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Abstract

In this article, a novel framework for constructing self-starting block methods for the numerical solution of
second-order singular boundary value problems (SIBVPs). The approach integrates the shift operator applied
to two distinct linear multistep formulas with an three optimized hybrid formulation developed within the initial
sub-interval. The continuous coefficients of the linear multistep methods were systematically derived using the
method of undetermined coefficients. The fundamental properties of the scheme are analyzed. The applicability
of the schemes is demonstrated herein for the solution some SIBVP. Numerical results obtained through the
implementation of the scheme are very much close to the theoretical solution and found favourably compared
with various existing methods in the literature.
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(1S30P); One-block methods, shift operator, undetermined coefficients, singular Initial/Boundary value
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I. Introduction
In this research, we consider an approximate solution of singular Initial/Boundary value problem
(SIBVP) of Lane—Emden equations of the form:

y"(r)%y'(r):G(r,y), 0<i<1 0

subject to the boundary conditions

yO0) =y, yD=y,,
or
yo(rO)=;va, Y=y, @

YO =y, yO) =y,
where A,y, v, ', V', are real value, G(,y) is continuous real function. The Existence and

uniqueness of the solution to the problem (1) subject to any boundary conditions have been rigorously
determined by Pandey [1], Zhang [2].

Second-order singular boundary value problems arise in numerous domains of applied mathematics,
physics, and engineering, including mathematical modelling, chemical kinetics, astrophysics, and catalytic
diffusion processes [3]. Owing to their broad applicability, researchers in applied sciences and engineering have
shown growing interest in developing more accurate and efficient techniques for solving equations of type (1).

However, obtaining analytical solutions to these problems is often extremely challenging. This
difficulty stems from both the nonlinear nature of equation (1) and the presence of a singularity at t=0,
commonly referred to as the singular point. As a result, numerical approaches have become essential tools for
producing reliable solutions.

Several numerical methods have been proposed in the literature, including finite difference schemes in
[4] and [5], spline-based techniques in [6] and [7], various approximation methods in [8] and [9], and high-order
compact finite difference methods [10], among others.

In recent years, optimization-based approaches have gained substantial attention for the numerical
solution of general second-order differential equations [12 -13]. In this study, we develop block methods
constructed through two linear multistep formulas (LMFs) and their derivatives, formulated using a shift
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operator. These are combined with three optimized hybrid ad-hoc schemes, applied exclusively on the first
subinterval to address the singularity at t=0.

The aim of this work is to enhance the optimized ad-hoc formulation and improve the order of
accuracy previously reported in [14]. As a result, we develop a K-step pair of hybrid techniques (KSPHT) that
incorporates a one-step three-optimized hybrid point method (1S30OP). The proposed approach exhibits
improved efficiency and accuracy when compared with the non-optimized ad-hoc method of Utalor et al. [15]
and other existing numerical schemes.

The structure of this paper is as follows. Section 2 introduces the KSPHT method for solving singular
boundary value problems (SBVPs). Section 3 discusses the analytical properties of the developed formulas. The
implementation procedure is detailed in Section 4. Numerical experiments for several test problems,
demonstrating the efficiency and reliability of the proposed approach, are presented in Section 5. Finally,
Section 6 provides concluding remarks.

I1. Construction Of The Method
We approximate the exact solution 1(#) of equation (1) over a uniform partition of the integration

interval [a,b] using a self-starting block  method. The continuous coefficients (

{Otj (t )}_1;:0, {B, (l‘)}l].czo and {y.(t )}llfzo) of the underlying linear multistep formulas (LMFs) are obtained
by enforcing the standard order conditions and applying the method of undetermined coefficients, following the
procedures in [16 -18]. Details on the construction of the self-starting KSPHT block methods, including the
development of the 2, 3, and 4 off-step non-optimized formulas used to circumvent the singularity, can be found
in [15].

As a preliminary step, equation (1) is reformulated by transferring the singular behaviour into the
function f{(t).

Y'(@) = [ (6, y(0),y' (1)) where f(t, (1), y" (1)) = G(t, ) - (%)y'(t) o)

Because of the singularity at t=0, this main block method cannot be applied directly to the boundary
value problem, as f(t) cannot be evaluated at the singular point. To address this limitation, we construct a set of
auxiliary multistep formulas designed specifically for the first subinterval. Consequently, the overall scheme
consists of a main block method together with supplementary formulas that effectively circumvent the
singularity.

