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Abstract 
In this article, a novel framework for constructing self-starting block methods for the numerical solution of 

second-order singular boundary value problems (SIBVPs). The approach integrates the shift operator applied 

to two distinct linear multistep formulas with an three optimized hybrid formulation developed within the initial 

sub-interval. The continuous coefficients of the linear multistep methods were systematically derived using the 

method of undetermined coefficients. The fundamental properties of the scheme are analyzed. The applicability 

of the schemes is demonstrated herein for the solution some SIBVP. Numerical results obtained through the 

implementation of the scheme are very much close to the theoretical solution and found favourably compared 

with various existing methods in the literature. 

Keywords: A K-step pair of hybrid techniques (KSPHT) which include one-step 3-optimed hybrid point 

(1S3OP); One-block methods; shift operator, undetermined coefficients, singular Initial/Boundary value 

problems (SIBVP), 
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I. Introduction 
In this research, we consider an approximate solution of singular Initial/Boundary value problem 

(SIBVP) of Lane–Emden equations of the form: 
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where ,,,, '', baba yyyy are real value, ),( ytG  is continuous real function. The Existence and 

uniqueness of the solution to the problem (1) subject to any boundary conditions have been rigorously 

determined by Pandey [1] , Zhang [2]. 

Second-order singular boundary value problems arise in numerous domains of applied mathematics, 

physics, and engineering, including mathematical modelling, chemical kinetics, astrophysics, and catalytic 

diffusion processes [3]. Owing to their broad applicability, researchers in applied sciences and engineering have 

shown growing interest in developing more accurate and efficient techniques for solving equations of type (1). 

However, obtaining analytical solutions to these problems is often extremely challenging. This 

difficulty stems from both the nonlinear nature of equation (1) and the presence of a singularity at t=0, 

commonly referred to as the singular point. As a result, numerical approaches have become essential tools for 

producing reliable solutions. 

Several numerical methods have been proposed in the literature, including finite difference schemes in 

[4] and [5], spline-based techniques in [6] and [7], various approximation methods in [8] and [9], and high-order 

compact finite difference methods [10], among others. 

In recent years, optimization-based approaches have gained substantial attention for the numerical 

solution of general second-order differential equations [12 -13]. In this study, we develop block methods 

constructed through two linear multistep formulas (LMFs) and their derivatives, formulated using a shift 
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operator. These are combined with three optimized hybrid ad-hoc schemes, applied exclusively on the first 

subinterval to address the singularity at t=0. 

The aim of this work is  to enhance the optimized ad-hoc formulation and improve the order of 

accuracy previously reported in [14]. As a result, we develop a K-step pair of hybrid techniques (KSPHT) that 

incorporates a one-step three-optimized hybrid point method (1S3OP). The proposed approach exhibits 

improved efficiency and accuracy when compared with the non-optimized ad-hoc method of Utalor et al. [15] 

and other existing numerical schemes. 

The structure of this paper is as follows. Section 2 introduces the KSPHT method for solving singular 

boundary value problems (SBVPs). Section 3 discusses the analytical properties of the developed formulas. The 

implementation procedure is detailed in Section 4. Numerical experiments for several test problems, 

demonstrating the efficiency and reliability of the proposed approach, are presented in Section 5. Finally, 

Section 6 provides concluding remarks. 

 

II. Construction Of The Method 

We approximate the exact solution )(ty  of equation (1) over a uniform partition of the integration 

interval  ba,
 
using a self-starting block method.  The continuous coefficients  (

k

ii

k

ii

k

jj tandtt 000 )}({)}({,)}({ ===  ) of the underlying linear multistep formulas (LMFs) are obtained 

by enforcing the standard order conditions and applying the method of undetermined coefficients, following the 

procedures in [16 -18]. Details on the construction of the self-starting KSPHT block methods, including the 

development of the 2, 3, and 4 off-step non-optimized formulas used to circumvent the singularity, can be found 

in [15]. 

As a preliminary step, equation (1) is reformulated by transferring the singular behaviour into the 

function f(t). 
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Because of the singularity at t=0, this main block method cannot be applied directly to the boundary 

value problem, as f(t) cannot be evaluated at the singular point. To address this limitation, we construct a set of 

auxiliary multistep formulas designed specifically for the first subinterval. Consequently, the overall scheme 

consists of a main block method together with supplementary formulas that effectively circumvent the 

singularity. 

