues 

hay modelos de inducción para los cuales la exponenciación no es ni una función (para un ejemplo, cf. Manzano 

(1981: 25)). 

 

Aplicaciones del teorema de iteración 

Como hemos apuntado anteriormente, aparte de intervenir activamente en nuestra prueba de 

categoricidad de la aritmética de Peano, sobre la base del teorema de iteración podemos introducir aquellas 

funciones que se definen recursivamente. En particular, la adición y el producto. Este teorema nos garantiza que 

tales funciones, para los modelos de Peano, existen y son únicas, es decir: dados los axiomas de la adición y el 

producto (las expresiones 1-2 y 5-6 siguientes), la función que definen existen y son únicas. Para mostrarlo vamos 

a aplicarlo al caso de la adición, que es análogo al caso del producto. 

Teorema: Sea 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano arbitrario. Hay en 𝔄 una única función + que 

satisface las siguientes dos condiciones: 

1. +(𝑣, 𝔠𝔄) = 𝑣 

2. +(𝑣1, 𝚂
𝔄(𝑣2)) = 𝚂𝔄(+(𝑣1, 𝑣2)) 

para todo 𝑣, 𝑣1, 𝑣2 ∈ 𝑁. 

Prueba. Existencia. Sea 𝔄𝑛 = ⟨𝑁, 𝑛, 𝚂𝔄⟩ una estructura para cada 𝑛 ∈ 𝑁. El teorema de iteración nos 

garantiza que hay un único homomorfismo ℎ𝑛 entre 𝔄 y 𝔄𝑛 que satisface las condiciones: 

3. ℎ𝑛(𝔠
𝔄) = 𝑛 

4. ℎ𝑛(𝚂
𝔄(𝑣)) = 𝚂𝔄(ℎ𝑛(𝑣)) 

para todo 𝑣 ∈ 𝑁. Sea + definida por +(𝑛, 𝑣) = ℎ𝑛(𝑣). Vemos que ℎ𝑛(𝔠
𝔄) = +(𝑛, 𝔠𝔄) = 𝑛 y que 

+(𝑛, 𝚂𝔄(𝑣)) = ℎ𝑛(𝚂
𝔄(𝑣)) = 𝚂𝔄(ℎ𝑛(𝑣)) = 𝚂𝔄(+(𝑛, 𝑣)). Así definida, la función + existe. 
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Unicidad. Supongamos que 𝑓 es una función que satisface las condiciones 1 y 2. Sea, para cada 𝑛 ∈ 𝑁, 

𝑓𝑛 definida por 𝑓𝑛(𝑣) = 𝑓(𝑛, 𝑣) para cada 𝑣 ∈ 𝑁. En efecto, la función 𝑓 satisface las condiciones 3 y 4, pero de 

acuerdo con el teorema de iteración la función definida por 3 y 4 es única. De lo que se sigue que 𝑓(𝑛) = ℎ(𝑛) 

para todo 𝑛 ∈ 𝑁, y, por tanto, 𝑓 = ℎ. ☐ 

Ahora que disponemos de la adición podemos introducir una relación de orden que es usualmente 

introducida en la aritmética de Peano: la relación menor que, <. 

Definición (<): ∀(𝑣1, 𝑣2)(𝑣1 < 𝑣2 ↔ ∃(𝑣3)(𝑣1 + 𝚂(𝑣3) = 𝑣2)). ⊞ 

De manera semejante a la adición puede ser introducido el producto. 

Teorema: Sea 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano arbitrario. Hay en 𝔄 una única función × que 

satisface las siguientes dos condiciones: 

5. × (𝑣, 𝔠𝔄) = 𝔠𝔄 

6. × (𝑣1, 𝚂
𝔄(𝑣2)) = +(× (𝑣1, 𝑣2), 𝑣1) 

para todo 𝑣, 𝑣1, 𝑣2 ∈ 𝑁. 

Prueba. Análoga a la anterior para las condiciones 5 y 6. Una prueba de la aplicación del teorema de 

iteración al producto puede ser encontrada en Mendelson (1973: 68). Esta prueba, sin embargo, ya no es análoga 

a nuestra prueba anterior por la razón de que las condiciones 1 y 3 son, respectivamente, +(𝑛, 𝔠) = 𝚂(𝑛) y ℎ𝑛(𝔠) =

𝚂(𝑛). ☐ 

Hemos dicho al comienzo que en estos teoremas, las condiciones 1 y 2 y las condiciones 5 y 6 son los 

axiomas de la adición y el producto. La razón por la que en Π están ausentes es que son redundantes: las funciones 

que definen estos axiomas pueden ser introducidas sobre la base de un teorema, el teorema de iteración, que es a 

su vez probado por mediante los axiomas de Π. 

 

IV. La Categoricidad De La Arismética De Peano 
Una vez demostrado el teorema de iteración nos queda aún por presentar un teorema del que también 

haremos uso en la prueba de la categoricidad de la aritmética de Peano. Es en este nuevo teorema en el que los 

modelos de inducción juegan un papel relevante. Mediante este teorema demostraremos que entre un modelo de 

Peano 𝔄 y un modelo de inducción ℑ existe siempre un homomorfismo. En particular, ya que los modelos de 

Peano son modelos de inducción, encontraremos que entre cualesquiera dos modelos de Peano tenemos un 

homomorfismo que, además, por el teorema de iteración, es único. Nos quedará mostrar que este único 

homomorfismo que existe entre dos modelos de Peano arbitrarios es, de hecho, un isomorfismo. Para comenzar, 

introducimos una nueva noción: la de imagen homomórfica. 

Definición (imagen homomórfica): Sean 𝔄 y 𝔅 dos estructuras cualesquiera. Decimos que 𝔅 es una 

imagen homomórfica de 𝔄 si existe un homomorfismo ℎ de 𝔄 sobre 𝔅. ⊞ 

Debemos reparar en que esta definición demanda un homomorfismo ℎ de 𝔄 sobre (onto) 𝔅, esto es: el 

rango del homomorfismo ℎ es el dominio de 𝔅 al completo. El siguiente teorema nos asegura que, asumiendo 

que 𝔅 es la imagen homomórfica de 𝔄, cuando 𝔄 es un modelo de Peano entonces 𝔅 es un modelo de inducción, 

y viceversa: cualquier modelo de inducción es la imagen homomórfica de un modelo de Peano. 

Teorema 4.1. Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ un modelo de Peano y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ un modelo arbitrario: 𝔅 es 

una imagen homomórfica de 𝔄 si y solo si 𝔅 es un modelo de inducción. 

Prueba. Tenemos que probar que 𝔅 verifica nuestro axioma A3. 

⇒ (Necesidad). Supongamos que 𝔅 es una imagen homomórfica de 𝔄, siendo ℎ el homomorfismo preciso de 𝔄 

sobre 𝔅. Sea 𝐺′ cualquier subconjunto de 𝑁′ para el cual 𝔠𝔅 ∈ 𝐺′ y donde 𝐺′ está cerrado bajo 𝚂𝔅. Ahora bien: 

si 𝐺′ = 𝑁′ entonces 𝔅 será un modelo de inducción. Vamos a mostrar el antecedente del anterior condicional. 