MAIN FORMULAS (k = 3)
Consider the Linear Multi-step method(LMM) of the form

k k
LMF, Vnrj = Vosja +yr,1+j—1 +hzzﬂ]('l)fn+j +h3z7§'l)Gn+j , j=kand j—1=i
=0 =0

k k

LMFZ :yn+j :y)z+j—2 +yr,1+j—2 +h22ﬂj('2)fn+j +h3zyj('2)Gn+j 9 .]:k and .]_2:l
j=0 j=0

()

using the method of undetermined coefficients, we have the matrix equation:

i
1 0 0.. 0 O0.. O o 1
i 1 0.. 0 O0.. O ! j
2 By 2
i 1.. 1 0.. 0 .
2! 2!
302 3
— 0 ko1 1 A
70
;4 91 9472 P I
— 0.. 0 ... —
q' qg-1 qg—2! g — 3! ) q!
Yk

For k=3
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In equation (6) when j =1, is solved by Mathematica software package method to obtain the value
of the continuous coefficient ¢, (¢), B, (%),

yn+3 = aiynﬂ' +allhy;l+l +h2(ﬂ0f;z +ﬂ1fn+1 +ﬂ2fn+2 +ﬂ3fn+3)+h3(7/0Gn +)/1Gn+1 +}/2Gn+2 +7/3Gn+3)
and its derivative as

Vs =Y, H oy, +R(B S+ Bif o + Bof i +ﬁ3fn+3)+h2(7/0Gn +7G,. "'(%/)2Gn+2 +7,G,.5)

Evaluating (7) at the points =3 gives the method and its derivative.
Applying the theory in [15] on the method and its derivative , the coefficients of the resultant block
method after the shift operator application in vector form are below

01100100 0 0 0 0.0096487 0 0 0 0.0023699 |
00000110 0 0 0 0.0218805 0 0 0 0.0053902
10102000 000 0.0300999 0 0 0 0.00705467
A_OOOOIOIO B =000 0.0352734 0 0 0 0.0084656
171001 10010P7°" " 1000 0 000 0
00000011 000 0 000 0
01010200 000 0 000 0
00000101 000 0 000 0 |
0.060615 0.336706 0.0930298 0 0.0359127 0.1290675 -0.0138007 0
0.1324405 0.4657738 0.3799052 0 0.0800595 0.2532738 -0.0424272 0
0.892063 0.965079 0.112757 0 0.196825 —0.012698 —0.0183422 0
0.6190476 0.9523810 0.3932981 0 0.1809524 0.1523810 —0.0455026 0

B, =10.0096487 0.060615 0.336706 0.0930298 0.0023699 0.0359127 0.1290675 -0.0138007
0.0218805 0.1324405 0.4657738 0.3799052 0.0053902 0.0800595 0.2532738 -0.0424272
0.0300999 0.892063 0.965079 0.112757 0.0070547 0.196825 —0.012698 —0.0183422
0.0352734 0.6190476 0.9523810 0.393298 0.0084656 0.1809524 0.1523810 -0.0455026

®)

Circumvent The Singularity (One-Step Method With Three Optimize Points)

By selecting various intermediate points through the method of undetermined coefficients, these three
off-step points are determined by minimizing the local truncation error of the intermediate points in the main
formula at the grid points. This approach helps to circumvent the singularity at the left end of the integration
interval. As a result, we develop a set of multi-step formulas specifically tailored for the sub-interval where the
value f;, is unavailable.

Consider the Hybrid Linear Multi-step method (HLMM) of the form

yn+_j = yn+j—1 + yr’z+j—1 + hz(z ﬁi (t)fn+i +ﬂ"i (t)fn+v, j .] = 15 (9) given
i=1

the matrix equation form as:

100 0 0 - 0f %®O) (1
010 0 0 -0 J
001 1 1 --1)B8®| |Jj
007n s, wy -1 B.@) |=| 2 (10)
O O l’lz 522 W32 | ﬂz(t) :
00 : + & iiffm e
q o9 9 ... : -
00nr" s wi 1 B.(1) q!

Applying equation (9), three different intermediate points are introduced,

i =3 sothat v, =r,v, =s,v; =w, Where j =t fort =1, andv, =r,s,w.Equation (10) is
also solved by Mathematica software package method to obtain the value of the unknown parameters
a, j= 0 and B,(t), i =r,s,w,l expressed as functions of ¢ (whose expressions are not included), and
can be written

L(tn + Zh) = CZoyn + a(’]hyr'z + h2 (ﬂr-f;ﬁr + ﬂsfnﬁv + ﬂwfrww + IBIJ(;HI) (1 1)