MAIN FORMULAS )3( =k
 

Consider the Linear Multi-step method(LMM) of the form 
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using the method of undetermined coefficients, we have the matrix equation: 
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For 3=k  
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In equation (6) when ,tj = is solved by Mathematica software package method to obtain  the value 

of the continuous coefficient ),(),( tt ii   
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and its derivative as
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Evaluating (7)  at the points  t=3  gives the method and  its derivative.

 
Applying the theory in [15] on the method and its derivative , the coefficients of the resultant block 

method after the shift operator application in vector form are below 
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Circumvent The Singularity (One-Step Method With Three Optimize Points) 

By selecting various intermediate points through the method of undetermined coefficients, these three 

off-step points are determined by minimizing the local truncation error of the intermediate points in the main 

formula at the grid points. This approach helps to circumvent the singularity at the left end of the integration 

interval. As a result, we develop a set of multi-step formulas specifically tailored for the sub-interval where the 

value f0 is unavailable. 

 

Consider the Hybrid Linear Multi-step method (HLMM) of the form 
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the matrix equation form as: 
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Applying equation (9), three different intermediate points are introduced, 

wvsvrvthatsoi ==== 321 ,,3 , Where .,,,1 wsrvandtfortj i === Equation (10) is 

also solved by Mathematica software package method to obtain the value of the unknown parameters 

1,,,),(0, wsritandj ij ==  ,expressed as functions of t (whose expressions are not included), and  

can be written 
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Evaluating (11) at the points wandsrt ,,1=  gives the continuous form of the method, which implied that 



An Optimized Three-Off-Step Block Hybrid Method For Solving Singular Second Order……. 

DOI: 10.9790/5728-2106033952                           www.iosrjournals.org                                                  42 | Page 

)12(

1w)+s)(-1+r)(-1+60(-1

))32w-25sw25rw25rw(-20rsw2

w)w)(-1-w)(s-60(r

))33252rw525w101010(-30rs2
)w-s)(s+s)(-1-60(r

)3225ws-25w-(20rw2

w)-s)(r-r)(r+60(-1

)322525w-(20sw2

2

1w)+s)(-1+r)(-1+60(-1

w))25s+20rsw-32s-2(5rs2

w)w)(-1-w)(s-60(r

))32s-2rs525s(-20rs2s(s

)w-s)(s+s)(-1-60(r

w)25s+10rsw-10sw-30rw+33s-25rs+25s+(-10rs2s

w)-s)(r-r)(r+60(-1

w)25s+0sw2322(-5s2

2

1w)+s)(-1+r)(-1+60(-1

20rsw)-w25r+s25r+3(-2r2r

w)w)(-1-w)(s-60(r

s)25r+20rs-32r-2(5r2r

w)-s)(s+s)(-1-60(r

w)25r-20rw+32r+2(-5r2r(r

w)-s)(r-r)(r+60(-1

10rsw)-30sw+w25r+10rw-s25r+10rs-33r-2(5r2r

2

1w)+s)(-1+r)(-1+60(-1

30rsw-10sw+10rw+5w-10rs+5s-5r-3

 w)+ w)(-1-w)(s-60(r

20rs-5s+5r+2-
w))-s)(r-r)(r+60(-1

20sw+5w-5s-2

w))-s)(r-r)(r+60(-1

20sw+5w-5s-2

2
21

























































+
+++

−
++

++−−+++
+

+
+

+
+

+−
−

++=+

+
−

++

++
+

+
+

+
++

−

++=
+

+
−

++
+

+
+

+
−

++=
+

+
−

+
+

+
+

+
−

++=+

n
f

w
wn

f
wswrswswrww

sn
f

ww
rn

f
wsww

hnywhnywny

n
f

s
wn

f

sn
f

rn
f

ss

h
n

ysh
n

y
sn

y

n
f

wn
f

sn
f

rn
f

h
n

yrh
n

y
rn

y

n
f

wn
f

sn
f

rn
f

hnyhnyny

 

The first derivative of equation (11) with respect to t gives 
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Evaluating (13) at the points wsrt ,,1=  gives the addition method, which implied that 
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In order to determine appropriate values for r,s,w  , we choose to optimize the local truncation errors in 

the main formulae (12 and 14)  respectively. which is obtained after expanding in Taylor series around tn . 

