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Abstract:

The paraconsistent propositional logic GT is presented, along with its semantic characterization. It is shown
that GT'’s set of theorems corresponds to the set of valid existential graphs, GET, which turns out to be an
extension of Peirce’s Gamma system, without becoming Zeman’s gamma-4 system. This result is amplified by
constructing the paraconsistent system of existential graphs GET4, and its semantic-deductive characterization.
The paraconsistent propositional logic LG is presented, along with its semantic characterization. It is shown
that the set of theorems of LG corresponds to the set of valid existential graphs of Charles Sanders Peirce’s
Gamma system (1903). All evidence is presented in a complete, rigorous, and detailed manner. Finally,
Zeman'’s Gamma-4, Gamma-4.2, and Gamma-5 existential graph systems are proven to be paraconsistent.
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I.  Introduction

Existential graphs, alpha, beta, and gamma, were created by Charles Sanders Peirce in the late 19th
century, see Roberts [10] and Peirce [8]. Alpha graphs correspond to classical propositional calculus, beta
graphs correspond to classical logic of first-order relations. Gamma charts were introduced by Peirce and later
extended by Jay Zeman, constructing existential graphs for modal logics S4, S4.2 and S5 in Zeman [14]. On the
other hand, Brade and Trymble [2] have proposed categorical models for alpha existential graphs. Recently,
existential graphs were presented for intuitionistic propositional calculus in Oostra [4, 7], for intuitionistic
relationship calculus in Oostra [5], and for modal logics S4, S4.2, and S5, intuitionist versions, in Oostra [6].
Finally, Sierra [11] presents the Gamma-LD system of existential graphs, and Sierra [12] presents the first
system of paraconsistent existential graphs.

The paraconsistent propositional logic GT is presented, along with its semantic characterization. It is
shown that GT’s set of theorems corresponds to the set of valid existential graphs, GET, which turns out to be
an extension of Peirce’s Gamma system, without becoming Zeman’s gamma-4 system. This result is amplified
by constructing the paraconsistent system of existential graphs GET4, and its semantic-deductive
characterization.

The paraconsistent propositional logic LG is presented, along with its semantic characterization. It is
shown that the set of theorems of LG corresponds to the set of valid existential graphs of Charles Sanders
Peirce’s Gamma system. All evidence is presented in a complete, rigorous, and detailed manner. Finally,
Zeman’s Gamma-4, Gamma-4.2, and Gamma-5 existential graph systems are proven to be paraconsistent.
These results were presented at SALOME!: Ist South American LOgic MEeting, in Cusco, Peru, January 12-
15, 2024.

The deductive system for double paracomplete (LD) propositional logic and gamma-LD existential
graphs are presented in Sierra [11]. LD has 2 negations, the classical (~) and a paracomplete (—). Gamma-LD
has 2 cuts, continuous and continuous-thick. The theorems of LD correspond exactly to the valid existential
graphs of gamma-LD. LD can be seen as an extension of the modal propositional logic S4, by extending the
language with a set of strong atomic formulas. LD is characterized by a semantics of possible worlds, where the
relation of accessibility is reflexive and transitive.

When the language of LD is restricted to the language of classical propositional logic (LC), the
constraint associated with gamma-LD coincides with the valid existential graphs of Charles Sanders Peirce’s
alpha system [8] where Peirce’s continuous cut corresponds to the continuous cut of Gamma-LD. When the
language of LD is restricted to the language of intuitionistic propositional logic (LI) van Dalen [13], the
constraint associated with gamma-LD coincides with the valid existential graphs of the intuitionistic alpha
system (alpha-I) presented by Oostra [4, 7], and when LD is restricted to LI, the paracomplete negation turns
out to be the intuitionistic negation, where Peirce’s continuous cut corresponds to the continuous-thick cut of
Gamma-LD.
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Definition 1.1 Properly combining the negations of LD yields a paraconsistent negation, and redefining LD
and Gamma-LD in terms of the classical and paraconsistent negations yields the double logic paraconsistent
LD’. The theorems of LD’ correspond to the valid existential graphs of the existential graph system Gamma-
LD, this system has 2 cuts: the continuous and the broken {X}=([(X)]).

When the strong atomic formulas are removed from the LD’ language, the resulting theorems
correspond to the valid existential graphs of the GET4 existential graph system.
Proposition 1.2 GET4 existential graph system coincide with the gamma-4 system presented by Zeman[14].
Proof. In [11] LD is deductively characterized by the propositional logic S4 (adding alternate atomic
formulas), and characterized by a semantics of possible worlds, whose accessibility relation is reflexive and
transitive. By translating into the LD’ existential graph system (and also eliminating the alternate atomic
graphs), the deductive system (GT4) results, which is equivalent to S4 (only that the language remains in terms
of the paraconsistent negation), but the semantics of possible worlds do not change, it is the same as S4, so the
LD’ graph system is restricted, is the graphics system associated with S4, i.e. Gamma-4.

When LD’ language is restricted to LC language, the constraint associated with gamma-4 coincides
with valid existential alpha graphs; where the classical negation corresponds to the continuous cut. Considering
all the possible combinations of 3 cuts in Gamma-LD and Gamma-LD’, The diagrams in Figure 1 are obtained.
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Gamma-LD’ { } () ‘
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Gamma-LD [ () ]
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Figure 1: Combining 3 cuts in LD and LD’

This diagram with the rules of Gamma-LD’, corresponds to the semantics of possible worlds Reflexive
and transitive (GET4 graphs), omitting the transitivity resulting in the GET graphs (sections 8 to 13). If, in
addition, (sections 2 to 7), the axioms are properly restricted, so that there is no semantics of possible worlds,
the deductive system (LG) associated with the Gamma existential graphs proposed by Peirce in CP 4.516 [8] is
constructed.

II.  Deductive System LG

In this section, the deductive system of propositional logic, LG (Gamma Logic), is presented, and its
connections with classical propositional calculus.
Definition 2.1 The set of formulas, FL, of the deductive system, LG, is constructed from a set FA of atomic
formulas, from the constant L, the unary connective weak negation, {—}, and the binary connective conditional,
{2}, as follows. 1) PEFA implies PEFL. 2) LEFL. 3) XEFL implies -X€FL. 4) X,YEFL implies X2Y,XNY€EFL.
Classical negation, strong affirmation, weak affirmation, disjunction, lambda and biconditional are defined as:
) ~X=X21.2)+X=~-X.3) X =—~X.4) XUY = ~XDY.5) 1 =~L1.6) X=Y = (X2Y)N(Y>2X).
Definition 2.2 The LG deductive system consists of the axioms
(where X,Y,Z€FL): Ax1) LoX. Ax2) X2(Y2X). Ax3)[XD(Y2Z)|2[(X2Y)2(XDZ)]. Ax4) [(XDY)2X]2X.
Ax5) (XoL1)D —X. Ax6) —XD —(XNY). Ax7) (XNY)2X. Ax8) (XNY)DY. Ax9) (X2Y)2[(X2Z)2(X>
{YNZ})]. Ax10) —(YNn =X)2 —(YN(X>1)). Axl1) (YN —(Zn(X>1)))2> —(YN —(ZN —X)). The only rule
of inference is the modus ponens Mp: Z is inferred from X and X>Z.
Definition 2.3 Let X, X1, , X,, €FL. X is a theorem of LG, denoted X€TL, if there is a proof of X from the
axioms using the rule Mp, i.e., X is the last row of a finite sequence of lines, in which, each of the lines is an
axiom, or is inferred from two preceding rows, using the inference rule Mp. The number of lines in the sequence
is referenced as the length of the X proof. Y is a theorem (or consequence) of {X 1, ..., X}, denoted
{X1, ..., X} >>Y, ifthere is a proof of Y, from the axioms and assumptions {X 1,..., X »}.

DOI: 10.9790/5728-2106016581 www.iosrjournals.org 66 | Page



Double Logic And Paraconsistent Existential Graphs GET, GET4 And GEG (4.516)

Proposition 2.4 Let them be X, Y, X 1,..., X, €FL. If {X 1, ... , Xy, X} >>Y then LG, then

X1,..., Xpn}>>X0Y.

Proof. Axioms 2, 3 and 4, with the single inference rule Mp, determine the calculus for the classical
implication CIC Rasiowa [9], in which the deduction theorem applies.

Proposition 2.5 For X, YEFL. The following formulas are LG theorems:

1) (Xo~Y)2(Y2~X). 2) ~(X2X)>Y. 3) XU~X. 4) Xo~~X. 5) ~~XDX 6) (X2Y)>(~Y>~X).

7) (~Y2~X)2(X37).

Proof. 1) Suppose Xo(Y>1), Y, X. By Mp is derived YO, again by Mp is inferred L. Applying proposition
2.4, 3 times and using the definition of ~, we conclude (X2~Y)2(Y>~X). 2) Suppose ~(X2X), i.e. (X2X)D
1, but XoX is a CIC theorem, resulting in L, using Ax1 follows Y. Applying proposition 2.4 concludes
~(X2X)DY. 3) By the principle of identity of the CIC we have ~X D~X, by the definition we conclude XU
~X. 4) Suppose X, XDL. By Mp it follows L, applying proposition 2.4, 2 times and definition concludes X>~
~X. 5) Suppose ~~X, i.e., ~X2L, by Ax]l we have LOX, as (~X2L)D[(L>X)2(~X>X)] is a theorem of the
CIC deduces ~X2X, i.e. (X2L1)>X, using Ax4 implies X. Proposition 2.4 concludes ~~X>X. 6) and 7).
Direct consequences for 1), 4) and 5).

Proposition 2.6 Let them be X,Y,ZEFL. The following formulas are theorems of L:

1) Xo(XUY). 2) Xo(YUX). 3) (X2Y)2/[(Z2Y)2({XUZ} DY)].