Evaluating (11) at the points ¢ = 1,7, 5 and w gives the continuous form of the method, which implied that
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2-5s-5w+20sw | 2-5s-5w+20sw
n+r’ n+s
Ypel =V T h2y ;1 + ]12 Lw(;j-?r(fr;s)(g()\;}s)) 60(3_-1;{)5(5:51%(;?\2/4-1%+105w-30rsw
60 -w)(s-W)(-1 + w)” W 60(-141)(-1+s)(-1+w) It
r2 (5r2-3r 10 +5r 2 10rw +5 2w +30sw-10rsw) v (524263 420w -5r%w)
60(-1+1)(r-8)(r-w) T G0 -s)(-1+s)(s-w) nts
¢r2 (5r2-2r -20rs +5r25) r2 (-2r3+5r25+5r2w-20rsw)
60(r-w)(s-w)(-1+w) AW 60(-1+1)(-1+s)(-1+w) Tan
52 (5524263 4200w +552w) 5% (105 +55% 455735 +30rw -10sw-10sw +552w)
OCL+DE-s)r-w) M 60(t -5)(-1+5)(s-w) Tnts
S5 (20rs 455 +5r5°-25)) 52 (5152253 -20rsw +552w))
L W)WY Y G0y tw) M
w2 (20sw —5W2—55W2+2W3) . w2(20rw—5w2—5ws2+2w3)
60(-1+1)(r-s)(r-w) Intr? 60(r-s)(-14s)(s-w) ~ “HFS
w2 (30rs +10 w10 5w+1050-5w 51w 455w +30) W2 (-20rsw 451w 2 451w 2 4 Ssw 22w )
N 60(r -w)(s-w)(-1+w) ntw 60(-1+1)(-1+s)(-1+w) n+l

The first derivative of equation (11) with respect to ¢ gives

L(tn + Zh) = aOyn + a(’)y; + h(lBrfn+r +ﬂsfn+s + IBwfn+w + ﬂlfn+1) (13)
Evaluating (13) at the points ¢ = 1,75, W gives the addition method, which implied that

1-25-2w+6sw . 1-2r=2w+6rw .
Snar?t . Tuts
, , 12(=1+r)(r=s)(r-w) 6(r=s)(C12(r=s)(=1+s)(s—w)) S
Yusl =Vn * h N —1-2r-2s5+67rs ’ 3—4r—4s+6rx—4w+6rw+6xw—l2rswf_
T12(r—w)(s—w)(=1+w)) AW 12(=1+7)(=1+s)(~14+w) Tt
r(472—3r3—6rs+4r23—6rw+4r2w+125w—6rsw) . ‘r(—2r2+r3+6rw—2r2w)
12(=14r)(r=s)(r-w) nr’ 12(r=s)(=14s)(s—w) ~1+S
*r(2r27r376rs+2r s) . r(=r +2)’2S+2Y2W76}’SW) y;
C12(r—w)(—T+w)(s—w) T IEW T 6(—1r)(12(=1+r)(~T+5)(—1+w) 1t
s(—2s2+33+63w—232w) . Is(—6rs+452+4rsz—3s3+12rw—63w—6r5w+452w)
Sy 4 12(=14r)(r=s)(r—w) 1 12(r=s)(~1+s)(s—w) nts
Ynts=Vnh . 2 2 3 . 2_3 B
S(=6rs+257+2rs7—s7) S(2rs—s” —6rsw+2s°w) .
TR0 w)(=THw)(s—w) T 12 (rms)(=T4s)(s—w) CF]
w(6sw—2 W2—25w2 +w3) ) w(6rw—2w2 —2rw2 -%—3w3 )
12(=14r)(r=s)(r-w) ~n*r ‘ 12(r=s)(—1+s)(s—w) n+s
*S(W(*12}’S+6I'W+63W+6)'SW*4W2*4}"W2*4A'M’2+3W ) w(76n\'w+2rw2+2xw27w3) .

12(r=w)(~l+w)(s—w) I e Les)(—1ew)
In order to determine appropriate values for r,s,w , we choose to optimize the local truncation errors in
the main formulae (12 and 14) respectively. which is obtained after expanding in Taylor series around ¢,.
Equating the principal term of this error to zero in each term , we obtain the system

(—1+s2-5w)+2w+r(2-5w+5s(-1+4w))=0
—11+14w+14w* = 75> (=2 +5w) = 7s(=2 + 3w+ 5w ) + 7r* (2 = 5w+ Ss(=1 + 4w))
+7r(2=3w—=5w" +55° (=1 4+ 4w) + s(-3+10w+20w*)) =0

v
Vpar =Yy trhy, +h 3

r 2
Ynts™n thn *h

2
+why' +h (12)

Yntw = Vn

'

| _
Yntr=Vn +h

Vitw =Vn ¥ (14)

—3+s5(5-10w)+5w+5r(1-2w+s(-2+6w))=0 (15)
and solving (15) for r, s and w, we get the value as
r =0.0885880,, s = 0.40946686 and w =0.7876595 (16)

and thus, there is a unique solution with the constraints 0<r<s<w<l .