Equating the principal term of this error to zero in each term , we obtain the system 









=+−+−++−+−
=++−++−+−−+

+−+−+++−−+−−++−
=+−+−++−+−

)15(0))62(21(55)105(3
0))20103()41(5532(7

))41(552(7)532(7)52(7141411
0))41(552(2)52(1(

222

2222

wswrwws
wwswswwr

wswrwwswsww
wswrwws

and solving (15) for r , s and w, we get the value as 

(16)                              0.7876595w40946686.0,0.0885880,r                         === ands

and thus, there is a unique solution with the constraints 0<r<s<w<1 . 

 

Considering the values in the block method results to be the following system of Eight equations 
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III. Analysis Of The Methods 
Order and error Constants of the Methods 

The linear difference operator  associated with the block (8) is defined 
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Expanding (8) using  Taylor series ,we obtained 

 

jjjq

qq

q

andoftermsingiventsconsareqCwhere

tyhCtyhCtyhCtyChtyL

 ,tan,...2,1,0,

)27(...)(...)()()();( )(2

210

=

+++++=

So that 

 

.00...

8)(0)();(

2101210

3)2(2

2

++

+++

+

======

=+=

pP

ppp

p

CCandCCCCwhere

pwithhtyhChtyL

 

In this case, p is the order and 2+pC  is the error constant (Lambert [19]). The error constants  
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Since the order of the formulas is greater than one, they are consistent. For the ad- hoc formulas used 

for the first step, it is easy to see that they are also consistent 

 

Zero Stability 

Definition 1: The implicit block method (8) is said to be zero stable if the roots zs,  s=1,…,n of the first 

characteristic polynomial ρ̅(z),  defined by 

 01det)( AAzz −=  

satisfies   /zs/≤1 and every root with /zs/=1 has multiplicity not exceeding two in the limit as h→0 . 

Using the definitions, the method in (8) may be rewritten in a more appropriate vector form to study zero-

stability as 
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The same procedure are done for the ad-hoc formulas used for the first step,(whose expressions are not 

included), its was proofed to be zero stable and have higher order more than the the non- optimization formula 

due to the optimize strategy done. 

 

Convergence 

Definition -Let )(ty   be the  theoretical of (1.1), and  
Njjy

,,0 =  
be the approximate solution at the grid 

points obtained by adopting proposed methods. The numerical method (KSPHT) is said to be a 
thq order−  

convergence if for h
 
sufficiently small,  there exists a constant k

 
independent of h

 
, such that: 

.)(max
0

q

jj
Nj

khyty −


 

The following theorem is used to establish the convergence for the methods. 

Theorem 3.3.2.  According to Jator et al.[20] Let Y be an approximation of the solution vector Y for 

the system obtained on a partition 
 

  .,<...<<< 210 YYEandbtttta nN −====  Define 
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where the exact solution ].,[)( baCty n
  

Then the block method is a q-order convergent method. That 

is )(0 qhE   . 

The convergence shall be proof by first expressing the main and additional formulas in matrix form 

adopting the following notations. Let A represent the 16N × 16N matrix define by 
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,i jA are 8*8 submatrices ,except the .2,,1,1 NiA N = The submatrices are 

given below; 

NNihAhA

NiAA

iiNN

iiNN

),...,1(,,

00000000
00000001
00000000
00000000
00000000
00000000
00000000
00000000

,

00000000
00000001
00000000
00000000
00000000
00000000
00000000
00000000

,...,2,

00000000
10000000

00000000
00000000
10000000
10000000
10000000
10000000

11000000
11000000
01100000
01010000
00001000
00000100
00000010
00000001

1,2,12

1,,

+=

























=

























=

=

























−

−
−
−
−

=

























−
−

−
−

=

+−

−

1,...,,,

00001000
00000200
00000100
00000020
00000001

00000000.78766

00000000.409467

00000000.088588 

,

00001000
00000200
00000100
00000020
00000001

00000000.78766

00000000.409467

00000000.088588 

)12(),...,1(,

00000000
00000001
01000000
00100000
00010001
00001001
00000101
00000011

,

00000000
00000001
01000000
00100000
00010001
00001001
00000101
00000011

,2,

,2,2

−=

























−

−

−

−

=

























−

−

−

−

=

−+=

























−
−

−
−
−
−
−

=

























−
−

−
−
−
−
−

=

+ NiihAhA

NNihAhA

iNiNN

iiNN

 