Proof. 1) Suppose X, ~X, i.e., XD1, by Mp we obtain L, according to Ax1 we derive Y. Applying proposition
2.4, 2 times we conclude X2(~X2Y), i.e., XD(XUY). 2) By first part we conclude X2 (~XDY), using
proposition 2.5, it can be said that X2 (~Y 2X), i.e., X2(YUX). 3) Suppose XY, ZDY, XUZ, i.e., ~XDZ, by
CIC we infer ~X2Y, by proposition 2.5 we derive ~Y2X, by CIC we infer ~YDY, i.e. (YD-1)2Y, by Ax4
we get Y. Applying proposition 2.4, 3 times we get (X2Y)2[(Z2Y)2({XUZ} OY)].

Proposition 2.7 For X, YEFL. Xo[Y>(XNY)]ETL.

Proof. Suppose X, Y. Ax2 results in Ax1DX, Ax1DY, Ax8 results in Ax1D(XNY), Mp results in XNY.
Applying proposition 2.4, 2 times concludes Xo[YD(XNY)].

Proposition 2.8 The classical propositional calculus CPC with the language {2, N, U, =, ~} is included in the
propositional calculus LG.

Proof. Axioms 2, 3, 4, 7, 8 and 9 along with propositions 2.5, 2.6, 2.7 and the inference rule Mp determine
CPC Rasiowa [9].

Proposition 2.9 Sean X, YEFL. The following formulas are theorems of L:

1)—-AD A 2) XU-X 3) ~Xo-X 4) —X=~+X. 5) +X>X.

Proof. 1) By Ax2 we have A D(— -4 D 1), in addition to Ax1 of has 1LD1, i.e., ~1, which means A, applying
Mp we conclude that — -4 D A. 2) By definition in AxS5, result XU-X. 3) Ax5. 4) By definition we have ~
—X=+X, applying proposition 2.5 we conclude —X=~+X. 5) By Ax5 we have ~X> —X, applying CPC we
deduce ~ —X2X, i.e., +X2X.

Proposition 2.10 Sean X, YEFL. The following formulas are theorems of L:

1) ~+~X=QX 2) +~X=~QX 3) ~+X= —X 4) XoQRX 5) - XoQ~X.

Proof. 1) By proposition 2.9 we have —~X=~+~X, by definition it results @ X=~+~X. 2) By CPC we
conclude ~QX=+~X. 3) By definition you have ~ —X=+X, by CPC you get —X=~+X. 4) By proposition 2.9
we have +~X>~X, using CPC we deduce Xo~+~X, by part 1 we conclude XD ®X. 5) By definition we have
—~X2Q®~~X, by CPC we conclude —Xo&Q~X.

HI. Semantics LG

In this section, the semantics for the LG system are presented, in proposition 3.6 it is proved that the
theorems of the LG system are valid formulas in the proposed semantics. This semantics follows the ideas
presented by Batens & De Clercq [1].
Definition 3.1 M=(V y;, v) is a model for LG, it means that, V y is a function of FL in {0,1}, v is a function of
—FLin {0, 1}, where —FL = {—X : X€FL}.
Definition 3.2 In the model M=(V y;, v), with X, YEFL.
V 4 (X)=1 is abbreviated as M(X)=1, and means that in the M model, the formula X is true. V 3(X)=0 is
abbreviated as M(X)=0, and means that in the M model, the formula X is false.
The V ,, function satisfies the following rules: 1) VL. M(1)=0. 2) V2. M(X2Y)=1 means M(X)=1 implies
M(Y)=1. 3) V—. M(—X)=I means M(X)=0 or v(—X)=1.
4) V—n. M(—X)=1 implies M(—(XNY))=1. 5) VN. M(XNY)=1 means M(X)=M(Y)=1.
6) V—~. M(—(YN —X))=1 implies M(—(YN~X))=1.
7) V==~ M(=(YN =(ZN~X)))=1 implies M(—=(YN —=(ZN —=X)))=1.
Proposition 3.3 For X,YEFL. 1) V~. M(~X)=1 means M(X)=0.
2) VU. M(XUY)=1 means M(X)=1 o M(Y)=1. 3) V=. M(X=Y)=1 means M(X)=M(Y). 4) V+. M(+X)=1
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means M(—X)=0. 5) VR. M(QX)=1 means M(—~X)=1.
6) M(+X)=1 implies M(X)=1. 7) M(=X)=0 implies M(X)=1. 8) VA. M(1)=1
Proof. 1), 2) y 3), resulting from CPC semantics. 4) M(+X)=1, means M(~ —X)=1), for part a means
M(—X)=0). 5) M(®X)=1 by definition means M(—~X)=1. 6) If M(+X)=1, for the part 4), we have M(-X)=0,
applying V— we infer M(X)=1. 7) Direct consequence of V—. 8) If M(1)=0, by V~ we say M(~ A)=1, this
means M(L)=1, which is not the case. u
Definition 3.4 For XX ,... , X, €FL. A formula X is said to be valid, denoted X€VL, if and only if X is true in
all models for LG. It is said that {X 4, ... , X n} validates Y if and only if (X1 NX , N ...0NX ,)DYEVL.
Proposition 3.5 Let XEFL. If X is an axiom of LG, then XEVL.
Proof. Ax1) LoX. Suppose LOX€&VL, so there exists a model M, such that M(L>X)=0, by V> we have
M(L)=1, which contradicts VL. Hence, Ax1€VL.
Ax2, Ax3, Ax4) If X is one of the axioms Ax2, Ax3, Ax4, using the rule VO and proceeding as usual for the
validity of CPC in van Dalen [13], it is concluded that X€VL, i.e., Ax2, Ax3, Ax4€VL.
Ax5) (Xo1)D> —X. Suppose that (Xo1)D —X&VL, so there is a model, M such that M((X>L1)> —X)=0, by
VD results M(X21)=1 and M(—X)=0, according to V—, M(X)=1 and v(—X)=0, are derived, applying VD it
follows that M(1)=1, which contradicts VL. Hence, AXSEVL.
Ax6) —X2 —(XNY). Suppose that —X> —(XNY)&VL, so there is a model M, such that M((—X2> —(XNY))=0,
by V2 results M(—X)=1 and M(—(XNY))=0, according to V-N it is derived, M(—X)=0, which is not the case.
Hence, Ax6€VL.
Ax7) (XNY)>2X and Ax8) (XNY)>X. From VN it follows that M(XNY)=1 implies M(X)=M(Y)=1. Hence,
AX7€VL and Ax8€VL.
Ax9) X2Y)2[(X2Z)>2(X>2{YNZ})]. Suppose that Ax9 & VL, so there is a model M, such that
M[(XDY)2(X2Z)o(X> {YNZ})])=0, by VD results M(XDY)=1, M(X2Z)=1, M(X)=1, M(YNZ)=0, applying
V> we derive M(Y)=1, M(Z)=1, which by VN means M(YNZ)=1, which is not the case. Hence, AX9€VL.
Ax10) —(YN —=X)2 —(YN(X>1)). It is satisfied by the rule V—~: M(—(YN —X))=1 implies M(—(YN~X))=1.
Hence, Ax10€VL.
Ax11) —=(YN —(ZN(X>21)))2 —(YN —(ZNn —=X)). It is satisfied by rule V——~: M(—=(YN —(ZN(X>D1))))=1
implies M(—(YN —(Zn —X)))=1. Hence, Ax11€VL.
Proposition 3.6 Sean X, YEFL. 1) If XETL then XEVL.
D) If{Xq,..., X} >>Y then {X 4, ..., X ,} validates Y.
Proof. 1) Suppose XETL. XEVL is proved by induction over the length, L, of the proof of X. Base step L=1. It
means that X is an axiom, which from proposition 3.5 it follows that XEVL.

Induction step. As an inductive hypothesis, we have that for every formula Y, if YETL and the length
of the proof of Y is less than L (where L>1) then YEVL. If XETL and the length of the proof of X is L, then X
is an axiom or X is a consequence of applying Mp in earlier steps of the proof. In the first case, we proceed as in
the base step. In the second case, we have for some formula Y, proofs of Y and Y X, where the length of both
proofs is less than L, using the inductive hypothesis it is inferred that YEVL and YOX€EVL, so that, in any
model M, we have M(Y)=1 and M(Y>X)=1, by VD it turns out that M(X)=1, consequently, XEVL. Using the
principle of mathematical induction, it has been proven that, for every X€FL, X€TL implies XEVL.

2) Suppose that {X 4,..., X ,} >>Y, applying CPC, we have (X ; NX , N ...NX ,)DYETL, from the
part 1 is inferred, (X ; NX , N ...NX,)2YEVL, which by definition means that {X ,... , X ,} validates Y.

IV.  Semantic-Deductive Characterization LG

In this section, the characterization of LG with the semantics of the previous section is presented. In
proposition 4.5 we have completeness and in proposition 4.6 we have semantic-deductive characterization.
Definition 4.1 An extension of a set of formulas C of LG, denoted CEEXT(LG), is obtained by altering the set of
formulas of C in such a way that the theorems of C are preserved, and that the language of the extension
matches the language of LG. An extension is locally consistent if there is no X€FL such that both X and ~X are
extension theorems. A set of formulas is locally inconsistent if a contradiction ZN~Z for some ZEFL is derived
from them. An extension is locally complete if for all XEFL, either X is an extension theorem or ~X is an
extension theorem.
Proposition 4.2 For XeFL. 1) LT is locally consistent. 2) If EEEXT(LG), X&TL-E, and E , EEXT(LG) are
obtained by adding ~X as a new formula to E, then E , is locally consistent.
Proof. 1) Suppose that LG is not Jocally consistent, so that there must be ZEFL such that ZN~Z€TL, i.e.
ZN(Zo1)ETL, by CPC results LETL, by the validity theorem it is concluded that LEVL, i.e., for every model
M, M(1)=1, which contradicts rule VL. Therefore, LG is locally consistent.
2) Let X¢TL-E, and let E , the extension obtained by adding X as a new formula to E. Suppose that E , is
locally inconsistent, so that, for some Z€EFL, we have Z,~Z€TL-E ,, by CPC we get LETL-E ,, by Axl we
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derive X€TL-E ,. But E , differs from E only in that it has ~X as an additional axiom, so X is a theorem of
E .’ is equivalent to X is a theorem of E from the set {~X}’. By proposition 2.4 it follows that ~X>X€TL-E,
and by CPC it is inferred that X€TT-E, which is not the case, therefore E , is locally consistent.