Consideremos al conjunto 𝐺 de 𝑁 que consiste en aquellos elementos 𝑣 tales que ℎ(𝑣) ∈ 𝐺′: 𝐺 = {𝑣 ∈
𝑁|ℎ(𝑣) ∈ 𝐺′}. Tenemos que 𝔠𝔄 ∈ 𝐺, ya que ℎ(𝔠𝔄) = 𝔠𝔅 y 𝔠𝔅 ∈ 𝐺′. 

Supongamos ahora que 𝑣 ∈ 𝐺, y por lo tanto ℎ(𝑣) ∈ 𝐺′. Por lo tanto, 𝚂𝔅(ℎ(𝑣)) ∈ 𝐺′ porque 𝐺′ está 

cerrado bajo 𝚂𝔅. Por ser ℎ un homomorfismo, tenemos que 𝚂𝔅(ℎ(𝑣)) = ℎ(𝚂𝔄(𝑣)). De tal modo que 𝚂𝔄(𝑣) ∈ 𝐺. 

Por lo tanto, 𝐺 está cerrado bajo 𝚂𝔄. Ya que 𝔄 es un modelo de Peano, verifica a nuestro axioma A3, y 𝐺 = 𝑁. 

Pero entonces ℎ(𝑣) ∈ 𝐺′ para todo 𝑣 ∈ 𝑁 por definición de nuestro conjunto 𝐺. Ya que ℎ tiene como dominio a 

𝑁 y como rango a 𝑁′ al completo, tenemos que 𝐺′ = 𝑁′. Así, 𝔅 es un modelo de inducción y esto completa la 

prueba de necesidad. 

⇐ (Suficiencia). Supongamos ahora que 𝔅 es un modelo de inducción. Ya que 𝔄 es un modelo de Peano, 

por el teorema de iteración sabemos que existe un único homomorfismo ℎ de 𝔄 sobre 𝔅. Sea 𝐺 = {𝑣 ∈
𝑁′|∃(𝑣1) ∈ 𝑁 y ℎ(𝑣1) = 𝑣}. Tenemos que mostrar que 𝐺 = 𝑁′, y que por lo tanto el dominio de ℎ es 𝑁′ al 

completo. Ya que ℎ(𝔠𝔄) = 𝔠𝔅, 𝔠𝔅 ∈ 𝐺 y el rango de ℎ contiene a 𝔠𝔅. 

Asumamos que para un elemento genérico 𝑣 tenemos que 𝑣 ∈ 𝐺. Por lo tanto, para algún 𝑣1 ∈ 𝑁 tenemos 

que ℎ(𝑣1) = 𝑣 por definición de 𝐺. Ya que sabemos que 𝑁 está cerrado bajo la función 𝚂𝔄, tenemos que existe 

un 𝚂𝔄(𝑣1) ∈ 𝑁. Ya que ℎ es un homomorfismo, ℎ(𝚂𝔄(𝑣1)) = 𝚂𝔅(ℎ(𝑣1)) = 𝚂𝔅(𝑣). Por lo tanto, 𝚂𝔅(𝑣) ∈ 𝐺, 
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pues existe un 𝑣2 en 𝑁 tal que ℎ(𝑣2) = 𝚂𝔅(𝑣), a saber, tomando 𝑣2 = 𝚂𝔄(𝑣1). Por ser 𝔅 un modelo de inducción 

verifica nuestro axioma A3, de tal forma que 𝐺 = 𝑁′, y con ello el rango de ℎ es 𝑁′ al completo. Esto completa 

la prueba de suficiencia, y con ello se completa la prueba del teorema. ☐ 

Por último, antes de pasar a la prueba de categoricidad, vamos a presentar un teorema sobre 

homomorfismos que nos va a simplificar su demostración. Mediante este teorema veremos que el homomorfismo 

que hay entre cualesquiera dos modelos de Peano es, de hecho, un isomorfismo. 

Teorema 4.2. Sean 𝔄 y 𝔅 dos estructuras. ℎ es un isomorfismo de 𝔄 en 𝔅 si y solo si a) existe un 

homomorfismo ℎ′ de 𝔅 en 𝔄, b) la composición ℎ′ ∘ ℎ es la identidad de 𝔄 en 𝔄 y c) la composición ℎ ∘ ℎ′ es la 

identidad de 𝔅 en 𝔅. 

Prueba. Omitimos la prueba, que puede ser encontrada en Manzano (1989: 58). ☐ 

Teorema (categoricidad de la aritmética de Peano). Cualesquiera dos modelos de Peano son isomorfos. 

Prueba. Sean 𝔄 = ⟨𝑁, 𝔠𝔄, 𝚂𝔄⟩ y 𝔅 = ⟨𝑁′, 𝔠𝔅, 𝚂𝔅⟩ dos modelos de Peano cualesquiera. Por ser ambos 

modelos de inducción, el teorema 4.1 nos asegura que existen dos homomorfismos ℎ y ℎ′ de 𝔄 sobre 𝔅 y de 𝔅 

sobre 𝔄 respectivamente. De este modo, tenemos las composiciones ℎ′ ∘ ℎ y ℎ ∘ ℎ′ que son dos homomorfismos 

de 𝔄 en 𝔄 y 𝔅 en 𝔅 respectivamente. Ahora bien, el teorema de iteración nos asegura que los homomorfismos 

ℎ′ ∘ ℎ y ℎ ∘ ℎ′ son únicos. Siendo los únicos homomorfismos que cada una de estas estructuras encuentra sobre 

sí misma, y ya que cada estructura tiene como homomorfismo sobre sí misma la identidad, las composiciones 

ℎ′ ∘ ℎ y ℎ ∘ ℎ′ son la identidad de 𝔄 en 𝔄 y de 𝔅 en 𝔅 respectivamente. De este modo, el teorema 4.2 nos asegura 

que la función ℎ es un isomorfismo de 𝔄 sobre 𝔅. ☐ 

El anterior teorema tiene una importancia mayúscula en el plano metamatemático, pues a partir de él se 

sigue que la teoría 𝔗𝔢𝔬(Π)⊨ es categórica y, por tanto, es completa en el sentido que hemos apuntado en la sección 

2.1. Esto puede ser probado de modo genérico para cualquier teoría 𝔗: si 𝔗 es categórica, entonces 𝔗 es completa. 

Pero lo podemos probar para 𝔗𝔢𝔬(Π)⊨ en particular del siguiente modo. 

Teorema (completud de 𝔗𝔢𝔬(Π)⊨). La teoría 𝔗𝔢𝔬(Π)⊨ es completa, esto es, para cada 𝜙 ∈ 𝑆𝐸𝑁𝑇(𝐿𝐴2) 
tenemos que o bien 𝜙 ∈ 𝔗𝔢𝔬(Π)⊨ o bien ¬𝜙 ∈ 𝔗𝔢𝔬(Π)⊨. 