Considering the values in the block method results to be the following system of Eight equations

Vper = Vp +0.0885880 by, + 0’ ( 0.00538268 f,,  -0.00242159 2f, . +0.00156464 56 f, , —0.00060181 61fn+1)
Y pps =+ 040946686 hy! +h2( 0.06955830 f, , +0.01612025 0f, . - 0.00247876 66 f, . +0.00063176 899 f, +1)

Y sy =Yyt 07876595 hy! +h2( 0.15453781 f, , +0.1448587 /. + 0.01115013 561, —0.00034232 27fn+1)

Yy +1:yn+hy’n+h2( 0.20093191 37 f, . +0.22924110 64 1, +0.06982697 99 1, +W)

V=V +h( 0.1129995 £, , . -0.04030922 f, , +0.02580237 7f,,  —0.00990468 [ +1)

V= y’n+h( 0.23438399 6, , +0.2068926 f, , —0.04785712 8, +0.0160474 f, +1)

Vrew=Vn +h( 0.21668178 £, . +0.40612326 39 f,  +0.18903651 81, +0.02418210 49_/',”1)
v +1:y;1+h( 02204622 f, +0.38819347 f, +0.32884432 f,  +0.06250 f, +1)

a7)
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III.  Analysis Of The Methods
Order and error Constants of the Methods

The linear difference operator L associated with the block (8) is defined

k k
L[)/(t)’h] = Allerr(ln) - hAZAOYm—i + hﬂ(zBlFm + BOEnij (26)
i=0 i=l1
Expanding (8) using Taylor series ,we obtained
LIy();h]= Coy(6) + Chy' () + C,1° " (6) + ...+ C,h Y (£) + .. (27)
where C,, g =0,1,2,... areconstants given in terms of aj,ﬂj and /1j
So that
L[y(6):h]= C, ,h" y 7 (1) + O(h"*) with p =38
whereCy, =C, =C, =..=Cp,, =0 and C,#0=C,,,.

(v)
TJU

In this case, p is the order and C pi2 is the error constant (Lambert [19]). The error constants C o2

for j =3 and v =0,] are given below
o 89 1 313 13
72169344007 882007 25401600° 793800

)T

Since the order of the formulas is greater than one, they are consistent. For the ad- hoc formulas used
for the first step, it is easy to see that they are also consistent

Zero Stability
Definition 1: The implicit block method (8) is said to be zero stable if the roots z,, s=I1,...,n of the first
characteristic polynomial p(z), defined by

p(z) =det|z 4, — 4, |
satisfies /z,/<1 and every root with /z,/=1 has multiplicity not exceeding two in the limit as h—0 .
Using the definitions, the method in (8) may be rewritten in a more appropriate vector form to study zero-
stability as
(n)

Alyr(rzl) _AOymfl :O Where ym :(yn+l’y;1+2""’yn+k)r’ ymfi :(ynfl’yn72""’yn)r
and A, ,A, are constand matrrice given by

0110 0000O
wehave,b(z)=detz(l)8%(1)_ 8888
0101 0000O
=-2z%=0
.z=0

The same procedure are done for the ad-hoc formulas used for the first step,(whose expressions are not
included), its was proofed to be zero stable and have higher order more than the the non- optimization formula
due to the optimize strategy done.

Convergence

Definition -Let y(f) be the theoretical of (1.1), and {y f}j:() r be the approximate solution at the grid

points obtained by adopting proposed methods. The numerical method (KSPHT) is said to be a qth —order
convergence if for /i sufficiently small, there exists a constant k independent of /i , such that:

max |y(t;)-y | <kh .

0<j<N
The following theorem is used to establish the convergence for the methods.
Theorem 3.3.2. According to Jator et al.[20] Let Y be an approximation of the solution vector Y for

the system obtained on a partition 7T, = {a =1, <t, <t, <..<t, =b},and E=Y-Y. Define
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€ :‘y(ti)_yi , he i‘f: hyj(ti)_hyi/ o e :‘hﬂyy(ti)_hﬂyip Jor i=1....N
where the exact solution y(f)€ C"[a,b]. Then the block method is a q-order convergent method. That
is HE L0y .

The convergence shall be proof by first expressing the main and additional formulas in matrix form
adopting the following notations. Let A represent the 16N x 16N matrix define by

Am A1,2 Al,zN
A=
Azzv,zN

AzN,l AzN,z

Where the elements Aj/ are 8*8 submatrices ,except the A1 v I= 1,---,2N. The submatrices are

given below;

10000000 000000 0 —1I
0100000 0 000000 0—1I
0010000 0 000000 0—1I
10001000 0 1000000 0-1|.._
Avw=l0 00 0-10 1 0 4i=100 0 0000 0fpi=2%N
00000-110 0000000 0
00000 0-11 000000 0 -1
00000 0-11 0000000 0
00000000 00000000
00000000 00000000
00000000 00000000
00000000 00000000]| .
Avaav=Ho0000000p Awm=Mo0000000f I=W+DuN
00000000 00000000
10000000 10000000
00000000 00000000
110000 00 110000 00
101000 00 101000 00
100100 00 100100 00
100010 00 100010 0 0] .
Avav =l 0 0000-100p 4=Moo0000-100p =@ FDuCN-1)
000000 —10 000000 —10
100000 00 100000 00
000000 00 000000 00
~0.088588 0000000 —0.088588 0000000
~0.409467 0 00000 0 ~0.409467 0000000
~0.78766 0000000 ~0.78766 0000000
A= -1 0000000, 4, =h -1 0000000, j=i. N-1
: 0 2000000 : 0 2000000
0 0100000 0 0100000
0 0200000 0 0200000
0 0010000 0 0010000
A” =1,i=12,---,N—1, Where I is identity matrix ,for the rest of submatrices not included

above it is Al. jare null matrices

On the other hand, let
U1,1 U1,2

U =
U2N,1 UzN,z

' U1,2N

UzN,zN
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Where the elements U, ; are 8*8 submatrices ,except the U;; Uy, i = l,-+,2N. The submatrices are given