,1,,2,1,, −== NiIA ii  Where ,I is identity matrix ,for the rest of submatrices not included 

above it is jiA , are null matrices 
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Where the elements ,, jiU are 8*8 submatrices ,except the .2,,11,1,, NiUU Nii =+  
The submatrices are given
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the rest of the submatrice,  ,, jiU that are not included are all Null matrices, that is .0, =jiU
 
All those submatrices 

,,,, jiji UandA contain the coefficients of the formulars in KSPHT. We defined the following vectors 

corresponding to be exact and function values. 
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has 216)18()18( +=+++ NNN components, because 

due to the boundary condition in problem, )( 0ty  and ),( Nty

 

are known value, 

By using the above notations, the exact form of the system that provides the approximate values of the problem 

at hand is given by 
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Where is a vector containing the known values and represents the local truncation error of the proposed 

formulas. We also define E 
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Which are the  errors associated with the solution and the derivative. 

Proof of Theorem 3.3.2 

The proof follows from [20]. Let the exact form of the system of the problem be as given in (28), while the 

approximate form is defined as 
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Using (29), subtracting (30) from (28), gives 
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are intermediate points on the line segment joining

)',,())('),(,( iiiiii yytftotytytf  

Thus, 
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Where the second identity has been achieved through the fact that we know the exact problem conditions,that is   

Finally using the above result, the equation(31) may be written as 
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and dropping the dimension, let set    

)33(.2UJhAZ +=
 

We get that 
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)34(.)( 16161616 NNNN hLEZ =

 

for some selected value of 0h  matrix Z is invertible. Let ,1212 NNN ZZ = for the matrix NZ
. 

Where the submatrices have many zeros entries, it is confirmed that for N=1,the determinant is 

,11hZ N −= By mathematical induction, we know that ,6+−= N

N NhZ thus NZ is invertible as long as  
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Therefore the method is 8-order convergent for KSPHT for 1S3HP. 

 

IV. Implementation 
The derived KSPHT, which incorporates the Add-co formula, is combined and implemented in block 

form. The solutions are computed over the interval divided into N blocks. The resulting formulas are expressed 

as G(y) = 0 with a set of unknown values to be determined, which are represented as  

NjjNjjNjsjrjwjsjrj yyyyyyyy ,...,01,...,11,...,1,0,, }{}{,...},,...,,{ =−=−=+++++
= 

         
The nonlinear system is solved using the Newton iteration: 

change_in_y = GJG −\ ; 

y_new = change_in_y+(y_old); 

y_old = y_new; 

where J is the Jacobian matrix of G. Taylor series approximations are employed to generate the initial starting 

values for the iteration. 
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V. Illustrations 
In this section, numerical examples are presented to illustrate the efficiency of the proposed K-step pair 

of hybrid techniques (KSPHT), including the 1S3OP scheme (one step, three optimized points). The accuracy is 

measured by the absolute error jj ytyErc −= )(
 

where )( jty  and jy  denote the exact and approximate solutions at the i-th node, respectively. 

The following notations are used in the tables for clarity: 

⚫ 1S2OP – Block optimized Hybrid Methods [14] 

⚫ 1S3HP,1S4HP – Construction of Block Hybrid Methods (non- optimization)[15] 
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⚫ TWS – Taylor Wavelet Solution [22] 

⚫ AADM – Advanced Adomian Decomposition Method [25] 

⚫ MLMF – Modified Linear Multistep Formulas [26] 

The results for the three test problems are presented both in tabular form and graphically, highlighting 

the performance and accuracy of the proposed methods. 

Problem 1. Consider the following physical model SBVP problem of the isothermal gas sphere 

equilibrium, as described in [22] and [25]: 

4

3
)1(,0)0(0)()('

2
)('' ===++ qqtqtq

t
tq m

                                                                                                                                           (4.1.2)

 

The equation arise in the study of stellar structure where m=5. 

The exact solution is 
)3(3)( 2ttq +=   .