Proposition 4.3 If EEEXT(LG) is locally consistent, then there is E’€EXT(LG) that is locally consistent and
complete.

Proof. Let be X4, X 1, X5, . . . an enumeration of all LG formulas. A sequence E’ ¢, E’;, E’,, . . . of
extensions of E as follows: Let E’ , = E. If X, €TL-E’ ¢, is E’; = E’ ,, otherwise add ~X , as a new formula
to get B’ ; from E’ ;. In general, given t = 1, to construct E’ ; from E’ ,_;, we proceed as follows: if
X i1 ETL-E’ ;_q, then E’ , = E’ ;_4, otherwise let E’ ; be the extension of E’ ,_; obtained by adding ~X ;_; as
a new formula. The proof is widely known, details in [12].

Proposition 4.4 If E’EXTE(LG) is locally consistent, then there is a model in which all XETL-E’ is true.

Proof. The model MF=(V ,,; , v) is defined as follows: each extension F is associated with an MF model. For
each MF and for each X€FL, V yz(X)=1 if X€F; and V yz(X)=0 if ~X€F; v(-X)=1 if and only if —X€F,
where F is the locally consistent and complete extension associated with MF. Note that V - is functional
because F is locally consistent and complete. To claim that MF is a model, rules 1 through 7 of the model
definitions must be guaranteed.

1. By CPC we have LD1€TL, so ~LE€F, i.e. V yz(L)=0. Therefore, VL is satisfied.

2. Using CPC we have the following chain of equivalences: V pz(X2Y)=0, i.e. ~(X2Y)€F, by CPC we follow
XN~YEF, resulting by CPC that X€F and ~Y €F, which means that V z(X)=1 y V yz(Y)=0, so VD is
satisfied.

3. Suppose that V yz(—Z)=1, so —Z€F, from which v(-Z)=1, and then V ;z(Z)=0 o v(-2)=1.

To prove the reciprocal, suppose V pz(Z2)=0 or v(—Z)=1. For the case V pr(Z2)=0, this means that Z&F, since F
is complete, it is inferred that ~Z€F, using Ax5 can be assured that —Z€F, i.e. V yz(—Z)=1. For the case v(—
Z)=1, this means V yz(—Z)=1. So, if V ;z(Z)=0 o v(—Z)=1 then V yz(—Z)=1. Since the reciprocal was initially
proved, it is concluded that V— is satisfied.

4. Suppose V yr(—X)=1, so —X€F, using Ax6, is derived —(XNY)€EF, i.e. V yp(—(XNY))=1. Therefore, VN is
satisfied.

5. Suppose that V ,(XNY)=1, so XNYEF, applying Ax6 and Ax7 derive X€F and Y€F, i.e. V yz(X)=1 and
V ur(Y)=1. To prove the reciprocal, suppose V yp(X)=1 and V y(Y)=1, which means that X€F and YE€F,
using Ax8 results in XNYEF, consequently, V ,z(XNY)=1, Since the reciprocal was initially proved, it is
concluded that VN is satisfied.

6. Suppose that V yz(—(YN —=X))=1, i.e., = (YN —X)€EF, using Ax10 infers —(Y N~X)EF, which means
V ur(—(YN ~X))=1. Therefore, V—~ is satisfied.

7. Suppose that V yp(—(YN —(ZN~X)))=1, i.e —=(YN —(ZN~X)))€EF, using Ax11 infers —(YN —(ZN —X))€EF,
which means V pz(—(YN —(ZN —X)))=1. Therefore, V——~ is satisfied.

Based on the above analysis, it is inferred that M is an LG model. To conclude the proof, let X be a theorem of
E’, so X€E’. Therefore, using the definition of V g, it turns out that V ,z(X)=1, i.e., X is true in the model
ME=(V yg,V).

Proposition 4.5 For XX ,,..., X, €FL. 1) If X€EVL then X€TL. 2) If {X1,... , X} validates Y then {X 4, ...,
X} >>7.

Proof. By proposition 4.2, the extension E’, obtained by adding ~X as a new formula, is locally consistent.
Thus, according to proposition 4.4, there is a model ME such that every theorem of E’ is true in ME, and since
~X€TL-E’, then ~X is true in ME, i.e., X is false in ME, hence X&VL. It has been proven that X¢TL implies
X&VL, i.e., XEVL implies X€TL.

2) Suppose {X 4,... , X} validates Y, i.e., (X1 NX , N ...NX ,)DYEVL, by part 1, it follows that, (X ; NX , N
. NX )DYETL. If {X 4,... , X ,} are assumed, by CPC we infer Y, hence {X , ..., X ,} >>Y.

Proposition 4.6 For X,Y, X ;,....X , €FL. 1) XEVL if and only if XETL.

2){X 1,... , X p} validates Y if and only if {X 1, ..., X ,} >>Y.

Proof. Direct consequence of propositions 3.6 and 4.5.

V.  Existential Graphs GEG

This section presents the original gamma existential graphs, GEG, proposed in 4.516 of Peirce’s
Collected Papers [8]. For the construction of existential graphs, a variant of notation is used, proposed by Peirce
in 4.378 of [8].
Definition 5.1 The set of graphs, GG, of original existential gamma graphs, GEG, is constructed from a set of
atomic graphs, GA, and the constant A (empty graph, A="_"), as follows. 1) PEGA implies PEGG. 2) A €GG. 3)
X€GG implies {X},(X)EGG. 4) X, YEGG implies (X(Y)), XYEGG.
Definition 5.2 The graph (X(Y)) it is called a conditional graph. The outer parentheses determine the external
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cut of the conditional, and the internal parentheses determine the internal cut of the conditional. X is called
antecedent and Y consequent. Conditional cuts are called continuous cuts. In the {Z} graph, the keys determine
the broken cut. The part where Z is located is called the inner region of the broken cut or simply the region of
the broken cut.

Definition 5.3 Let them be X,Y,ZEGG. A graph X is said to be in an even region, denoted X o if X is
surrounded by an even number of cuts (continuous and/or broken). X is in an odd region, denoted X ;, if X is
surrounded by an odd number of cuts (continuous and/or broken). X . means that the graph X is in a region
surrounded by n continuous and/or broken cuts (n = 0, 1, 2, 3, ...), where n can be odd or even. X pe indicates
an even number of continuous cuts. X 1. indicates an odd number of continuous cuts. X ,.. means that X is in a
region of continuous cuts only, i.e., no broken cuts appear. X 1.q means that X is in a region with at least one
broken cut.

Definition 5.4 Let be XEGG. Lambda is defined as the assertion sheet A="_". Strong graph is defined as *X =
({X}). Total falsehood is defined as L={_}.

Definition 5.5 The system consists of the following RTRA primitive transformation rules:

R1) Alpha Rules. The primitive transformation rules of Pierce’s Alpha existential graph system are primitive
transformation rules of the GEG system. These rules are: Erase and Write, Iteration and Deiteration in regions
of continuous cuts only or no cut, Write and Erase the double cut. The assertion sheet, A, is the only axiom of
the Alpha system.

R2) Writing graphs in broken cut region. On a broken cut that is written on the assertion sheet, any graph can be
written. EG{}. {X}|= {XY}.

R3) Writing and erasing in the cuts. A continuous cut can be partially erased (generating a broken cut) when it
is in an even region. 3a. Ecq. (X) ,|= {X}.

A broken cut can be completed (generating a continuous cut) when it is in an odd region. 3b. Bee. {X} ;|=(X) .
In addition to the primitive rules, you have the following implicit rules:

RI1) Concatenation. Two graphs that are in the same region can be concatenated. Conversely, two graphs that
are concatenated can be separated in the same region. Conc. X, Y ¢ YX, in any region.

RI2) Commutativity. Two concatenated graphs can be rewritten by changing the order. Com. XY ©YX, in any
region.

RI3) Associativity. In three graphs that are concatenated, the order in which they were concatenated is
irrelevant. Initially, the first is concatenated with the second and this result is concatenated with the third, or the
first is concatenated with the result of concatenating the second with the third. Aso. XY, Z © X, YZ © XYZ,
in any region.

Remark 5.6 Rules RII, RI2 and RI3 are called implicit rules, since, given their obviousness and graphic
naturalness, they may not be referenced, but they are applied.

Definition 5.7 For XeGG. X is a graphical theorem of GEG, denoted X€TG, if there is a proof of X from the
graph A, using the graph transformation rules, i.e., X is the last row of a finite sequence of lines, in which each
of the lines is A, or is inferred from previous rows, using the transformation rules. Or to put it briefly, X€TG if
and only if A >>X. The number of lines, of the finite sequence, is referenced as the length of the proof of X. Y>
>X, means that X is obtained from Y using a finite number of transformation rules.

R
Proposition 5.8 For X,YEGG. Let be RERTRA and R#R2. If X, = Y then there exists R’ERTRA such that

Y, i:» X. Proof by simple inspection of the primitive rules.

Proposition 5.9 For X,Y,ZEGG. When you have an inference, in every even region of the antecedent you infer
the consequent, provided you don’t use rule R2, then X>>Z implies X , >>Z.

When an inference is made, in every odd region of the consequent the antecedent is inferred, if rule R2 is not
used, then X>>Z implies Z ; >>X.

Proof. Suppose X>>Z it must be proved that X ,, >>Z and Z ; >>X.