0 0.00538268 -0.00242159 0.00156465 -0.00060181 0 0 0
0 0.0695583  0.0161203 -0.00247877 0.00063176 0 0 0
0 0.154538  0.144858  0.0111501 -0.00034232 0 0 0
U - 0 0.200932  0.229241  0.069827 0 0 0 0
1= 0.0096487 0 0 0 0.060615  0.336706 0.0930298 0
0.0300999 0 0 0 0.892063  0.965079 0.112757 0
0 0 0 0 0.0096487 0.060615 0.336706 0.0930298
0 0 0 0 0.0300999 0.892063 0.965079 0.112757
0.00538268 -0.00242159 0.00156465 -0.00060181 0 0 0
0.0695583  0.0161203 -0.00247877 0.00063176 0 0 0
0.154538  0.144858  0.0111501 -0.00034232 0 0 0
U _| 0200932 0229241  0.069827 0 0 0 0 s N
= 0 0 0 0.060615 0.336706 0.0930298 0 TS
0 0 0 0.892063  0.965079 0.112757 0
0 0 0 0.0096487 0.060615 0.336706 0.0930298
0 0 0 0.0300999 0.892063 0.965079 0.112757
0 0.112999 -0.0403092 0.0258024 -0.00990468 0 0 0
0 0.234384 0.206893 -0.0478571 0.0160474 0 0 0
0 0.216682 0.406123  0.189037 -0.0241821 0 0 0
U - 0 0.220462 0.388193  0.328844 0.0625 0 0 0
N+ =1 0.0218805 0 0 0 0.1324405 0.4657738 0.3799052 0 g
0.0352734 0 0 0 0.6190476 0.9523810 0.393298 0
0 0 0 0 0.0218805 0.1324405 0.4657738 0.3799052
0 0 0 0 0.0352734 0.6190476 0.9523810 0.393298
0 0.112999 -0.0403092 0.0258024 -0.00990468 0 0 0
0 0234384 0.206893 -0.0478571 0.0160474 0 0 0
0 0216682 0406123 0.189037 -0.0241821 0 0 0
U - 0 0220462 0.388193 0.328844  0.0625 0 0 0 Nea N
¥ =[0.0218805 0 0 0 0.1324405 0.4657738 0.3799052 0 =2,
0.0352734 0 0 0 0.6190476 0.9523810 0.393298 0
0 0 0 0 0.0218805 0.1324405 0.4657738 0.3799052
0 0 0 0 0.0352734 0.6190476 0.9523810 0.393298

04><8

U, . =| 0.0023699 0 0 0 0.0359127 —0.129067 —0.0138007 |,
’ 0.00705467 0 0 0 0.196825 —0.012698 —0.018342

04><8
U= 0 0 00.0359127 —0.129067 —0.0138007 |i=2,---,N
0 0 0 0.196825 —0.012698 —0.018342
O6><8 06><8
Uy v =| 0, 0.0023699 | U, ..., =| 0,, 0.0023699 |i=3,--,N
0.00705467 0.00705467

04><8

Uyiiva =| 0.053902 0 0 0 0.0800595 0.2532738 —0.424272 |,
’ 0.0084656 0 0 0 0.180952 0.1523810 —0.045503

04><8
Uywine=| 0 0 0 0.0800595 0.2532738 —0.424272 |i=2,---,N
0 O O 0.180952 0.1523810 0.045503
06><8 06><8
Usorva =| 055 0.053902 | Uy.iviy =| 0,, 0053902 |i=3,--,N
0.0084656 0.0084656
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the rest of the submatrice, U iy that are not included are all Null matrices, that is U i 0. All those submatrices

Ai,j, and U, i contain the coefficients of the formulars in KSPHT. We defined the following vectors
corresponding to be exact and function values.