Prueba. Por reducción al absurdo. Supongamos que 𝔗𝔢𝔬(Π)⊨ no es completa. En tal modo, 𝜙 ∉
𝔗𝔢𝔬(Π)⊨ ni ¬𝜙 ∉ 𝔗𝔢𝔬(Π)⊨ para alguna sentencia 𝜙. Asumiendo la consistencia de 𝔗𝔢𝔬(Π)⊨, tenemos entonces 

que los conjuntos 𝔗𝔢𝔬(Π)⊨ ∪ {𝜙} y 𝔗𝔢𝔬(Π)⊨ ∪ {¬𝜙} son consistentes y, por tanto, satisfacibles. Sean 𝔄 y 𝔅 

sendos modelos de esos conjuntos. Ahora bien, 𝔄 y 𝔅 no son isomorfos (ni siquiera elementalmente equivalentes), 

pero ambos son modelos de 𝔗𝔢𝔬(Π)⊨. Pero esto contradice los resultados de categoricidad de 𝔗𝔢𝔬(Π)⊨, y, por 

tanto, nuestro supuesto es falso. ☐ 

 

V. La Categoricidad De 𝕿𝖊𝖔(𝚷)⊨ Y La Lógica De Segundo Orden 
Hasta ahora no nos hemos detenido mucho en considerar con cierto detalle el axioma de inducción en su 

formulación de segundo orden, A3. Un aspecto importante que cabe destacar es que ningún modelo de Peano 𝔄 

puede contener en su dominio números no estándar como consecuencia de satisfacer A3. Entendemos por 

números estándar el conjunto formado por el elemento destacado y sus sucesores 𝑁𝐸 =
{𝔠, 𝚂(𝔠), 𝚂(𝚂(𝔠)), 𝚂(𝚂(𝚂(𝔠))). . . }, mientras que los números no estándar que encontramos en primer orden no son 

sucesores de ningún número estándar. Ahora bien, si suponemos que el dominio de 𝔄, 𝑁, contiene números no 

estándar podemos extraer una contradicción. La razón es la siguiente: supongamos que 𝑁 contiene números no 

estándar y que 𝑁𝐸 ∈ 𝐷1, donde 𝐷1 es el dominio de las variables de subconjuntos (𝒫(𝑁)) de segundo orden; 

como 𝑁𝐸 contiene a 𝔠 y está cerrado bajo 𝚂𝔄, concluimos que 𝑁𝐸 = 𝑁 por A3, y encontramos una contradicción 

entre los dos supuestos (¿no contenía 𝑁 números no estándar?). Pero puesto que 𝐷1 = 𝒫(𝑁) y 𝑁𝐸 ∈ 𝒫(𝑁), 
entonces 𝑁𝐸 ∈ 𝐷1. Si después de todo queremos mantener la existencia de números no estándar en el dominio de 

𝔄 debemos relajar una condición esencial de la semántica estándar y convertir 𝐷1 = 𝒫(𝑁) en 𝐷1 ⊆ 𝒫(𝑁), de 

modo que 𝑁𝐸 ∉ 𝐷1. En este particular ahondaremos en la siguiente sección, pues supone una modificación en la 

semántica (que no es ad hoc para la aritmética de Peano). 

El anterior razonamiento, sin embargo, muestra que con semántica estándar (la que hemos mantenido 

hasta ahora) un modelo que contenga en su dominio números no estándar no puede modelizar a A3, ya que A3 

opera sobre 𝔠 y sus sucesores exclusivamente. De este modo, conjuntos como {𝑣 ∈ 𝑁|𝑣 = 𝔠 ∨ ∃𝑦(𝑣 = 𝚂(𝑦))} 
contienen solo (y todos los) números estándar pero no por la definición del propio conjunto sino por el ámbito de 

aplicación de A3. Los números estándar son, de este modo, definibles. 

En su versión en primer orden, el esquema axiomático de inducción es incapaz de definir los números 

estándar a consecuencia de que ninguna fórmula de 𝐿𝐴1 puede singularizar al conjunto 𝑁𝐸. Por ejemplo, si 

tratamos de hacerlo a través de la fórmula “v₁ = 𝔠 ∨ ∃(v₂)(v₁ = S(v₂))”, mediante el esquema axiomático de 

inducción podremos singularizar el conjunto al que pertenece 𝔠 y aquellos elementos que son sucesor 

(i.e. pertenecen al rango de la función 𝚂, para mayor precisión) de algún elemento del dominio del modelo en 

particular que se esté considerando. Pero como es bien sabido, para la aritmética de Peano de primer orden la 
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expresión “sucesor de algún elemento del dominio” no quiere decir “sucesor de un número estándar”. En 

particular, ya que existen modelos que contienen en su dominio números no estándar y que son modelos de la 

aritmética de Peano de primer orden (denominados modelos no estándar, que no son isomorfos al prototípico pero 

sí elementalmente equivalentes) que satisfacen esta sentencia, el conjunto que define puede contener números no 

estándar, que también son sucesores de otros números (no estándar) (cf. Manzano (1989: 220-221)). Como el 

esquema axiomático de inducción solamente opera sobre conjuntos definibles mediante 𝐿𝐴1 y ninguna fórmula 

singulariza al conjunto 𝑁𝐸, los números estándar son indefinibles, aunque no vamos a ahondar más en esto por 

limitación de espacio (cf. Manzano (1989: 222) para más detalles). 

 

Resultados negativos 

Como apuntábamos en la sección 2.1, Π genera dos teorías, 𝔗𝔢𝔬(Π)⊨ y 𝔗𝔢𝔬(Π)⊢, tales que hay al menos 

una sentencia 𝜙, que por el teorema de Gödel existe, tal que 𝜙 ∈ 𝔗𝔢𝔬(Π)⊨ y 𝜙 ∉ 𝔗𝔢𝔬(Π)⊢. De este modo, como 

se prueba en Manzano (1996: 128), la propia lógica de segundo orden resulta ser incompleta ya que para la 

sentencia 𝐴1 ∧ 𝐴2 ∧ 𝐴3 → 𝜙 tenemos que Π ⊨ 𝐴1 ∧ 𝐴2 ∧ 𝐴3 → 𝜙 mientras que Π ⊬ 𝐴1 ∧ 𝐴2 ∧ 𝐴3 → 𝜙. En 

esta sección vamos a ver cómo a partir de la categoricidad de la aritmética de Peano, es decir, de 𝔗𝔢𝔬(Π)⊨, 

podemos probar otros resultados negativos, la carencia de ciertas metapropiedades de la lógica de segundo orden 

con semántica estándar. Estos resultados, sin embargo, no son característicos de la categoricidad de 𝔗𝔢𝔬(Π)⊨, 

sino más bien de la capacidad expresiva de la lógica de segundo orden con semántica estándar que nos permite 

tener teorías categóricas con dominios infinitos; lo mismo nos valdría en este punto la teoría categórica del análisis 

real. No obstante, ya que disponemos de la categoricidad de 𝔗𝔢𝔬(Π)⊨, lo haremos a través de ésta. 

El primero de estos metateoremas de los que carece la lógica de segundo orden con semántica estándar 

es el teorema de Löwenheim-Skolem-Tarski: sea Φ un conjunto de fórmulas que es satisfacible sobre un dominio 

infinito y sea 𝜅 un cardinal más grande o igual a la cardinalidad de Φ; entonces Φ tiene un modelo de cardinalidad 

𝜅. La categoricidad de 𝔗𝔢𝔬(Π)⊨ demanda un isomorfismo entre todos sus modelos que exige que el dominio de 

todos sus modelos tenga una cardinalidad de 𝜔, y contraviene la existencia de otros modelos con cardinalidad 

superior: perderíamos el isomorfismo entre todos los modelos de la teoría. 

Teorema. En lógica de segundo orden con semántica estándar no se cumple el teorema de Löwenheim-

Skolem-Tarski. 