 

 

Table 1. Comparison of absolute errors of Problem 1 obtained using KSPHT (1S3OP) 
x 1S3OP 1S3HP[15] 1S4HP[15] AADM[25] TWS[22] 1S2OP[14] 

0.1 3.02366e-10 5.294675e-9 3.62155e-10 1.65000e-6 6.46000 e- 6 2.3024615e-8 

0.2 3.32341e-10 5.614592e-9 3.46792e-10 6.63000e−6 6.30000e- 6 2.2271241e-8 

0.3 3.42722e-10 5.959704e-9 3.17325e-10 1.59000e-6 6.05000e- 6 2.0803594e-8 

0.4 3.33343e-10 6.161494e-9 2.74391e-10 1.53000e-6 5.70000 e- 6 1.8716236e-8 

0.5 3.05527e-10 6.062213e-9 2.21806e-10 1.44000e -6 5.30000 e- 6 1.6096693e-8 

0.6 2.61814e-10 5.561083e-9 1.653e-10 1.34000e-6 4.84000 e- 6 1.3074469e-8 

0.7 2.0559e-10 4.633646e-9 1.10888e-10 1.10000e-6 4.33000 e- 6 9.805192e-9 

0.8 1.40673e-10 3.327415e-9 6.3487e-11 9.58000e-7 3.86000e- 6 6.44704e-9 

0.9 7.0934e-11 1.741484e-9 2.616e-11 7.30000e-7 3.24000 e- 6 3.141175e-9 

1 0 0 0 1.89000e-14 1.45000 e- 13 0 

 

 
Figure 1. Plots of exact and KSPHT solution for Problem (1). 

 

Problem 2. 

The following model which corresponds to the reaction–diffusion process in a spherical permeable catalyst as 

reported in [8] and [15] 

1)1(,0)0(0)()('
2

)('' 2 ===−+ qqtqtq
t

tq n
 

its analytical solution for n = 1, is given by 

51
)sinh(

)sinh(
)( === 




nwhere

t

t
tq

 

where  represents the Thiele modulus. The value of  is determined by the ratio of the reaction rate at the 

catalyst surface to the diffusion rate through the catalyst pores. 
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Table 2. Comparison of absolute errors of Problem 2 
x 1S3OP 1S2OP[14] 1S3HP[15] 1S4HP[15] 

0.1 6.35767e-10 1.16507398e-7 6.17621e-9 4.069691e-9 

0.2 6.0224e-10 1.02523148e-7 6.861048e-9 3.8896e-10 

0.3 6.05596e-10 9.3155702 e-8 7.966245e-9 2.9896e-10 

0.4 6.32437e-10 8.5924964 e-8 9.473596e-9 2.671458e-9 

0.5 6.71057e-10 7.8751406e-8 1.1316567e-8 5.88818e-10 

0.6 7.06678e-10 6.9694737e-8 1.3291835e-8 7.4041e-10 

0.7 7.15759e-10 5.7022468e-8 1.4898722e-8 5.092317e-9 

0.8 6.57548e-10 3.9708057e-8 1.5045103e-8 2.062058e-9 

0.9 4.60513e-10 1.8740297e-8 1.1513203e-8 1.513203e-9 

1  0 0 0 

 

To analyze the impact of the Thiele modulus (  ) on the concentration profile (y(x), we also considered other 

values of   and n . Figure 2 displays the numerical outcomes for various values of   and n . We observed 

that in Figure 2, the concentration profile increases when   diminishes. 

 

 
Figure 2. Plots of exact and KSPHT solution for Problem 2. 

 

PROBLEM 3 

Consider the nonlinear heat conduction model of the human head, 

0)1(0)0(0)('
2

)('' )( =+==++ − qqqetq
t

tq tq 
 

Where 12 ==  and . The above nonlinear SBVP is discussed by Duggan R el ta[]      as a heat 

conduction model in the human head. However, The general analytical solution of problem is unknown (Umesh 

[25]). 