If X>>Z then there are R ;,... , R, €RTRA, and there are X ;,... , X ,,_; € GG, such that
XR ;X ;R ,X, .. X 1R ,Z, and the length of the transformation of X>>Z is said to be n and denoted by X>
> ,Z. The proof is performed by induction on the length of the transformation.

Base step. n=1. It means that only one of the primitive rules was applied, and since X is in an even region, then

R must be of the form X, ; Z with RERTRA. From proposition 5.8 it is inferred that there is R’, Z { Rﬁ’ X
with R’ERTRA. Inductive step. Inductive hypothesis (Yn>1)[W>> ;K = {W , >>K and K; >>W}]. If X>
> 4412, then XR (X R,X 5 .. X, 1R X R 12, ie,

XR 1 X1R,X, .. X 1R X,, and X ,R 1417, so X>> X, and X ,R ,,;1Z. Applying the inductive
hypothesis and proposition 5.8 we get X, >>X,, y X ;R 117, X,; >>X and Z R’ ;1 X ;. So, X, >>Z
and Z; >>X.

DOI: 10.9790/5728-2106016581 www.iosrjournals.org 70 | Page



Double Logic And Paraconsistent Existential Graphs GET, GET4 And GEG (4.516)

By the principle of mathematical induction, the truth of the proposition is concluded. u
Proposition 5.10 For X,Y,Z€EGG. A conditional graph can be written when the consequent is inferred from the
antecedent, if the R2 rule is not used.

Le, X>>Z |= (X(Z)).
X>»Z y proposicién 5.9

Proof. Suppose X>>Z. 1 = (()) = (X()) = (X(X)) = (X(2)).
Hence, X>>7 = (X(2)).

VI. Equivalence LG And GEG

In this section, the equivalence between LG and GEG is presented, initially, in proposition 6.3, it is
proved that LG’s theorems are graphical theorems of, in proposition 6.7, it is proved that the graphical theorems
of are valid in the semantics of possible worlds, in proposition 6.13, it is proved that LEG’s theorems are
exactly the graph theorems.
Definition 6.1 FA=GA Translation function [ ] :FL—>GG. Let be X,YEFL and PEFA.
1) P’=P.2) [X2Y]'=(X"(Y)). 3) [XVY]'=((X’)(Y")). 4) (=X)'={X"}. 5) 1’=1. 6) (XNY)=X"Y".
7) (~X)'=(X). 8) L’=(1).
Proposition 6.2 Let XEFL be. If X is LG’s axiom, then X €TG.
Proof. Axl) 15X. By Rl we have (()), according to R1 we have ((X’)()), i.e. (LDX)’. Therefore,
(AX1)’E€TG.
Ax2, Ax3, Ax4, Ax7, Ax8 and Ax9. Their translations are valid thanks to R1, since these are axioms of CPC,
which is validated by the Alpha system. Ax5) (X2-1)2-X. (X’)>> {X’} is satisfied by rule R3. It is
concluded that (Ax5)’€TG.
Ax6) —X2 —(XNY). {X’} >> {X"Y"} is satisfied by rule R2. It is concluded that (Ax6)’€TG.
Ax10) —=(YN—=X)D> —(YN(L>X)). By Rl we have the sequence (( )), so ({Y{X }}()), we derive
{Y{XB{Y{X}})), applying R3 we infer ({Y{X }}({Y(X")})). It is concluded that (Ax10)’€TG.
Ax11) =(YN —(ZN(X>1)))2 —(YN —(Zn —X)). By R1 we have the sequence (( )), so ({Y{Z(X")}}()), is
derived ({Y{ZX)}({{Y{Z(X")}})), applying R3 infers ({Y{Z(X")}} {Y{Z{X’}} })). It is concluded that
(Ax11)€TG.
Proposition 6.3 For X€FL. 1) If XeTL then X’€TG. 2) If X>>Y then X’>>Y".
Proof. 1) Induction about the length of the X demonstration in LG. Base step. If the length of the proof is 1,
then X is an axiom, by the proposition 6.2 X’€TG.
Induction step. The inductive hypothesis is: if YETG and the length of the proof of Y is less than L, then
Y’€TG. Suppose XETG and that the length of the proof of X is L, so X is an axiom or obtained from previous
steps using Mp. In the first case, proceed as in the base step. In the second case, Y and YOX are taken in
previous steps of the proof of X, i.e., the lengths of the proofs of Y and Y>X are less than L, by the inductive
hypothesis it turns out that Y’€TG and (Y’(X’))€ETG, applying R1 infers ((X’))ETG, using R1 concludes
X’€TG. By the principle of mathematical induction, LG’s theorems are proved to be graphical theorems.
2) If X>>Y, then XOYETL, by the part 1, (X’(Y"))ETG, i.e., A >>(X’(Y"))), if X’ is assumed, by R1 follows
((Y")), applying R1 results in Y’, so X’>>Y".
Definition 6.4 Translation function, ( )”:GG—FG. For X,;YEFL and PEGA. 1) P’=P. 2) A”’=1>51. 3)
(X(Y)"=X"2Y". 4) (X)(Y))"=X"UY". 5) {X}’=—X". 6) [XY]"=X"NY". 7) (X)"=~X".
Proposition 6.5 Rules R1 and R2 are valid rules in LG semantics
Proof. R1) Peirce’s Alpha system rules are validated by CPC. Therefore, R1” is valid. R2) {X}|= {XY}.
Consider an arbitrary model M=(V 4;,v). By V—nN M(=X")=1 implies M(—(X”’NY"))=1. Therefore, R2”, is a
valid rule in LG.
Proposition 6.6 The R3. (X) ,|= {X} and {X} ;|=(X) are valid in LG’s semantics.
Proof. Induction in the number, n, of negations surrounding X.
Base step. n=1. (X)|= {X}. Let M=(V ,v) be any model. Suppose that V ,,(~X)=1, by V~ it turns out that
V 4 (X)=0, applying V— we infer V j,(—X)=1. Therefore, V ,(~X")=1 implies V ,(—X")= 1, so R3 is
satisfied for n=1.
n=2. There are 2 possibilities, {Y{X}} = {Y(X)} and (Y{X})=(Y(X)). For the first case, by the rule V-~ we
have M(—=(Y”Nn —X”))=1 implies M(—(Y”N~X"))=1, so the rule is satisfied. For the second case, let
M=(V ,v) be any model, suppose that V j,(~(Y’Nn —=X"))=1, i.e. V ,,(Y’N —=X)=0, resulting in V »,(Y”’)=0 or
V u(—=X”)=0, using the result when n=1, deduces V p(Y”)=0 or V ,,(~X)=0, which means that it is not the
case that V ,(Y’N~X")=1, and then V ,(~(Y’N~X"))=1, has been tested, V j,(~(Y”’N —X"))=1 implies
V u(~(Y’N~X"))=1, so the rule is satisfied. Therefore, R3 is satisfied for n=2.
n=3. There are 2 possibilities, {Y{Z(X)}} = {Y{Z{X}}} and (Y{Z(X)})=(Y{Z{X}}). For the first case, by rule
V——~ we have M(—(Y"’N —(Z’N~X"")))=1 implies M(—(Y"’N —(Z’N —X”)))=1, so the rule is satisfied. For
the second case, let M=(VM,v) be any model, suppose that V j,((~(Y’N —(Z’N~X")))=1,1i.e. V ,(Y’Nn —=(Z"N
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~X”))=0, resulting in V 4,(Y”)=0 o V y,(—=(Z’N~X"))=0, using the result when n=2, we deduce V ,,(Y)=0 o
V u(—=(Z”n —X))=0, which means that it is not the case that V ,,(Y”’Nn —(Z”N —X”))=1, and then V 4, (~(Y"N
—(Z2’n —X”)))=1, has been tested, V ,,(~(Y’N —(Z”’N ~X”)))=1 implies V p,(~(Y’N —(Z”N —X)))=1, so the
rule is satisfied. Therefore, R3 is satisfied for n=3.

Inductive step. Rule 3a. As an inductive hypothesis we have that, if (X) is surrounded by 2n negations, then
R3a is satisfied.

{(Y{Z27(X")}} = {Y"{Z”{X"}}} and (Y”{Z”(X")})=>(Y"{Z”{X}}), are the only non-trivial cases in which two
other negations can be added to X, and they result in valid rules, as proved in the base step when n=3.
Therefore, if X is surrounded by 2n+2 slices, i.c., by 2(n+1) slices, then R3a is satisfied.

Rule 3b. As an inductive hypothesis it is that, if (X) is surrounded by 2n+1 negations, then R3b is satisfied.
{(Y{Z2(X")}} = {Y”{Z"{X"}}} and (Y”{Z” (X")})=>(Y"{Z”{X"}}), are the only non-trivial cases in which, to
X, two other negations can be added, and they result in valid rules, as proved in the base step when n=3.
Therefore, if X is surrounded by 2n+3 cuts, i.e. by 2(n+17)+1 cuts, then R3b is satisfied.

By the principle of mathematical induction, the validity of R3 has been tested.

Proposition 6.7 For XeGG. 1) The primitive rules of G are valid rules in the semantics of LG. 2) If XETG then
X"€EVL.

Proof. 1) Direct consequence of propositions 6.5 and 6.6.

2) If X€TG then A >>X’, so there are R 4,... , R,, ERTRA, and there are X ,,... , X ,_; €GE, such that
AR ;X R, X, X, _1R,X (Proof length is n).

The proof is performed by induction over the length L of the demonstration. Base step. L=1. It means that only
one of the primitive rules was applied, then X”€VG.

Inductive step. Inductive hypothesis: The proposition is valid if L <n with n>0. Let L=n+l, so
AR ;X R, X, . X 4R X R X e, AR X;R X, . X 1R, X, and X ,R 11X, both demonstrations
with length less than n+1. Applying the inductive hypothesis is it turns out that X” ,, €VG and from X” ,, is
validly inferred X”, hence X”€VG. By the principle of mathematical induction, the truth of the proposition is
concluded.