Prueba. Supongamos, contrario a lo que queremos concluir, que el teorema se cumple. En particular, 

𝔗𝔢𝔬(Π)⊨ es un conjunto de sentencias satisfacible (asumiendo su consistencia) para modelos de cardinalidad 𝜔. 

Sea 𝜅 una cardinalidad estrictamente mayor que 𝜔, esto es, 𝜅 > 𝜔. De esta manera, tenemos dos modelos de 

𝔗𝔢𝔬(Π)⊨, 𝔐 y 𝔐′, tales que |𝔐| = 𝜔 y |𝔐′| = 𝜅. Ahora bien, 𝔐 y 𝔐′ no son isomorfos ya que sus 

cardinalidades son distintas, lo cual contradice el hecho de que 𝔗𝔢𝔬(Π)⊨ es una teoría categórica y, por tanto, 

nuestro supuesto (esto es, que el teorema se cumple) es falso. ☐ 

La segunda de estas metapropiedades de la que podemos probar que no se cumple a partir de 𝔗𝔢𝔬(Π)⊨ 

es la compacidad. La razón es, en cierto sentido, la misma: de cumplirse, la teoría tendría modelos no estándar 

con números no estándar (no isomorfos) y esto desvanecería, de nuevo, la categoricidad de 𝔗𝔢𝔬(Π)⊨. 

Teorema. La lógica de segundo orden con semántica estándar no es compacta. 

Prueba. Sea 𝔄 = ⟨𝑁, 𝔠, 𝚂⟩ un modelo de Peano, y sea Γ = 𝔗𝔢𝔬(Π)⊨ ∪ {𝑒 > 𝔠, 𝑒 > 𝚂(𝔠), 𝑒 > 𝚂(𝚂(𝔠)), 𝑒 >
𝚂(𝚂(𝚂(𝔠))). . . }. Si tomamos cada subconjunto finito Γ′ de Γ vemos que es finitamente satisfacible, pues cada Γ′ 
puede tener un modelo consistente en expandir el lenguaje de la interpretación de 𝔄 mediante la constante 𝑒 y 

asignar a 𝑒 cualquier elemento mayor que los presupuestos en Γ′. Sin embargo Γ no es satisfacible, pues en caso 

contrario 𝔗𝔢𝔬(Π)⊨ tendría un modelo que no es isomorfo con el resto, lo que contraviene a la categoricidad 

probada. (Tal modelo dispondría de al menos un elemento que no es denotado mediante ninguno de los términos 

𝔠, 𝚂(𝔠), 𝚂(𝚂(𝔠)), 𝚂(𝚂(𝚂(𝔠))), que no puede suceder en el resto de modelos de Peano). Por lo tanto, no todo 

conjunto de fórmulas que es finitamente satisfacible es satisfacible. ☐ 

En realidad, estos resultados no tienen por qué ser interpretados en un sentido negativo si reparamos en 

que su tenencia deforma, en cierto sentido, las teorías o su modelado, como es el caso de la lógica de primer 

orden. Dejaremos estas valoraciones para el apartado final de conclusiones. No obstante, tanto los resultados de 

la carencia de estas metapropiedades como la categoricidad de 𝔗𝔢𝔬(Π)⊨ pueden ser invertidos para la lógica de 

segundo orden cuando modificamos la semántica. 

 

VI. Lógica De Segundo Orden Con Semántica No Estándar 
Hasta ahora nos hemos circunscrito al marco de la lógica de segundo orden con semántica estándar. Una 

ventaja de este marco, como dijimos, es que genera teorías categóricas incluso cuando el dominio de los modelos 

de tales teorías presupone una cardinalidad infinita, como la de la aritmética de Peano que aquí consideramos o 

la del análisis cuando el axioma del supremo (presentado en la introducción de este trabajo) es formulado en un 

lenguaje de segundo orden. Ahora bien, un elemento clave de esta semántica, que está en íntima conexión con la 



La Aritmética De Peano Y La Lógica De Segundo Orden 

DOI: 10.9790/5728-2106035771                           www.iosrjournals.org                                                  67 | Page 

categoricidad de la aritmética de Peano, es la noción de conjunto y su incidencia en las estructuras estándar; 

noción que se toma directamente de la metateoría y su trasfondo teórico-conjuntista (cf. Manzano (1996): 150). 

En lo que respecta a la categoricidad de la aritmética de Peano, es crucial que el alcance de la 

cuantificación sobre variables de propiedades (∀(𝑋1), ∃(𝑋1)) sea todos los conjuntos de individuos, es decir, el 

conjunto potencia del dominio. Esta es una condición que respeta la semántica estándar en la definición de las 

estructuras. 

En particular, las propiedades y relaciones quedan prefijadas en las estructuras estándar al exigir a sus 

respectivos universos 𝐷𝑛 (para todo 𝑛 ∈ ℕ) que contengan todas las posibles propiedades y relaciones. En detalle, 

tomemos una estructura 𝔄 de este tipo cuyo dominio es 𝐴, cuyo universo de relaciones7 (es decir, el rango de las 

variables de segundo orden de 𝔄) 𝑛-arias es un elemento de la serie ⟨𝐷𝑛⟩𝑛≥1. En este caso, tenemos que 𝐷1 =
𝒫(𝐴), y que 𝐷𝑛 es el conjunto potencia del n-ésimo producto cartesiano de 𝐴 sobre 𝐴, 𝐷𝑛 = 𝒫(𝐴𝑛). 

En (1950) Henkin introduce una semántica alternativa, no estándar, para probar la completud en la teoría 

de tipos. En particular, Henkin presenta dos tipos de estructuras, los marcos y los modelos generales, en los que 

las condiciones para los dominios relaciones de ⟨𝐷𝑛⟩𝑛≥1 que acabamos de ver para la semántica estándar son 

modificadas, relativizando la noción de conjunto a cada estructura en particular de modo explícito. A diferencia 

de las estructuras estándar, el universo de propiedades 𝐷1 de una estructura-marco 𝔐 no tiene por qué contener 

todos los subconjuntos de su dominio de individuos 𝑀, relajando la condición a 𝐷1 ⊆ 𝒫(𝑀). De igual modo, la 

condición es modificada para el resto de relaciones: 𝐷𝑛 ⊆ 𝒫(𝑀𝑛). De este modo, la definición de estructura (a 

las que llamaremos marcos) requiere alguna modificación: 

Definición (marco): Llamamos marco a una dupla 𝔐 = ⟨𝔄, ⟨𝐷𝑛⟩𝑛≥1⟩ donde 𝔄 = ⟨𝑀, 𝐼, ⟨𝑅𝑛⟩𝑛≥1⟩ es una 

estructura y ⟨𝐷𝑛⟩𝑛≥1 es una colección de dominios 𝑛-arios de las variables de segundo orden tales que: 

I.      𝑀 es un universo no vacío de individuos de la estructura 𝔄; 

II. 𝐼 es un conjunto de elementos destacados de 𝑀; 

III. Para cada constante de relación 𝑃𝑛 ∈ ⟨𝑅𝑛⟩𝑛 ≥ 1, 𝑃𝑛𝔄 es una relación 𝑛-aria sobre individuos; Además, cada 

relación destacada de 𝔄 debe ser un miembro del universo correspondiente 𝐷𝑛 (𝐷𝑛+1 en el caso de las 

funciones 𝑛-arias). 