Y = (y(tr)’y(ts)7y(tw)ry(t1)9y(t2)9"'zy(tN—l)’y'(to)ay'(tr)sy'(ts)ﬂ'"9y'(tN))T9

F= (f(to,y(to),y'(to)),f(fray(ts),y'(lr )),---,f(tN,y(tN),y'(fN)),)T
g(toﬁy(to):y‘(to))ﬂg(tr’y(tr)ay'(tr))a"'3g(tN’y(tN)’y'(tN))

Where Y has (8N-1)+(8N+1)=16N components and F has (§N +1)+ (8N +1)=16N + 2 components, because

due to the boundary condition in problem, y(t,) and y(t,), are known value,

By using the above notations, the exact form of the system that provides the approximate values of the problem

at hand is given by

A16N><16NY16N + hZUlﬁNx(16N+2)F'(l6N+2) + C16N = L(h)mN (28)
with
C16N = (_ya’_yga_yaa_ya,oa'”:yb’O,-":O)T

L(h)y = (al,az,a3,a4,...,aéN,bl,bz,b3,b4,...,b6N)T

Where is a vector containing the known values and represents the local truncation error of the proposed

formulas. We also define E

E=Y—I7=(el,ez,...,eN,he'1 ,...,he']\,,hze”l ,...,hze”N,~--)T (29)#
Where ¥ = (1, 205 s V15 Vaseeos Vavaars Vo s Vs Vs s s V' )

Which are the errors associated with the solution and the derivative.

Proof of Theorem 3.3.2

The proof follows from [20]. Let the exact form of the system of the problem be as given in (28), while the
approximate form is defined as

Y 2 ) — %k
A16N><16NY16N +h U16Nx(16N+2)F(16N+2) + C16N =0 (30) where

me approximates the vector YN’N’ that is,

}16N = (yr’ys’ys’ylsyz""syN—l’y'O ’y'r ’y's a""y'N)T’
FlzN+2 = (fr7'“afNag07gra"'7gN)T
Using (29), subtracting (30) from (28), gives
AigpaenEry + thléNx(16N+2) (F _F)(16N+2) = L(h),y (3D
where
Eioy =Ygy _YI6N =(e,.e,,....ey € €, ,....e'y )" By

using the Mean- Value Theorem (Dym,(2007)),Since the problems is continuous in the close [a,b] and

differentiable . we write for

LAV G = [y’ = () — y»%(q) + () — ) )%(CJ=

S, () () — gt v, ) = (1) —y,-)‘;—g(éz-) + ) — ') e
Yy oy

where ¢ and ¢ are intermediate points on the line segment joining
S @@, y'(@,)) to [,y .V',)
Thus,
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Where the second identity has been achieved through the fact that we know the exact problem conditions,that is

Finally using the above result, the equation(31) may be written as
2
(AignasnErsy +h U16N><(16N+2)J(16N+2)><16N)E16N = L(h) sy

and dropping the dimension, let set

We get that

Z =A+h*UlJ.
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Z]6N><16NE16N = L(h)léN' (34)

for some selected value of /i 0 matrix Z is invertible. Let Z, = Z,, .1, » for the matrix Z

Where the submatrices have many zeros entries, it is confirmed that for N=1,the determinant is

|Z N| = —h"", By mathematical induction, we know that |Z N| = —NA™*, thus |Z N| is invertible as long as

h>0.
Hence, equation(33) can be written as

|Z|=|4+ | =|4|1 -]
where [ is identity matrix of order 16N,and C = —h*UJZ ™" .

16
As |/U -C | = H(/I — A,) is the characteristic polynomial of C ,in order to have |/U — C| #0 for 1=1
i=l

it is sufficient to choose h such that h° € {% : A, is an eigenvalue of C}. For such value of h ,
1

Hence z is invertible.
The equation (34) becomes

ZE = L(h)
E=(Z")L(h)
|E] =z L)
<|@ i)
<0(h2)0(h")
< k(h*)
Therefore the method is 8-order convergent for KSPHT for 1S3HP.

IV. Implementation
The derived KSPHT, which incorporates the Add-co formula, is combined and implemented in block
form. The solutions are computed over the interval divided into N blocks. The resulting formulas are expressed
as G(y) = 0 with a set of unknown values to be determined, which are represented as

- ! ’ !
V=AYV jes Y ooV e Vivsrodimonva U3 o v Ui oo v
The nonlinear system is solved using the Newton iteration:
change in y= J, G \—G ;

y_new = change in_y+(y_old);
y_old =y new;
where J is the Jacobian matrix of G. Taylor series approximations are employed to generate the initial starting
values for the iteration.

N
yn+j :yn +.]hyn +J7Gn
y;”f :y:l +(-]h)Gn ] :r,S,W,...,I

V.  Illustrations
In this section, numerical examples are presented to illustrate the efficiency of the proposed K-step pair
of hybrid techniques (KSPHT), including the 1S30P scheme (one step, three optimized points). The accuracy is

measured by the absolute error Erc = H () -y, H

where (¢ /.) and ), denote the exact and approximate solutions at the i-th node, respectively.

The following notations are used in the tables for clarity:
® | S20P — Block optimized Hybrid Methods [14]
® 1S3HP,1S4HP — Construction of Block Hybrid Methods (non- optimization)[15]
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® TWS — Taylor Wavelet Solution [22]

® AADM — Advanced Adomian Decomposition Method [25]

® MLMF — Modified Linear Multistep Formulas [26]

The results for the three test problems are presented both in tabular form and graphically, highlighting

the performance and accuracy of the proposed methods.