 

Table 3. Comparison of KSPHT on Problem 3 
x 1S3OP 1S2OP[14] 1S3HP[15] 1S4HP[15] MLMF[26 AADM[25] 

0 0.27002964770543

5 

0.27002966452995

2 

0.27002964680

2432 

0.2700296479

05256 

0.27002964789

67 

0.2700296466 

0.1 0.26875690040863
0 

0.26875691754786
2 

0.26875689954
1846 

0.2687569006
38243 

0.26875690062
96 

0.2687568993 

0.2 0.26493281728639

7 

0.26493283327299

1 

0.26493281645

7765 

0.2649328175

46941 

0.26493281753

83 

0.2649328162 

0.3 0.25853978910605
8 

0.25853980387077
4 

0.25853978831
3346 

0.2585397893
90099 

0.25853978938
15 

0.2585397881 

0.4 0.24954817996214

5 

0.24954819350670

6 

0.24954817920

4708 

0.2495481802

62417 

- 0.2495481789 

0.5 0.23791588728858
9 

0.23791589962657
8 

0.23791588656
7682 

0.2379158875
97897 

- 0.2379158863 

0.6 0.22358770687868

9 

0.22358771802593

2 

0.22358770619

8023 

0.2235877071

89813 

- 0.2235877058 

0.7 0.20649448272630 0.20649449269833 0.20649448209 0.2064944830 0.20649448302 0.2064944817 
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0 7 2787 31891 38 

0.8 0.18655201388182
5 

0.18655202269319
6 

0.18655201330
6585 

0.1865520141
74299 

0.18655201416
67 

0.1865520128 

0.9 0.16365968131597

6 

0.16365968898015

8 

0.16365968081

5672 

0.1636596815

87396 

0.16365968158

04 

0.1636596802 

1 0.13769874637765
7 

0.13769875290734
2 

0.13769874597
6308 

0.1376987466
19598 

0.13769874661
36 

0.1376987453 

 

 
Figure 3. Plots of exact and KSPHT solution for Problem 3. 

 

VI. Discussion Of Results 
The results for the three test problems are summarized in Tables 1–3 and Figs. 1–3. For Problem 1, 

Tables 1 and fig 1 showed the KSPHT methods(1S3OP), demonstrated superior performance compared to 

1S2OP in Utalor et al. (2025), 1S3HP,1S4HP in Utalor et al. (2025), Umesh (2021), and Gumgum (2020), 

particularly in terms of accuracy at the points  t = 0(0.1)1.0. For Problem 2, KSPHT(1S3OP) in Tables 2 again, 

outperformed the Block Hybrid Methods (Utalor et al., 2025), with graphical results in fig 2 is showing 

excellent agreement with the exact solution. The convergence of the methods improved as the number of off-

step points increased. Tables 3 and Fig. 3 present the results for Problem 3, showing that the approximate 

solutions are in very good agreement, up to 8–9 decimal places, with results obtained using the Modified Linear 

Multistep Formulas (Olabode et al., 2024), the Advanced Adomian Decomposition Method (Umesh, 2021) and 

Block Hybrid Methods (Utalor et al., 2025). while the 1S4HP scheme showed better performance than 1S2OP 

and 1S3OP. It is observed from the all the Tables that the results obtained from the methods converged faster 

when the number of off step points were increased. Attempts to implement a 1S4OP scheme were limited by 

large, complex-valued matrices that complicated computation. Overall, the proposed methods demonstrate high 

accuracy, rapid convergence, and favorable comparison with existing techniques, highlighting their 

effectiveness for solving singular boundary value problems. 

 

VII. Conclusion 
This study has presented a novel strategy for constructing self-starting block methods for constructing 

self-starting block methods to solve second-order singular initial boundary value problems (SIBVPs). This 

approach employs a shift operator applied to two different linear multi-step formulas, which are then combined 

with three optimized hybrid sets of formulas developed for the first sub-interval. The continuous coefficients of 

the linear multi-step methods are derived based on the method of undetermined coefficients. The performance 

of the proposed methods was evaluated through three real-world model problems obtained from the literature. 

Numerical results demonstrate that the developed methods exhibit high accuracy and computational efficiency, 

yielding smaller errors compared to existing approaches. Furthermore, the incorporation of optimization 

techniques in selecting off-step points significantly enhances the accuracy, increase the order of the method and 

stability of the methods, establishing their superiority over non-optimized alternatives. Overall, the proposed 

framework offers a reliable and efficient tool for solving classes of second-order singular boundary value 

problems. 
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