IV. Para cada 𝑛 ≥ 1, 𝐷𝑛 es un universo de relaciones n-arias tal que 𝐷𝑛 ⊆ 𝒫(𝑀𝑛), donde 𝑀𝑛 es el n-ésimo 

producto cartesiano de 𝑀 sobre sí mismo. ⊞ 

 

De esta manera, un caso extremo de marcos son las estructuras estándar (a las que llamaremos marcos 

completos), pero la clase de éstas solamente es una subclase propia de la clase de los marcos. Basta con considerar 

aquellas estructuras para las que 𝐷𝑛 ⊂ 𝒫(𝑀𝑛) para cualquier 𝑛. Otro caso extremo de esta definición es que 

permite incluir entre los marcos a las estructuras de primer orden cuando para un marco 𝔄 tenemos que 𝐷𝑛 = ∅ 

para todo 𝑛, aunque en este trabajo no se tendrán en cuenta estos marcos8. Por otra parte, una lógica de segundo 

orden con semántica de marcos pierde cierto poder expresivo. Por ejemplo, la identidad entre individuos ha de 

ser introducida como símbolo primitivo a causa de que la relación “=” definida mediante la fórmula 

∀(𝑣1, 𝑣2)(𝑣1 = 𝑣2 ⇔ ∀(𝑋)(𝑋(𝑣1) ⇔ 𝑋(𝑣2))) ya no puede ser interpretada como la igualdad entre los 

individuos del marco que satisface esta sentencia. Consideremos el marco 𝔐 = ⟨𝑀, ⟨𝐷𝑛⟩𝑛≥1⟩, donde 𝑀 = {𝑎, 𝑏} 
y 𝐷1 = {∅,𝑀}. Hay que resaltar que {𝑎}, {𝑏} ∉ 𝐷1 aunque {𝑎}, {𝑏} ∈ 𝒫(𝑀). Sea 𝑖 = ⟨𝔐, 𝐼⟩ una interpretación 

tal que 𝑖(𝑎) ≠ 𝑖(𝑏), donde 𝑖(𝑎) = 𝑎𝔐 y 𝑖(𝑏) = 𝑏𝔐. Ahora bien, ⟨𝔐, 𝐼⟩ ⊨𝑀 ∀(𝑋)(𝑋(𝑎) ⇔ 𝑋(𝑏)) y 

⟨𝔐, 𝐼⟩ ⊨𝑀 𝑎 ≠ 𝑏, si “=” es el símbolo de la relación de identidad. Esta es una consecuencia directa que trae 

consigo la introducción de una semántica de marcos en relación al poder expresivo. Los subconjuntos incluidos 

en 𝐷1 no son, como se ha hecho notar, todos los posibles subconjuntos de 𝔐; si así fuera, como sucede en los 

marcos completos, tendríamos que ⟨𝔐, 𝐼⟩ ⊭𝑀 ∀(𝑋)(𝑋(𝑎) ⇔ 𝑋(𝑏)). Manzano ha apuntado en (1996: 150-151) 

que la noción de “subconjunto” que las estructuras estándar toman del trasfondo teórico conjuntista de la 

metateoría queda, en una semántica de marcos, relativizada a cada estructura. Es decir, en cada marco se hacen 

explícitos aquellos subconjuntos que pertenecen a los dominios a los que las variables de segundo orden refieren, 

que, según hemos visto, no tienen por qué ser todos los posibles. 

Para el caso que nos ocupa en este trabajo, esta modificación en las estructuras altera directamente los 

resultados relativos a la categoricidad de la teoría 𝔗𝔢𝔬(Π)⊨ y al alcance del axioma de inducción. En (1950: 89)9 

Henkin escribe: 

 
7 Por simplicidad, entendemos que una propiedad o un subconjunto del dominio de la estructura es una relación 

1-aria. 
8 De este modo nuestra definición concuerda con la definición de Väänänen (2015: 122) aunque no enteramente 

con la que se presenta en Manzano (1996: 154). 
9 Los modelos generales a los que se alude constituyen una subclase de la clase de los marcos que trataremos 

inmediatamente. 



La Aritmética De Peano Y La Lógica De Segundo Orden 

DOI: 10.9790/5728-2106035771                           www.iosrjournals.org                                                  68 | Page 

Como Skolem apunta, sin embargo, esta condición [la categoricidad] solamente se obtiene si “conjunto” 

—como aparece en el axioma de inducción completa (nuestro P3) [nuestro A3]— es interpretado con su 

significado estándar. Ya que, sin embargo, el alcance (“todos los conjuntos de individuos”) del cuantificador 

∀(𝑋) puede variar de un modelo general a otro, se sigue que podemos esperar modelos no estándar para los 

axiomas de Peano. (los corchetes no están en el original) 

Hemos considerado brevemente los marcos en general, aunque la semántica que nos interesará en esta 

parte del trabajo es la que tiene en cuenta solamente un tipo particular de marco: los modelos generales que 

aparecen en la cita anterior. La peculiaridad de los modelos generales es que son marcos que satisfacen el esquema 

axiomático de comprehensión. 

Definición (Modelo general): Un modelo general es un marco que satisface todas las sentencias de 

comprehensión, es decir, que satisface el cierre universal de todas las instancias del esquema axiomático de 

comprehensión (AC): ∃(𝑋𝑛)∀(𝑣1, 𝑣2, . . . , 𝑣𝑛)(𝑋
𝑛(𝑣1, 𝑣2, . . . , 𝑣𝑛) ⇔ 𝜙(𝑣1, 𝑣2, . . . , 𝑣𝑛)), donde 𝜙 es una fórmula 

de 𝐿2 en la que 𝑋𝑛 no ocurre libre. ⊞ 

La idea que hay detrás de AC es garantizar la existencia de la relación 𝑋𝑛 formada por los individuos 

𝑣1, 𝑣2, . . . , 𝑣𝑛 para los que 𝜙(𝑣1, 𝑣2, . . . , 𝑣𝑛) es satisfecha, es decir: 𝑋𝑛 = {𝑣|𝜙(𝑣)}10. De este modo, si 𝔊 es un 

modelo general y ⟨𝐷𝑛⟩𝑛≥1 la secuencia de dominios que sirven de rango de las variables de segundo orden de 𝔊, 

entonces AC nos garantiza que todas las relaciones que podemos definir mediante 𝐿2 para el modelo general 𝔊 

existen en el correspondiente 𝐷𝑛 de ⟨𝐷𝑛⟩𝑛≥1 (cf. Väänänen y Wang (2015: 122)). 

Como se puede apreciar, todos los marcos completos (estructuras estándar) cumplen esta condición ya 

que a cada 𝐷𝑛 de ⟨𝐷𝑛⟩𝑛≥1 pertenecen todas las relaciones posibles y, entre ellas, aquellas definibles mediante 𝐿2. 

Sin embargo, esto no es cierto para cualquier marco. La relación que encontramos entre estas estructuras es la 

siguiente: la clase de los marcos completos está propiamente incluida en la clase de los modelos generales; ésta, 

a su vez, está propiamente incluida en la clase de los marcos. 