Problem 1. Consider the following physical model SBVP problem of the isothermal gas sphere

equilibrium, as described in [22] and [25]:

q"(t)+— q(t)+q(t)'“—0 q'(0)=0, g(1)

The equatfon arise in the study of stellar structure Wher)]; S.

The exact solution is q(t) _ /3/(3 L tz)

Table 1. Comparison of absolute errors of Problem 1 obtained using KSPHT (1S30P)

X 1S30P 1S3HP[15] 1S4HP[15] AADM[25] TWS[22] 1S20P[14]
0.1 3.02366e-10 5.294675e-9 3.62155e-10 1.65000e-6 6.46000 e- 6 2.3024615e-8
0.2 3.32341e-10 5.614592¢-9 3.46792¢-10 6.63000e—6 6.30000e- 6 2.2271241e-8
0.3 3.42722¢-10 5.959704e-9 3.17325e-10 1.59000e-6 6.05000e- 6 2.0803594e-8
0.4 3.33343e-10 6.161494¢-9 2.74391e-10 1.53000e-6 5.70000 e- 6 1.8716236e-8
0.5 3.05527¢-10 6.062213e-9 2.21806e-10 1.44000e -6 5.30000 e- 6 1.6096693e-8
0.6 2.61814¢-10 5.561083e-9 1.653e-10 1.34000e-6 4.84000 e- 6 1.3074469¢-8
0.7 2.0559¢-10 4.633646¢-9 1.10888e-10 1.10000e-6 4.33000 e- 6 9.805192¢-9
0.8 1.40673e-10 3.327415e-9 6.3487e-11 9.58000e-7 3.86000e- 6 6.44704e-9
0.9 7.0934e-11 1.741484e-9 2.616e-11 7.30000e-7 3.24000 e- 6 3.141175e-9

1 0 0 0 1.89000e-14 1.45000 e- 13 0
1 ‘H-‘C‘ﬁ“ ‘{.‘!ﬁk R T T T
Oy
0.98 g, * rep 1520P
'::.‘-*_ O rep 1830P
0.96 'i--"%qL - rep Exact sol.
& '*
w 0.94 ?4-;_\ 7
o *s
= -
T 002 e
f._J
%
09 F
%
0.88 0
*.
0.86 ! ' : - - - : :
0 01 02 03 04 05 06 07 08 09 1
t-axis
Figure 1. Plots of exact and KSPHT solution for Problem (1).
Problem 2.

The following model which corresponds to the reaction—diffusion process in a spherical permeable catalyst as

reported in [8] and [15]

¢"(0)+>q (t) 0*q(t)" =

its analytical solution for n = 1, is given b

J(1) = Sh(0)

0 ¢'(0)=0, g()=1

where n=1

0=5

where () represents the Thiele modéhﬁnl}{lglralue of 0 is determined by the ratio of the reaction rate at the
catalyst surface to the diffusion rate through the catalyst pores.

DOI: 10.9790/5728-2106033952

www.iosrjournals.org

49 | Page



An Optimized Three-Off-Step Block Hybrid Method For Solving Singular Second Order .......

Table 2. Comparison of absolute errors of Problem 2

X 1S30P 1S20P[14] 1S3HP[15] 1S4HP[15]
0.1 6.35767¢-10 1.16507398¢-7 6.17621e-9 4.069691¢-9
0.2 6.0224¢-10 1.02523148¢-7 6.861048¢-9 3.8896¢-10
0.3 6.05596¢-10 9.3155702 -8 7.966245¢-9 2.9896¢-10
04 6.32437¢-10 8.5924964 e-8 9.473596e-9 2.671458¢-9
0.5 6.71057¢-10 7.8751406¢-8 1.1316567¢-8 5.88818¢-10
0.6 7.06678¢-10 6.9694737¢-8 1.3291835¢-8 7.4041e-10
0.7 7.15759¢-10 5.7022468¢-8 1.4898722¢-8 5.092317e-9
08 6.57548¢-10 3.9708057¢-8 1.5045103¢-8 2.062058¢-9
0.9 4.60513¢-10 1.8740297¢-8 1.1513203¢-8 1.513203¢-9
1 0 0 0

To analyze the impact of the Thiele modulus ( 0) on the concentration profile (y(x), we also considered other

values of 0 and n Figure 2 displays the numerical outcomes for various values of 6 and

that in Figure 2, the concentration profile increases when 0 diminishes.