Proposition 6.8 For X,YEGG. 1) If XETG then X"€TL.

2) If X>>Y, then X”">>Y".

Proof. 1) By Proposition 4.6 we have that, X”’€VL if and only if X”€TL, and by Proposition 6.7 we have that,
if XETG then X”€VL. Therefore, if XETG then X”€TL. 2) Direct consequence of part 1 and proposition 3.6.
Definition 6.9 Be TiI=[ ]FG— GG and T2=[ ]”:GG— FG, be the translation functions presented in
definitions 6.1 and 6.4. They are defined: the composite function TI10T2:GG = GG such that
(T1oT2)[X]=TI1[T2[X]]. The composite function, T20T1:FG — FG such that (T20T1)[X]=T2[T1[X]]. The
identity function in FG, lIdFK:FG—FG such that (IdFG)[X]=X. The identity function in G IdGG:GG—GG such
that (1dGG)[X]=X.

Definition 6.10 For PEGA, X,YEGET. The function, C , complexity of a graph, assigns each graph a non-
negative integer, as follows: 1) C[P] = C[A] = 0. 2) C[{X}] = 1+C[X].

3) CIXY] = I+max {C[X]. C[Y]}. 4) CI(X)(Y))] = 2+max {C[X]., C[Y]}. 5) CIX(Y))] = I+max {C[X],
C[Y]+1}.

Definition 6.11 Sean P€ FA; X,YE FT. The function, K, complexity of a formula, assigns each formula a non-
negative integer, as follows: 1) K[P] = K[A] = 0.

2) K[—X] = 1+K[X]. 3) K[XNY] = K[XVUY] = K[X2Y] = I+max{K[X], K[Y]}.

Proposition 6.12 The translations presented in definitions 6.1 and 6.4 are inverse functions. For GEGG and
XeFL. 1) [X’]"=X.2) [G”]"=G.

Proof. For T1=( )’ and T2=( )”. Proof part 1. Induction on the complexity, C, of graph G. Base step. C[G]=0,
then there are 2 cases. Case 1: G=P. (T10T2)[P]=T1[T2[P]]=T1[P]=P.

Case 2: G=A. (T10T2)[A]=T1[T2[A]]=T1[A]=A. Inductive step. C[G]=1. As an inductive hypothesis we have
that (T10T2)[G1]=G1, (T10T2)[G2]=G2. There are 4 cases.

Case 3: G={G1}. (T1oT2)[{G1}=T1[T2[{G1}]]= T1[-T2[G1]]={T1[T2[G1]]}={G1}.

Case 4: G=G1G2. (T10T2)[G1G2] = T1[T2[G1G2]] = T1[T2[G1] T2[G2]]

=T1[T2[G1]] T1[T2[G2]]=G1G2.

Case 5: G=(G1(G2)). (T10T2) [(G1(G2))]=T1[T2[(G1(G2))]] = TI(T2[G1] D T2[G2])
=(T1[T2[G1](T1[T2[G2]])) =(G1(G2)).

Case 6: G = ((G1)(G2)). (T10T2) [((G1)(G2))] = TI[T2[((G1)(G2)]] = T1[T2(G1)U T2(G2)]

— ((TI[T2[GI])(TI[T2[G2])) = ((G1)(G2)).

By the principle of mathematical induction it has been proved that (T10T2)=IdGG.

Proof part 2. Induction on the complexity, K, of the formula X. Base step. K[X)=0, then there are 2 cases. Case
1: X=P. (T20T1)[P] = T2[T1[P]] = T2[P] =P.

Case 2: X=A. (T20T1)[A] = T2[T1[A]] = T2[A] = A. Inductive step. K[X]= 1. As an inductive hypothesis we
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have that (T20T1)[X1]=X1, (T20T1)[X2]=X2. There are 4 cases.

Case 3. X=—X1. (T20T1) [-X1]=T2[T1[-X1]]=T2[{ T1[X1]}]=—(T20T1)[X1]=—X1.

Case 4. X = XINnX2. (T20T1)X1nX2] = T2[T1[X1nX2]] = T2[T1[X1]T1[X2]] = T2[T1[X1]]N[T1[X2]] =
X1nX2.

Case 5. X=X12X2. (T20T1)[X12X2] = T2[T1[X12X2]] = T2[(T1[X1](T1[X2]))] = T2[T1[X1]]2T2[T1[X2]]
= X12X2.

Case 6. X=X1 U X2. (T2oTDH[X1 U X2] = T2[TI[X1 U X2]] = T2[(T1[XI]N(T1[X2])] =
T2[T1[X1]JUT2[T1[X2]] = X1U X2. By the principle of mathematical induction, (T20T1)=IdFG.

Proposition 6.13 For G HEGG and X,YEFL. 1) GETG if and only if G”€TL. 2) X' €TG if and only if XETL. 3)
G>>H ifand only if G">>H". 4) X’>>Y" if and only if X>>7Y.

Proof. 1) By proposition 6.8 we have that, if GETG then G”’€TL, in addition, by proposition 6.3 we have that,
if G”€TL then (G”)’€TG, but by proposition 6.12 we know that, (G”)’=G, resulting that, if G’€TL then GETG,
and since we have the reciprocal, we conclude that, GETG if and only if G”€TL.

2) By proposition 6.3 we have that, if X€TL then X’€TG, in addition, by proposition 6.8 we have that, if
X’€TG then (X’)”’€TL, but by proposition 6.12 we know that, (X”)”=X, resulting that, if X’€TG then X€TL,
and since we have the reciprocal, we conclude that, X’€TG if and only if X€TL.

3) By proposition 6.3 we have, if G”>>H” then [G”]’>>[H"]’, by proposition 6.12 we have [G”]’=G and
[H”]=H, so if G”>>H” then G>>H, in addition by proposition 6.8 we have the reciprocal. Therefore, G>>H
if and only if G">>H".

4) by proposition 6.8 we have, if X’>>Y’ then [X’]”>>[Y’]”, by proposition 6.12 we have [X’]"=X and
[Y’T=Y, so if X’>>Y"’ then X>>Y, by proposition 6.3 we have the reciprocal. Therefore, X’>>Y" if and only
if X>>Y.

VILI.  Partial Remarks

In this section, in proposition 7.2, it is proved that the Original Gamma existential graphs are
paraconsistent. Finally, in proposition 7.3, it is proven that Gamma-4, Gamma-4.2 and Gamma-5 systems are
paraconsistent.
Definition 7.1 Let SD be a deductive system with a negation operator N and let X be a formula for SD. SD is
said to be paraconsistent when SD does not derive all SD formulas from X and NX.
Proposition 7.2 For G HKEGG. 1) G"2(—G"DH”)&VG. 2) GEG is paraconsistent. 3) LG is paraconsistent.
Proof. Consider a model M=(V ,,v), such that V ,,(G”)=1, V ,,(H”)=0 and v(—G”)=1. As v(—G”)=1, then
V y(—=G”=1, and as V , (H”)=0, then V ,, (—G” D> H”)=0, but also V , (G”)=1, consequently
V u(G”2(—=G”>H”))=0. Therefore, G’2(—G”>H”)&VG. 2) Applying propositions 4.6 and 6.13 yields
(G(({G}(H))))¢TG, which implies that this is not the case: G{G} >>H. Therefore, GEG is paraconsistent. 3)
Using proposition 6.13 it turns out that LG is paraconsistent.
Proposition 7.3 The Gamma-4, Gamma-4.2 and Gamma-5 systems presented by Zeman [14] are paraconsistent.
Proof. Gamma-4, Gamma-4.2 and Gamma-5 correspond to the modal logic systems S4, S4.2 and S5 which are
characterized by semantics of possible worlds, in which the broken cut corresponds to the possibility of the
classical negation, so the rule {X} =(X), corresponds to the modal formula @ ~X>~X, which by CPC is
equivalent to Xo~®~X, i.e., XO+X (where is the operator of necessity of such systems), and in such systems
the reciprocal is valid, so we would have X=+X, if @ ~X>~X were valid, but the formula X=+X, in fact, is
not valid in such semantics (and should not be, since, in that case, the modalities would make no difference with
the statement of classical logic, S4, S4.2 and S5 would collapse into CPC), for details see Hughes and Cresswell
[3], consequently, @ ~X>D~X is not valid, neither in Gamma-4, nor in Gamma-4.2 nor in Gamma-5. Therefore,
the 3 systems of existential graphs are paraconsistent.

VIII.  Deductive System GT

In this section, the deductive system of propositional logic GT is presented, its connections with
classical propositional calculus, and some of its theorems.
Definition 8.1 The FT set of GT formulas is constructed from a set FA of atomic formulas, from the constant A,
the unary connective weak negation {—3}, and the binary connective conditional {2} as follows. 1) PEFA
implies PEFT. 2) A €FT. 3) XEFT implies —X€FT. 4) X, YEFT implies XD€FT.
Classical negation, strong affirmation, weak affirmation, disjunction, conjunction and biconditional are defined
as: a) ~X=XD —A.b) +tX=~X.¢c) X =—~X.
d) XUY =~X2DY. e) XNY = ~(XD~Y). f) X=Y = (X2Y)N(Y>2X).
Definition 8.2 The GT system consists of the axioms (where X,Y,ZEFT):
Ax1. 1. Ax2. X2(Y2X). Ax3. [X2(Y22)]2[(X2Y)2(X2Z)]. Ax4. [(XDY) oX]oX. Ax5. -1 DZ. Ax6.
(X2-2)2-X. Ax7. [(XDY)2-A]2[(-XD2-1)D(-YD2-1)]. Ax+. If Xe {Ax1, ..., Ax7, Ax+} then —XD—1is an
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axiom. Only rule of inference is modus ponens Mp: from X and X>Z we infer Z.