Una lógica de segundo orden basada en la semántica de modelos generales tiene ciertas metapropiedades 

de las que la lógica de segundo orden con semántica estándar carece. Por ejemplo, es completa en sentido fuerte 

con respecto al cálculo 𝐶2 presentado en Manzano (1996: 79-ss), compacta y cumple el teorema de Löwenheim-

Skolem11. Por contra, parte de la potencia expresiva de la lógica de segundo orden con semántica estándar 

desaparece; en particular, la capacidad de caracterizar la teoría 𝔗𝔢𝔬(Π)⊨ bajo isomorfismo de todos sus modelos. 

En efecto, el teorema de compacidad nos va a permitir generar modelos no estándar de la aritmética de Peano. De 

hecho, doblemente no estándar: modelos no isomorfos con el modelo arquetípico que son, además, modelos 

generales. Con ello, la categoricidad de la aritmética de Peano, o de 𝔗𝔢𝔬(Π)⊨ para ser más precisos, desaparece. 

Como acabamos de apuntar, encontramos dos tipos de modelos no estándar de 𝔗𝔢𝔬(Π) con la semántica 

no estándar de modelos generales. En primer lugar están los modelos generales de 𝔗𝔢𝔬(Π)⊨ que son no estándar 

en sentido semántico. Precisamos esto mediante la siguiente definición. 

Definición (Modelo de Peano general): Un modelo de Peano general es un modelo general 𝔐 =
⟨⟨𝑁, 𝔠, 𝚂⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ donde la estructura del marco es un modelo de Peano. ⊞ 

Entre los modelos de Peano generales encontramos, de una parte, los modelos de Peano en su sentido 

estándar (que son marcos completos); y de otra, aquellos para los que 𝐷𝑛 ≠ 𝒫(𝑁) para algún n, siendo 𝑁 el 

dominio del modelo. Estos últimos modelos son modelos no estándar en su sentido semántico, y guardan una 

relación estrecha con el segundo tipo de modelos no estándar (a secas), que son aquellos modelos que son no 

estándar por tener en su dominio números no estándar (y no ser isomorfos al modelo de Peano prototípico a causa 

de ello). Estos últimos pueden ser hallados mediante compacidad del mismo modo que en lógica de primer orden. 

Teorema: Con semántica de modelos generales, la aritmética de Peano tiene modelos no estándar. 

Prueba: Lo probaremos mediante compacidad. Sea Δ = 𝔗𝔢𝔬(Π)⊨ ∪ {𝑐 ≠ 𝔠, 𝑐 ≠ 𝚂(𝔠), 𝑐 ≠ 𝚂(𝚂(𝔠)), 𝑐 ≠
𝚂(𝚂(𝚂(𝔠))). . . }. Tenemos que mostrar que Δ es satisfacible. Para ello, sea Δ′ un subconjunto arbitrario finito de 

Δ. Ahora bien, Δ′ tiene un modelo que consiste en un modelo de Peano con un lenguaje extendido mediante la 

constante 𝑐, donde 𝑐 es asignado a cualquier elemento mayor que los presupuestos en Δ′. Como Δ′ fue tomado en 

modo genérico, concluimos que Δ es finitamente satisfacible y, por tanto, es satisfacible. Sea 𝔑 un modelo de Δ; 

por serlo, también lo es de 𝔗𝔢𝔬(Π)⊨. Ahora bien, 𝔑 ≇ 𝔄, donde 𝔄 es el modelo de Peano prototípico. ☐ 

Aunque no vamos a detenernos a desarrollar hechos sobre los números no estándar, vemos que hay 

modelos de la aritmética de Peano que los tienen como elementos en sus dominios. Y su incidencia en estos 

modelos no es inocua porque un modelo que contenga en su dominio números no estándar es, a su vez, un modelo 

general de Peano no estándar en sentido semántico. En particular, del dominio de relaciones 1-arias 𝐷1 tendremos 

 
10 Algunos sistemas axiomáticos de la aritmética de segundo orden, como el presentado en Simpson (2009: 4), 

incluyen AC entre sus axiomas en el marco de la semántica estándar. 
11 Las pruebas pueden encontrarse, además de en Henkin (1950: 85-88), en Manzano (1996: 168-169) y Shapiro 

(1991: 90-93). 
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que excluir a los números estándar, siendo estos el conjunto formado por el elemento destacado del modelo y 

todos sus sucesores: 𝑁𝐸 = {𝔠, 𝚂(𝔠), 𝚂(𝚂(𝔠)), 𝚂(𝚂(𝚂(𝔠))). . . }. Esto es así en virtud de que A3 nos fuerza a concluir 

que si 𝑁𝐸 ∈ 𝐷1 para un modelo de Peano general 𝔊, entonces el dominio de 𝔊 no puede contener números no 

estándar, pues al aplicar la inducción sobre 𝑁𝐸 tenemos que 𝑁𝐸 = 𝐺, donde 𝐺 es el dominio de 𝔊; si los contiene, 

entonces 𝑁𝐸 ∉ 𝐷1. Este hecho lo podemos expresar mediante el siguiente teorema. 

Teorema: Si 𝔑 es un modelo de Peano no estándar, entonces 𝔑 es un modelo general es no estándar en 

sentido semántico. 

Prueba: Sea 𝑁𝐸 el conjunto de los números estándar incluido en el dominio de 𝔑, 𝑁. Contrario a lo que 

queremos concluir, supongamos que 𝑁𝐸 ∈ 𝐷1. Ahora bien, 𝔠 ∈ 𝑁𝐸 y 𝑁𝐸 está cerrado bajo la función 𝚂. Por ser 

𝔑 un modelo de Peano, el axioma de inducción A3 nos hace concluir que 𝑁𝐸 = 𝑁. Pero esto es imposible, ya 

que 𝑁 contiene números no estándar y, por tanto, nuestro supuesto es falso, es decir, 𝑁𝐸 ∉ 𝐷1. Pero entonces 

𝐷1 ≠ 𝒫(𝑁) y 𝔑 es no estándar en sentido semántico. ☐ 

En efecto, aunque con esta semántica hemos ganado para una lógica de segundo orden metapropiedades 

como la completitud y la compacidad, es a cambio, de nuevo, de pagar el precio de la categoricidad de 𝔗𝔢𝔬(Π)⊨ 

o de la definibilidad de 𝑁𝐸. 

 

Categoricidad interna 

Como advertíamos en la introducción, hay todavía una noción que nos va a permitir agrupar modelos de 

𝔗𝔢𝔬(Π)⊨ en clases de estructuras isomorfas: la noción de categoricidad interna. Esta noción ha sido aplicada a la 

lógica de segundo orden con semántica de modelos generales por Väänänen (cf. (2012), (2015), (2020)). 