PROBLEM 3
Consider the nonlinear heat conduction model of the human head,

2
¢"(O+>q'0)+e?" =0

09}

081

concentration profit-q(t)

*rep 1520P
O rep 1830P
- rep Exact Sol

f-axis

q'(0)=0

Figure 2. Plots of exact and KSPHT solution for Problem 2.

aq(l)+ Bq" =0

n We observed

Where a=2 and :tl' The above nonlinear SBVP is discussed by Duggan R el ta[] as a heat
conduction model in the human head. However, The general analytical solution of problem is unknown (Umesh
[25D).
Table 3. Comparison of KSPHT on Problem 3
X 1S30P 1S20P[14] 1S3HP[15] 1S4HP[15] MLMEF[26 AADM][25]
0 0.27002964770543 0.27002966452995 0.27002964680 0.2700296479 0.27002964789 0.2700296466
5 2 2432 05256 67
0.1 0.26875690040863 0.26875691754786 0.26875689954 0.2687569006 0.26875690062 0.2687568993
0 2 1846 38243 96
0.2 0.26493281728639 0.26493283327299 0.26493281645 0.2649328175 0.26493281753 0.2649328162
7 1 7765 46941 83
0.3 0.25853978910605 0.25853980387077 0.25853978831 0.2585397893 0.25853978938 0.2585397881
8 4 3346 90099 15
0.4 0.24954817996214 0.24954819350670 0.24954817920 0.2495481802 - 0.2495481789
5 6 4708 62417
0.5 0.23791588728858 0.23791589962657 0.23791588656 0.2379158875 - 0.2379158863
9 8 7682 97897
0.6 0.22358770687868 0.22358771802593 0.22358770619 0.2235877071 - 0.2235877058
9 2 8023 89813
0.7 0.20649448272630 0.20649449269833 0.20649448209 0.2064944830 0.20649448302 0.2064944817
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0 7 2787 31891 38
0.8 0.18655201388182 0.18655202269319 0.18655201330 0.1865520141 0.18655201416 0.1865520128
5 6 6585 74299 67
0.9 0.16365968131597 0.16365968898015 0.16365968081 0.1636596815 0.16365968158 0.1636596802
6 8 5672 87396 04
1 0.13769874637765 0.13769875290734 0.13769874597 0.1376987466 0.13769874661 0.1376987453
7 2 6308 19598 36
0.28 I- ' T v T T T T T T
S
026 e * 1ep 1520P
“"-x._‘_d Orep 1830P
e, _ | k
024 *o rep pple w
"
022} i
\ )
g 2 \\
\‘,‘r
018 ,
\\
016 :
"
14+ 9

01 02 03 04 05 06 07 08 09 1
t
Figure 3. Plots of exact and KSPHT solution for Problem 3.

VI. Discussion Of Results

The results for the three test problems are summarized in Tables 1-3 and Figs. 1-3. For Problem 1,
Tables 1 and fig 1 showed the KSPHT methods(1S30P), demonstrated superior performance compared to
1S20P in Utalor et al. (2025), 1S3HP,1S4HP in Utalor et al. (2025), Umesh (2021), and Gumgum (2020),
particularly in terms of accuracy at the points t= 0(0.1)1.0. For Problem 2, KSPHT(1S30P) in Tables 2 again,
outperformed the Block Hybrid Methods (Utalor et al., 2025), with graphical results in fig 2 is showing
excellent agreement with the exact solution. The convergence of the methods improved as the number of off-
step points increased. Tables 3 and Fig. 3 present the results for Problem 3, showing that the approximate
solutions are in very good agreement, up to 8—9 decimal places, with results obtained using the Modified Linear
Multistep Formulas (Olabode et al., 2024), the Advanced Adomian Decomposition Method (Umesh, 2021) and
Block Hybrid Methods (Utalor et al., 2025). while the 1S4HP scheme showed better performance than 1S20P
and 1S30P. It is observed from the all the Tables that the results obtained from the methods converged faster
when the number of off step points were increased. Attempts to implement a 1S40P scheme were limited by
large, complex-valued matrices that complicated computation. Overall, the proposed methods demonstrate high
accuracy, rapid convergence, and favorable comparison with existing techniques, highlighting their
effectiveness for solving singular boundary value problems.

VII. Conclusion

This study has presented a novel strategy for constructing self-starting block methods for constructing
self-starting block methods to solve second-order singular initial boundary value problems (SIBVPs). This
approach employs a shift operator applied to two different linear multi-step formulas, which are then combined
with three optimized hybrid sets of formulas developed for the first sub-interval. The continuous coefficients of
the linear multi-step methods are derived based on the method of undetermined coefficients. The performance
of the proposed methods was evaluated through three real-world model problems obtained from the literature.
Numerical results demonstrate that the developed methods exhibit high accuracy and computational efficiency,
yielding smaller errors compared to existing approaches. Furthermore, the incorporation of optimization
techniques in selecting off-step points significantly enhances the accuracy, increase the order of the method and
stability of the methods, establishing their superiority over non-optimized alternatives. Overall, the proposed
framework offers a reliable and efficient tool for solving classes of second-order singular boundary value
problems.
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