Definition 8.3 For X, X 4, ..., X, €FT. X is a theorem of GT, denoted X€TT, is defined similar to definition 2.3.
Proposition 8.4 For X,Y, X 1,..., X, €FT. If {X 4, ..., Xy, X} implies Y in GT, then {X 1, ..., X .} implies XDY.
Proof. Axioms 2, 3 and 4, with the single inference rule Mp, determine the calculus for the classical
implication CIC, Rasiowa [9], in which the deduction theorem, TD, applies.

Proposition 8.5 For X, YEFT. +(X2Y)>(+X>+Y)€ETT.

Proof by Ax7 and definition.

Proposition 8.6 For XeFT. If XETT then +X€TT.

Proof. Suppose XE€TT, +X€TT will be tested, by induction over the length of the proof of X. Base step. The
length of the proof of X is 1, i.e., X is an axiom. If X is one of axioms 1 to 7 or Ax+, Ax+ gives +X.

Induction step. As an inductive hypothesis, if the length of the proof of Y is less than L, then +Y is a theorem.
Suppose that the proof of X has length L greater than 1. It follows that X is an axiom or X is a consequence of
previous steps using the inference rule Mp. In the first case, proceed as in the base step. In the second case, we
have, for some formula Z, proofs of Z>X and Z, both of which are shorter in length than L. From the inductive
hypothesis we infer +(Z>X),+Z€TT. By proposition 8.5 we have +(Z2X)D(+Z>+X)€ETT, applying the rule
Mp twice we get that +X€TT.

So, according to the principle of mathematical induction, it has been proved X€TT implies +X€TT. |
Proposition 8.7 For X, YEFT. GT theorems are: a) (X2~Y)2(Y>2~X). b) ~(X2X)DY. ¢c) XU~X.

d) Xo~~X. ¢) ~~X2X. f) (X2Y)2(~Y2~X)N (~Y>2~X) O(XDY).

Proof. Part a. Suppose X2(Y>-1), Y, X. By Mp is derived YD —A, again by Mp is inferred —A. Applying TD
3 times and using the definition of ~, concludes (X2~Y)2(Y>~X).

Part b. Suppose ~(X2X), i.e. (X2X)>-4, but XoX is a theorem of CIC, resulting in —4, using Ax5 follows Y.
Applying TD concludes ~(X2X)DY.

Part c. By the principle of identity of the CIC we have ~X>~X, by the definition of U we conclude XU~X.
Part d. Suppose X, X2-A1. By Mp we follow —A, applying TD 2 times and definition of ~ we conclude Xo~
~X.

Part e. Suppose ~~X, i.e., ~XD-4, by Ax5 we have -1 2X, by CIC we deduce ~X2X, i.e., (XD 1-)2X, using
Ax4 implies X. By TD we conclude ~~X 2X.

Part f. Direct consequence of parts a, d and e.

Proposition 8.8 Sean X, Y,ZEFT. GT theorems are: a) X2(XUY). b) X2(YUX).

¢) (XoY)2[(Z2Y)2({XuZ} oY)

Proof. Part a. Suppose X, X>-4, i.e., ~X, by Mp we get —4, according to Ax5 we derive Y. Applying TD 2
times concludes X2 (~X2Y), i.e. X2(XUY).

Part b. By part a we conclude X2O(~XDY), using proposition 8.7, it can be said that XD (~Y>2X), i.e.,
X2(YUX).

Part c. Suppose X2Y, ZDY, XUZ, i.e. ~X>Z, by CPC we infer ~X2Y, by proposition 8.7 we derive ~Y2X,
by CIC we infer ~YDY, i.e. (YD-1)DY, by Ax4 we get Y. Applying TD 3 times we get (X2Y)D[(ZDY)D
({XvZ} oY)].

Proposition 8.9 For X, YEFT. GT theorems are: a) (XNY)2X. b) (XNY)>Y.

¢) (X2Y)2[(X2Z)2(X> {YNZ})]. d) X2[YD(XNY)]. e) H(XNY)=(+XN+Y).

Proof. Part a. Suppose XNY, i.e., ~(X2~Y), so (XD~Y)>-4, by Ax5 we have -1 DX, by CIC we infer (X2
~Y)2X, using Ax4 results X. By TD we conclude (XNY)2X.

Part b. Suppose XNY, i.e., ~(XD~Y), so that (XD~Y)D —A, using proposition 8.7 we deduce (YD ~X)D-A, by
Ax5 we have -1 DY, by CIC we infer (YO ~X)DY and, using Ax4 we get Y. By TD we conclude (XNY)DY.
Part c. Suppose X2Y, XDZ, ~YU~Z. By proposition 8.7 are derived ~Y>~X, ~Z>~X, applying proposition
8.8 is inferred ~X, by TD results (~YU~Z)>~X, by proposition 8.7 we can affirm Xo~(~YU~Z), i.e. XD
~(~~Y>~Z),

80 XD~(YD~Z), and this means X2 {YNZ}. Applying TD 2 times concludes (X2Y)2[(X2Z)2(X> {YNZ})].
Part d. Suppose X, Y. Ax2 results A DX, A DY, by part ¢ derives 1 2(XNY), using Ax1 infers XNY. Applying
TD 2 times concludes X2 [YD(XNY)].

Part e. Parts a and b gives (XNY)>X and (XNY)DY, using proposition 8.6 we derive +[(XNY)DX] and
+[(XNY)>Y], by proposition 8.5 we get +(XNY)>+X and +(XNY)>+Y, according to part ¢ we conclude
+XNY)>2(+XN+Y). To prove the reciprocal, by the part d we have Xo[YD(XNY)]EFT, using proposition 8.4
results +H{X2[Y2(XNY)]}, by proposition 8.5 we derive +XD+[YD(XNY)], again by proposition 8.5 and CIC
we affirm +X2[+Y>+(XNY)]. Suppose +XN+Y, applying parts a and b infer +X and +Y, by Mp 2 times
derives +(XNY), using the deduction theorem follows (+XN+Y)>+(XNY). Finally, applying part d and the
definition of =, we conclude +(XNY)=(+XN+Y).

Proposition 8.10 T%e classical propositional calculus CPC with the language
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{2, N, U, =, ~} is included in the propositional calculus GT.

Proof. Axioms 2, 3 and 4 along with propositions 8.7, 8.8 and 8.9, with the inference rule Mp determine CPC
Rasiowa [9].

Proposition 8.11 For X,YEFT. So, GT theorems: a) ——A D A. b) XU-X. ¢) ~X2-X. d) —X=~+X.

e) +XoX.

Proof. Parta. By Ax2 we have 1 O(— —4 D 4), in addition to by AxA of has A, applying Mp we conclude that
-——AD2A

Part b. By Ax6 we have ~X> —X, by definition it means XU—X.

Part c. By definition in Ax6.

Part d. By definition we have ~ —X=+X, applying CPC we conclude —X=~+X.

Part e. By Ax6 we have ~X2 —X, applying CPC we deduce ~ —X2X, i.e., +X2X.

Proposition 8.12 For X,YEFT. So, GT theorems: a) ~+~X=QX, +~X=~QX, ~+X= —X. b) XoQX.

c) —XoQ®~X.d)~(Z, N NZ; NY)ETT implies ~(+Z ; NN+Z ;, NQY)ETT.

Proof. Part a. By proposition 8.11 we have —~X=~+~X, by definition it results @ X=~+~X. By CPC we
conclude ~QX=+~X. By definition you have ~ —X=+X, by CPC you get —X=~+X.

Part b. By proposition 8.11 we have +~X>~X, using CPC we deduce Xo~+~X, according to part a we
conclude Xo®X.

Part ¢. By definition we have —~~X2®~X, by CPC we conclude —X>®~X. Part d. Suppose ~(Z, N ...
NZ . NY)ETT, which by CPC means,

(Z1N..NZ)>~YETT. Using proposition 8.6 it turns out that +((Z ; N ... N Z ,)D~Y)€ETT, from proposition
8.5 we infer +(Z , N ... NZ ;,)D+~YETT, by proposition 8.9 we get (+Z ; N ... N+Z ;,)D+~YETT, which, by
CPC implies ~(+Z ; N ... N+Z ;, N~+~Y)€ETT, and for the part a, equivalent to ~(+Z ; N ...N+Z ;, NQY)ETT.