Una de las características expresivas de la lógica de segundo orden, aún con semántica general, es que 

su lenguaje permite expresar que existe una función de isomorfismo entre dos estructuras mediante una sentencia, 

cuando éstas son isomorfas. Por ejemplo, sean 𝔊 = ⟨𝑈𝔊, 𝑇𝔊⟩ y 𝔇 = ⟨𝑀𝔇, 𝑅𝔇⟩ dos estructuras isomorfas, donde 

𝑈𝔊 y 𝑀𝔇 son los dominios de las estructuras, y tanto 𝑇𝔊 como 𝑅𝔇 son relaciones 2-arias. Entonces, la sentencia 

𝐼𝑆(𝑈,𝑀, 𝑇, 𝑅): 
 

∃(𝐹)[∀(𝑣1)(𝑈(𝑣1) → 𝑀(𝐹(𝑣1))) ∧ ∀(𝑣1)∃(𝑣2)(𝑀(𝑣1) → (𝑈(𝑣2) ∧ 𝑣1
= 𝐹(𝑣2))) ∧ ∀(𝑣1, 𝑣2)((𝑈(𝑣1) ∧ 𝑈(𝑣2)) → [(𝐹(𝑣1) = 𝐹(𝑣2) → 𝑣1 = 𝑣2) ∧ (𝑇(𝑣1, 𝑣2)
↔ 𝑅(𝐹(𝑣1), 𝐹(𝑣2)))])] 

 

expresa la existencia de un isomorfismo entre las estructuras 𝔊 y 𝔇. No obstante, ninguna de las 

estructuras 𝔊 y 𝔇 satisfacen 𝐼𝑆(𝑈,𝑀, 𝑇, 𝑅) ya que carecen del lenguaje, del vocabulario, necesario para hacerlo. 

Sin embargo, hay una manera de comprobar si 𝔊 y 𝔇 son isomorfos a partir de 𝐼𝑆(𝑈,𝑀, 𝑇, 𝑅) mediante modelos 

generales, y en ello se basa parte de la noción de categoricidad interna. 

 

Para ver esto, vamos a introducir las siguientes definiciones: 

Definición (expansión de un lenguaje): decimos de un lenguaje 𝐿′ que es una expansión de un lenguaje 

𝐿 si 𝐿′ es el resultado de añadir nuevos símbolos a 𝐿, sean éstos símbolos constates o relacionales. ⊞ 

Definición (expansión de un modelo): decimos de un modelo 𝔐′ que es una expansión de un modelo 𝔐 

si 𝔐 es un modelo para un lenguaje 𝐿 y 𝔐′ es el resultado de añadir interpretaciones a los nuevos símbolos de 

un lenguaje expandido 𝐿′ de 𝐿. ⊞ 

La idea es que nosotros podemos mostrar que los modelos 𝔊 y 𝔇 son isomorfos si tienen como expansión 

común un modelo general ℑ = ⟨⟨𝑉ℑ, 𝑈ℑ, 𝑀ℑ, 𝑇ℑ, 𝑅ℑ⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ con un lenguaje expandido 𝐿 = {𝑈,𝑀, 𝑇, 𝑅}, 
donde 𝑉ℑ = 𝑈ℑ ∪ 𝑀ℑ es el dominio de la estructura, 𝑈ℑ y 𝑀ℑ son dos conjuntos de individuos, y tanto 𝑇ℑ como 

𝑅ℑ son dos relaciones 2-arias. Ya que ℑ es un modelo general, satisface el axioma de comprehensión, que nos 

garantiza que todos los conjuntos y relaciones definibles están en ⟨𝐷𝑛⟩𝑛≥1. En particular, nos garantiza que la 

función de isomorfismo expresada por 𝐼𝑆(𝑈,𝑀, 𝑇, 𝑅) existe. De este modo, podemos afirmar 

 

G ≅ D ⇔ I ⊨ I S ( U , M , T , R ) G≅D⇔I⊨IS(U,M,T,R) 

 

es decir, las estructuras 𝔊 y 𝔇 son isomorfas si y solo si existe una estructura ℑ que es una expansión 

común a ambas y que satisface la sentencia 𝐼𝑆(𝑈,𝑀, 𝑇, 𝑅). 
Estas consideraciones pueden ser aplicadas a la aritmética de Peano de segundo orden. Vamos a 

comenzar expandiendo nuestro lenguaje 𝐿𝐴2 a 𝐿𝐴2+ = {𝑁,𝑀, 𝔠, 𝔞, 𝚂, 𝚁}. De este modo hemos añadido una nueva 

constante de individuo, 𝔞, y una nueva constante de función 1-aria, 𝚁. Tanto 𝑀 como 𝑁 son símbolos para 

conjuntos de individuos. Sea 𝔄 = ⟨⟨𝑁𝔄, 𝔠𝔄, 𝚂𝔄⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ un modelo de Peano general en el que 𝑁𝔄 = ℕ, donde 

𝔠𝔄 = 0, y donde 𝚂𝔄: 𝚂𝔄(𝑣) = 𝑣 + 1 para todo 𝑣 ∈ 𝑁𝔄; y sea 𝔅 = ⟨⟨𝑀𝔅, 𝔞𝔅, 𝚁𝔅⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ otro modelo de Peano 

general en el que 𝑀𝔅 = 2ℕ (el conjunto de los números naturales pares), donde 𝔞𝔅 = 0, y donde 𝚁𝔅: 𝚁𝔅(𝑣) =
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𝑣 + 2 para todo 𝑣 ∈ 𝑀𝔅. Ya que son modelos de Peano generales, 𝔄 y 𝔅 no tienen por qué ser isomorfos. Sin 

embargo, supongamos que ambos tienen una expansión común 𝔈 = ⟨⟨𝑈𝔈, 𝑁𝔈, 𝑀𝔈, 𝔠𝔈, 𝔞𝔈, 𝚂𝔈, 𝚁𝔈⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ 
siendo 𝔈 un modelo general cuyo dominio es 𝑈𝔈 = 𝑁𝔈 ∪𝑀𝔈 = ℕ, donde 𝑁𝔈 = ℕ y 𝑀𝔈 = 2ℕ, cuyos elementos 

destacados 𝔠𝔈 = 𝔞𝔈 = 0, y cuyas funciones monarias destacadas son 𝚂𝔈: 𝚂𝔈(𝑣) = 𝑣 + 1 y 𝚁𝔈: 𝚁𝔈(𝑣) = 𝑣 + 2. 

Ya que 𝔈 es modelo del axioma de comprehensión, tenemos el isomorfismo 𝐹 expresado por 

 

∃(𝐹)[𝐹(𝔠) = 𝔞 ∧ ∀(𝑣1)(𝑁(𝑣1) → 𝑀(𝐹(𝑣1))) ∧ ∀(𝑣1)∃(𝑣2)(𝑀(𝑣1) → (𝑁(𝑣2) ∧ 𝑣1
= 𝐹(𝑣2))) ∧ ∀(𝑣1, 𝑣2)((𝑁(𝑣1) ∧ 𝑁(𝑣2)) → [(𝐹(𝑣1) = 𝐹(𝑣2) → 𝑣1 = 𝑣2) ∧ (𝚂(𝑣1)
↔ 𝚁(𝐹(𝑣1)))])] 

 

existe, y pertenece a 𝐷2 de 𝔈. Los modelos 𝔄 y 𝔅 son, por tanto, isomorfos. Supongamos que 𝔇 =
⟨⟨𝑁𝔇, 𝔠𝔇, 𝚂𝔇⟩, ⟨𝐷𝑛⟩𝑛≥1⟩ es otro modelo general de Peano que tiene una expansión ℨ en común con 𝔅. Ya que 𝔅 

y 𝔇 también serían isomorfos, por transitividad del isomorfismo tendríamos que 𝔄 y 𝔇 también son isomorfos. 

En particular, podemos destacar el hecho de que de esta manera podemos “aislar” clases de estructuras 

caracterizadas bajo isomorfismo. 