IX.  Semantics GT
In this section, the semantics of possible worlds for the GT system are presented, in proposition 9.6, it is proved
that the theorems of the GT system are valid formulas in the proposed semantics.
Definition 9.1 (S, Ma, <, V) is a model for GT, it means that, S is a non-empty set of possible worlds, Ma is a
possible world, called the actual world, < is a binary relation in S, V is a valuation of SXFT at {0, 1}. The
relationship, <, satisfies the following constraints. Reflexivity of <. RR: (VMES)(M<M).
Definition 9.2 In the model Mo=(S, Ma, <, V), with X,YEFT.
VM, X)=1 is abbreviated as M(X)=1, and means that in the possible world M, the formula X is true. V(M,
X)=0 is abbreviated as M(X)=0, and means that in the possible world M, the formula X is false. X is true in Mo
means that V(Ma, X)=1.
Valuation V satisfies the following rules: 1) VA. M(1)=1.
2) Vo. M(X2Y)=1 equivalent to M(X)=1 implies M(Y)=1.
3) V—. M(—X)=1 equivalent to (3PES)(M<P and P(X)=0).
Proposition 9.3 For X,YEFT. a) V~. M(~X)=1 equivalent to M(X)=0.
b) VU. M(XUY)=1 equivalent to M(X)=1 or M(Y)=1. c¢) VN. M(XNY)=1 equivalent to M(X)=M(Y)=1.
d) V=. M(X=Y)=1 equivalent to M(X)=M(Y). e) V+. M(+X)=1 equivalent to (VNES)(M<N implies N(X)=1).
HVQ. M(QX)=1 equivalent to (APES)(M<P)(P(X)=1). g) M(+X)=1 implies M(X)=1.
h) M(—X)=0 implies M(X)=1. i) M(—2)=0
Proof. Parts a, b, ¢, and d. By CPC.
Part e. If M(+X)=1 equivalent to M(~ —X)=1, by part a equivalent to M(—X)=0, by V— equivalent to (VNES)
(M<N implies N(X)=1).
Part f. If M(®X)=1, then M(~+~X)=1, i.e., M(+~X)=0, by V+, follows (IP€S)(M<P and P(X)=1).
Part g. If M(+X)=1, for the part e, we have (VNES)(M<N implies N(X)=1), as M<M then M(X)=1.
Part h. If M(—X)=0, by V— results (VPES)(M<P implies P(X)=1), but M<M, so M(X)=1.
Part i. If M(—A)=1, by V— affirms the existence of a world N, M<N and N(4)=0, which contradicts VA.
Definition 9.4 For XX 4,..., X, €FT, a formula X is said to be valid, denoted X€VT, if and only if X is true in
all models for GT, i.e., X is true in the actual world of all models for GT. It is said that {X 1, ..., X ,} validates Y
if and only if (X1 NX , N...NX ,)DYEVT.
Proposition 9.5 For X€FT. If X is an axiom of GT, then X€VT.
Proof. Ax1. By VA we have for all M€eS, V(1)=1. Hence, AxA €VT.
Ax2, Ax3, Ax4. Using the rule V> and proceeding as usual for the validity of the intuitionistic propositional
calculus in van Dalen [13], it is concluded that XEVT, i.e., Ax2, Ax3, Ax14€VT.
AxS. Suppose that —A DZ&VT, so there is a model, such that in the actual world M, M(-A ©Z)=0 by V> results
M(—A)=1, contradiction. Hence, AX5€VT.
Ax6 Suppose that (X2-1)2-X&VT, so there is a model, such that in the actual world M, M((X2-1)2-X)=0,
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by Vo results M(X>-4)=1 y M(—X)=0, applying V— follows (VPES)(M<P implies P(X)=1), as M<M follows
M(X)=1, by V2 derives M(-4)=1, contradiction. Hence, AX6€VT.

Ax7 Suppose that [(XDY)D-A]2[(-XD-1)D(-Y>-1)]€ VT, so there is a model, such that in the actual world
M, M([-(X2Y)2-1]2[(-X2-1)2(-Y2-4)])=0, by VD results M(—(X2Y)2-1)=1, M(-XD-1)=1 y M(-YD-
A)=0, by Vo we get M(-Y)=1 y M(-14)=0, applying VA we derive M(—(X2Y))=0. Since M(-Y)=1 according to
V- means (IPES)(M<P y P(Y)=0), since M(—(XDY))=0, according to V— we obtain (VPES)(M<P implies
P(X2Y)=1), by Vo we get P(X)=0, in addition, as M(-X2>-4)=1 y M(-1)=0, by V> we infer M(—X)=0, by
V— follows (VPES)(M<P implies P(X)=1), in particular P(X)=1, which is impossible. Therefore, AX7€VT.
Ax+ If Xe {Ax1, ..., Ax7} then —XD—7 is an axiom. Suppose that X€ {Ax1, ..., Ax7} and —-X>-1 €VT, so
there is a model, such that in the present world M, M(-X2>-1)=0, by V> results M(-X)=1, by V— equivalent to
(FPES)(M<P y P(X)=0), resulting in X&VT, but as X€ {Ax]1, ..., Ax8}, the opposite has already been proved
above. Hence, Ax+€VT.

Proposition 9.6 For X,YEFT. 1) XeTT then XeVT. 2) If {X1, ..., X .} implies Y then {X1I, ..., X ,} valid to Y.
Proof. Part 1. Suppose X€TT, XeVT is proved by induction over the length, L, of the proof of X. Base step L
= 1. It means that X is an axiom, which from proposition 9.5 follows that X€eVT.

Induction step. As an inductive hypothesis, we have that for every formula Y, ifé YETT and the length of the
proof of Y is less than L (where L>1) then YEVT. If XE€TT and the length of the proof of X is L, then X is an
axiom or X is a consequence of applying Mp in earlier steps of the proof. In the first case, we proceed as in the
base case. In the second case, we have for some formula Y, proofs of Y and Y>X, where the length of both
proofs is less than L, using the inductive hypothesis it is inferred that YEVT and YO XEVT, so that, in the
current world, M, of any model we have M(Y)=1 and M(Y>X)=1, by V> it turns out that M(X)=1,
consequently, XeVT. Using the principle of mathematical induction, it has been proved that, for every X€FT,
X€ETT implies XEVT.

Part 2. Suppose that {X 4, ..., X ,,} implies Y, applying CPC, we have

(X1 N...NX,)DYETT, from the part a is inferred, (X NX, N...NnX ,)DY€EVT, which means that {X 4, ...,
X n} validates Y.

X.  Semantic-Deductive Characterization GT
In this section, we present the characterization of GT with the semantics of the previous section. Completeness
is proved in proposition 10.9 (valid formulas in semantics are theorems of GT), and characterization is achieved
in proposition 10.10 (theorems of GT are the valid formulas of semantics and only they).
Definition 10.1 Extension locally consistent and extension locally complete similar to definition 4.1.
Proposition 10.2 For XeFT. a) GT is locally consistent. b) If EEEXT(GT), X&TT-E, and ExEEXT(GT) are
obtained by adding ~X as a new formula to E, then Ex is locally consistent. The proofis similar to proposition
4.2.
Proposition 10.3 [f EEEXT(GT) is locally consistent, then there exists
E’€EXT(GT) which is locally consistent and complete. The proof is similar to proposition 4.3.
Proposition 104 For Y, Z 4, ..., Z €FT. If {(+Z 4, ..., +Z, @Y} is locally consistent then{Z 1, ..., Z, Y} is
locally consistent.
Proof. Suppose {Z 4, ..., Z i, Y} is locally inconsistent in GT, so there exists a formula WEFT such that, from
{Z ., ... Z, Y}, WN~W is inferred in GT, using CPC it turns out that ~(Z ;N ..NZ, NY)ETT, by
proposition 8.12 ~(+Z 1 N ..N+Z , NQY)ETT so {+Z 4, ... , +Z, ®Y} is locally inconsistent in GT. It has
been proved that {Z 4, ... , Z, Y} locally inconsistent implies that {+Z , ... , ¥Z , @Y} locally inconsistent,
ie,{+Z 4, ...,+Z, @Y} locally consistent implies {Z 4, ..., Z ., Y} locally consistent.
Definition 10.5 Be locally consistent and complete E,FEEXT(GT). F is said to be subordinate to E if and only if
there is YEFT, such that YEE, and furthermore for every ZEFT, such that +Z€E, we have to Y,Z€F.
Proposition 10.6 For EEEXT(GT), X€FT. If E is locally consistent and complete and X€E, then there exists
FeEXT(GT) locally consistent and complete such that X€F and F is subordinate to E.
Proof. Suppose X€E. For Ex={X}U{Z: +Z€E}, since E is locally consis- tent, then for proposition 10.4,
Exis also locally consistent. By adding to Exthe axioms of GT and all their consequences, we get an extension
of GT that includes Ex , using proposition 10.3, we construct a locally consistent and lo- cally complete
extension F of GT which includes Ex. Like X€Eyx, also X€F. If +WE€EE, by definition, WEEx, so WEF.
Therefore, F is subordinate to E.  m
Proposition 10.7 For locally consistent and complete E,F,GEEXT(GT).
RR. Reflexivity. F is subordinate to F.
Proof. For X be the axiom Ax1, so XETT, and since by CPC we have X2X, it follows that XE€TT, then X€F.
Suppose that +WEEF, by proposition 8.11 it follows that WEF. Hence, F subordinate to F.
Proposition 10.8 If E’€EXT(GT) is locally consistent and complete, then there exists a model in which all
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X€ETT-E’ is true.

Proof. The model (S, ME ,, <, V) is defined as follows: For E, F, G, ..., be locally consistent and complete
extensions of E’ (E ;, the initial and the other subordinates), presented in the preceding propositions. To each
extension F, a possible world MF is associated, for S the set of such possible worlds and ME ,, the actual
world. The accessibility relation, <, is constructed as follows: MF<MG if and only if G is subordinate to F.

For each MFES and for each X€F, V(MF,X)=1 if X€F and V(IMF,X)=0 if ~X€F, where F is the locally
consistent and complete extension associated with MF. Note that V is functional because F is locally consistent
and complete. To claim that M is a model, rules 1 to 3 of definition 9.2 must be guaranteed.

1. By AxA You have 4 €TT, so A €F, i.e., V(MF,1)=1. Therefore, VA is satisfied.

2. In the case of the conditional X OY. Using CPC we have the following chain of equivalences:
VMF,X2Y)=0, i.e. ~(X2Y)€EF, by CPC we follow XN~YEF, resulting in CPC that X€F y ~Y€F, which
means that V(MF,X)=1 and V(MF,Y)=0, so V2 is satisfied.

3. In the case of rule V—. Sea MF is a world associated with F, MG is a world associated with G and Z€FK.
Suppose that V(MF,—Z)=1, so —Z€F, and by proposition 8.12 ®~Z€F, by proposition 10.6, there exists G
subordinate to F, such that ~Z€G, resulting that, (IMGES)(MF<MG y MG(Z)=0).

To prove the reciprocal, suppose (IMGES)(MF<MG y MG(Z)=0). If V(MF,—Z2)=0, then it follows that ~
—Z€F, i.e. +Z€F, and since MF<MGQG, i.e., G is subordinate to F, then Z€G, i.e., MG(Z)=1, result, by the
hypothesis, that G is locally inconsistent, which is not the case. Therefore, V(MF, —Z)=1. Since the reciprocal
has already been proved, then definition V— is satisfied.