De esta manera se puede singularizar la subclase de modelos de Peano estándar (que son modelos de 

Peano generales completos) 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨)𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜𝑠 cuando partimos de modelos de Peano y expansiones de 

éstos que son estructuras completas; además, 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨)𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜𝑠 contiene solamente un modelo bajo 

isomorfismo. Ahora bien, 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨)𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜𝑠 ⊂ 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨) en tanto que en 𝑀𝑂𝐷(𝔗𝔢𝔬(Π)⊨) hay 

modelos generales que no son estructuras estándar, como los modelos no estándar. 

 

De esta manera, podemos introducir la noción de categoricidad interna: 

Definición (categoricidad interna): decimos que una teoría 𝔗𝔢𝔬 es internamente categórica cuando todos 

los modelos de 𝔗𝔢𝔬 que tienen una expansión común 𝔐, siendo 𝔐 un modelo general, son isomorfos. (Cf. 

Väänänen (2015: 123), (2012: 98-99)) ⊞ 

En esta definición no ha de entenderse que todos los modelos de una teoría internamente categórica 𝔗𝔢𝔬 

tienen una expansión común, sino que cuando cualesquiera dos modelos 𝔊 y 𝔇 tienen una expansión común ℑ, 

entonces 𝔊 y 𝔇 son isomorfos. Como apunta Väänänen (2015: 125), dos modelos 𝔊 y 𝔇 de una teoría 

internamente categórica 𝔗𝔢𝔬, cada uno de los cuales tiene una expansión ℑ y 𝔉 tales que ℑ ≇ 𝔉, no tienen por 

qué ser isomorfos, pues los modelos 𝔊 y 𝔇 no son modelos de 𝔗𝔢𝔬 en el mismo sentido. El primero es un modelo 

de 𝔗𝔢𝔬 en el sentido de ℑ, el segundo en el sentido de 𝔉. La categoricidad se sostiene solo con respecto a 

estructuras que son modelos de 𝔗𝔢𝔬 en el mismo sentido. (2015: 125. He cambiado los nombres de los modelos 

del original por coherencia, y la cursiva es del original). 

La expresión “no son modelos de 𝔗𝔢𝔬 en el mismo sentido” es un tanto ambigua en nuestro contexto, 

pero con ella Väänänen se refiere, según entiendo, a lo siguiente: ya que 𝔊 y 𝔇 son modelos generales, y ya que 

ℑ ≇ 𝔉, sus universos de relaciones posibles no son ambos completos, o incluso ninguno lo es, teniendo uno de 

estos dominios posibles relaciones cuya contrapartida está ausente en el otro. 

La teoría 𝔗𝔢𝔬(Π)⊨, como se prueba en Väänänen (2015: 24), es internamente categórica. La peculiaridad 

de la categoricidad interna de 𝔗𝔢𝔬(Π)⊨, o de cualquier otra teoría con esta propiedad, es que “es una propiedad 

`interna’ de la lógica de segundo orden en sí misma” (Väänänen (2020: 7)) con semántica de modelos generales. 

En consonancia con la semántica de Henkin, el trasfondo teorético conjuntista de la metateoría propio de la 

semántica estándar, que ha estado presente en nuestra prueba de categoricidad en las secciones 3 y 4, no tiene 

ningún papel en la prueba de la categoricidad interna de 𝔗𝔢𝔬(Π)⊨. 

 

VII. Conclusiones 
A lo largo de este trabajo no se ha tomado partido ni por la semántica estándar ni por la semántica no 

estándar. Esto es así porque ambas semánticas traen consigo sus propias virtudes, y vamos a tratar ahora de poner 

en valor algunas de ellas. 

En ocasiones se ha argumentado (cf. Shapiro (1991: 97-ss)) que la lógica de segundo orden con 

semántica estándar proporciona un marco adecuado en el que caracterizar las estructuras, nociones, sistemas 

axiomáticos y teorías matemáticas. La categoricidad de 𝔗𝔢𝔬(Π)⊨ es un buen ejemplo de ello. Podría argumentarse 

que, en cierto sentido, tanto la lógica de primer orden como la lógica de segundo orden con semántica no estándar 

deforman la teoría de la aritmética de Peano al poseer ciertas metapropiedades como la compacidad y los teoremas 

de Löwenheim-Skolem. A consecuencia de estas metapropiedades, obtenemos modelos con una cardinalidad 

superior a 𝜔 que no parecen, en primera instancia, los adecuados para caracterizarla. Entre los partidarios de la 

lógica de segundo orden parece posicionarse Shapiro: “De acuerdo con los teoremas 4.4 y 4.5 [los teoremas de 

Löwenheim-Skolem], para cada cardinalidad 𝜅, hay una estructura de cardinalidad 𝜅 que es modelo de Γ [una 

teoría]. Esta propiedad, yo diría defecto, de la lógica de primer orden no es compartida por los lenguajes de 
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segundo orden con semántica estándar” (1991: 80; la cursiva es mía). Con estas palabras, Shapiro parece tomar 

partido en favor de una lógica, la lógica de segundo orden con semántica estándar, y considerar un defecto los 

teoremas de Löwenheim-Skolem. 

Con semántica estándar 𝔗𝔢𝔬(Π)⊨ solamente tiene un modelo bajo isomorfismo, cuya cardinalidad es la 

de los números naturales. Además, la formulación del axioma de inducción mediante la lógica de segundo orden 

junto a su interpretación con la semántica estándar nos permite definir a los números naturales, y 𝔗𝔢𝔬(Π)⊨ no es 

satisfacible en un modelo que posea números no estándar en su dominio. Como hemos visto, la situación con 

semántica no estándar es diferente. 

Cabe destacar también que, aunado a lo anterior, el poder expresivo de la lógica de segundo orden con 

semántica estándar, como se mostró en la sección 6, es mayor que con la semántica no estándar. Por contra, no 

tiene un cálculo completo como sí lo tiene la lógica de segundo orden con semántica no estándar. 

La semántica no estándar, por su parte, nos proporciona una lógica de segundo orden completa en sentido 

fuerte, compacta, y en la que se cumple los teoremas de Löwenheim-Skolem. A consecuencia de ello han 

aparecido modelos no estándar de la aritmética de Peano. Pero estos no son los únicos modelos no estándar que 

aparecen. Para el caso del análisis, la situación es análoga a la de la aritmética de Peano, con la diferencia de que 

los modelos no estándar del análisis incorporan una ventaja práctica: la simplificación de las pruebas de ciertos 

teoremas del análisis (cf. Manzano (1989: 216)). A través de ellos se pueden demostrar hechos sobre el análisis 

de una manera más simple, y como estos modelos resultan ser elementalmente equivalentes a los estándar, 

sabemos que los resultados a los que se llega mediante ellos pueden ser demostrados también en los modelos 

estándar. En estos modelos, los números no estándar son los llamados números infinitesimales (cf. Robinson 

(1996: 56)). 

De este modo, mediante la semántica general tendríamos una axiomatización del análisis real con el 

axioma del supremo formulado en lógica de segundo orden, con la potencia que ello incorpora, y con modelos no 

estándar de la teoría del análisis con infinitesimales, que tienen un valor práctico. La aplicación de la semántica 

no estándar de Henkin a la teoría del análisis en segundo orden, hasta donde sé, no se ha llevado a cabo y puede 

constituir un trabajo futuro. 
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