Based on the above analysis, it is inferred that V is a valuation, and since the constraint RR is guaranteed by
proposition 10.7, it is finally concluded that M is a model.

To conclude the proof, for X a theorem of E’, so X is in E’. Therefore, using the definition of V, it turns out that
V(MEa,X)=1, i.e., X is true in the model M=(S, MEa, <, V).

Proposition 10.9 For X, X1, ..., X ,, €FT. a) If X€EVT then X€TT.

b) If {X4,..., X} validates Y then Y is a consequence of {X 4,... , X ,}.

Proof. Part a. If X¢TT, then, by proposition 10.2, the extension E’, obtained by adding ~X as a new formula,
is locally consistent. Thus, according to proposition 10.8, there is a model M such that every theorem of E’ is
true in M, and since ~X€TT-E’, then ~X is true in M, i.e., X is false in M, hence X¢VT. It has been proved
that X¢TT implies X&VT, i.e., XEVT implies XETT.

Part b. Suppose {X 1,... , X ,,} validates Y, ie., X NX,N..NX,)DYEVT, by part a, follows that,
XinX,Nn..NnX,)DYETT. If {X4,... , X} are assumed, by CPC Y is inferred, therefore Y is a
consequence of {X 4, ..., X ,}.

Proposition 10.10 For X,Y,X1,..., X,, €FT. a) XeVT if and only if X€TT.

b) {X 4, ..., X} validates Y ifandonlyif {X,, ..., X} implies Y.

Proof. Direct consequence of propositions 9.6 and 10.9.

XI.  Existential Graphs GET
In this section, we present the primitive existential graphs for the GT system. For the construction of existential
graphs, a variant of the notation proposed by Peirce in 4.378 of Peirce’s Collected Papers [8] is used.
Definition 11.1 The set, GET, of existential graphs for the GT system, is constructed from a set of atomic
graphs, GA, and the constant (A empty graph, =’ ), as follows.
1) PEGA implies PEGET. 2) A €GET. 3) XeGET implies {X} €GET. 4) X,YEGET implies (X(Y))EGET.
Definition 11.2 The graph (X(Y)) it is called a conditional graph. In (X(Y))), X is called antecedent and Y
consequent. Conditional cuts, (...(...)), are called continuous cuts. In the {Z} graph, the cut {...}, it’s called a
broken cut.
Definition 11.3 For XeEGET. Lambda is defined as the assertion sheet
A ="_". Strong graph as *X = ({X}). Total falsehood as L = { }.
Definition 11.4 RTRA. Primitive Transformation Rules
R1. Strong double cut writing. The strong double cut is a graphical theorem, i. e., ({ }), ({1}).
R2. 1) Graphs erasure. A graph can be deleted when it is in an even region. XY ,|= X . 2) Writing graphs. In
an odd region, any graph can be written. X ;|= XY ;
R3. Unrestricted iteration and de-iteration of graphs in continuous cuts-only region. A chart can be iterated or
unrotated in any region, odd or even, if the region is only surrounded by zero or more continuous cuts.)
YX) nee € YXY) pee X & XX
R4. 1) Erased in a cut. A continuous cut can be partially erased (generating a broken cut) when it is in an even
region. (X) ,| = {X} ,. 2) Writing on a cut. A broken cut can be completed (generating a continuous cut) when
it is in an odd region. {X} ;|= (X) ;
RS5. Erasure of continuous double cutting. A continuous double cut can be erased in an even region. (X ,))[=
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Xp

Continuous double cut writing. A continuous double cut can be written around a graph that is in an odd
region. X ;|=((X;))

Rules RI1, RI2 and RI3 presented in definition 5.5.

Definition 11.5 For XeGET. X is a graphical theorem of GET, denoted X€ TGET, if there is a proof of X from
the graph, using the graph A transformation rules, i.e. X is the last row of a finite sequence of lines, in which
each of the lines is , or is inferred from previous rows, using the transformation rules. Or to put it briefly,
X€ETGET if and only if A >>X. The number of lines, of the finite sequence, is referenced as the length of the
proof of X.

Y>>X, means that X is obtained from Y using a finite number of transformation rules.

Proposition 11.6 For X, YEGET. (VRERTRA)[X , Rﬂ Y/(AR’eRTRA)[Y ; ;X]. Proof by simple inspection of
the primitive rules.

Proposition 11.7 For X, ZEGET. a)X>>Z |= X, >>Z. b) X>>Z |=> Z; >>X

Proof. Suppose X>>Z it must be proved that [X , >>Z and Z ; >>X].

If X>>7Z7 then there are R ;, ... , R, ERTRA, and there are X ;, ... , X ,_; € GET, such that
XR 1 X1R ;X5 ... X 1R ,Z, and the length of the X>>Z transformation is said to be n and X>> ,Z is
denoted. The proof is performed by induction on the length of the transformation. Base step. n=1. It means that
only one of the primitive rules was applied, and since X is in an even region, then R must be of the form

Xy ; Z with RERTRA. From proposition 11.6 it is inferred that Z ; g X with R’éRTRA.

Inductive step. Inductive hypothesis (Vn>1)[W>> K = {W , >>K, K; >>W}, so X>> , X, and
X nR 41Z. Applying the inductive hypothesis and proposition 11.6 we get X , >>X , and X ,R 147, X p; >
>Xand Z;R* ;1 X ... . So, X, >>Z , y Z; >>X. By the principle of mathematical induction, the truth of
the proposition is concluded.

Proposition 11.8 TDG. Graphic deduction theorem. For X,Z€ GET. X>>Z7 |= (X(Z)). Proof similar to
proposition 5.10.

Proposition 11.9 For XeGET. a) (), *A, {( )}, ® A, 1. b) X, |=>((Xp)). ¢) (X)) & X.

Proof. Part a. By R1 we have ({ }), i.e. ({4}), which means *A. By having ({ }), by R4 we infer ((_)), again by
R4 we derive {( )}, i.e. {(1)}, which means ® A. Since we already have (()), i.e. ((4)), Using R5 we conclude
A.

Part b. Suppose X, for part a, we have (( )), applying R3 we conclude ((X)). X=((X)) has been tested.

Part ¢ results from parts b together with rule RS.

Proposition 11.10 For XEGET. a) *X ,|= X . i.e. (X p}) [2 X . b) X [2*Xy, i.e. X [=2({X}).

Proof. Part a. Suppose ({Xp}), by R4 we get ((Xp)), according to R5 we derive Xp. Therefore, ({Xp})|= Xp.
Part b. Using proposition 11.7 concludes X ; |= ({X;}).

Proposition 11.11 For XEGET. {_} ,, [=X ,, for everything XEGET

Proof. By R1 we have ({ }), using R2 we infer ({ }(X)), Suppose { }, by R3 we ensure ((X)), according to RS
we conclude X, we have proved, {_} >>X. By proposition 11.7 we conclude {_} ,, [= X ,,.

Proposition 11.12 For XEGET. XeTGET implies X , |=>*X . i.e. X, [2({X}),

Proof. If XeETGET then 1 >>X, applying proposition 11.7 we derive Ap>>Xp, and by R1 we have ({Ap}),
then we conclude ({Xp}). Therefore, Xp=>({X}), i.e., Xp = *X.

Proposition 11.13 For XeGET. a) X>> { } implies {X}. b) {X} >> { } implies X.

Proof. Part a. Suppose X>> { }, by TD results (X({ })), by R1 we have ({ }), applying R3 we deduce (X),
according to R4 we conclude {X}.

Part b. Suppose {X} >> { }, by TD results ({X}({ })), by R1 we have ({ }), applying R3 we deduce ({X}),
according to proposition 11.10 we conclude X.

XII.  Equivalence Between GT And GET

In this section, the equivalence between GT and GET is presented, initially, in proposition 12.3, it is
proved that the theorems of GT are graphical theorems of GET, in proposition 12.8, it is proved that the
graphical theorems of GET are valid in the semantics of possible worlds, in proposition 12.12, it is proved that
the theorems of GT are exactly the graphic theorems.
Definition 12.1 Translation function [ ]’ of FT in GET. Be X,YEFT and PEFA.
)P’ =P. 2) [X2Y]' =(X'(Y)). 3) [XUY]' = (X')(Y')). 4) [-X]" = (X'}. 5) [XnY]" = XY’
6) [~X]"=(X). 7)1 =A
Translation function, (_)” of GET in FT. For X,YEGET, PEGA. 1) P’=P. 2) 17=A.
3) (X(Y))"=X"2Y”. 4) (X)(Y))”=X"UY". 5) {X}’= =X". 6) (XY)’=X"NY".
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Proposition 12.2 For XeFT. If X is an axiom of GT then X’€TGET.

Proof. Using primitive rules, you have:

Ax1. A. Since 1’=A4, then for proposition 11.9, A ETGET.

Ax2. X2(Z>X). By proposition 11.9 we have ((_)) and (( )), by R3 we derive (((()))), using the rule R2
follows (X’((())), applying R3 results (X’(((X’)))), again by R2 we derive (X’((Z’(X")))), i.e. (Ax2)’€TGET.
Ax3. X2(Y22)2((X 2Y)2(X>Z)). Suppose (X’((Y’(Z%)))), (X’(Y’)) and X’. By R3 we can deduce
((Y(Z)))), ((Y?)), applying R5 we follow (Y’(Z’)), Y’, using R3 we infer ((Z2)), by RS we conclude Z’. By
TDG (proposition 11.8) 2 times, it has been proved that (Ax3)’€TGET.

Ax4. [(X2Y)> X]2X. Suppose (X’(Y*))(X’)), by R2 we get (X’)(X")), as R3 results ((X’)), applying R2
derives X’. Using TDG it is concluded that (Ax4)’€TGET.

AxS5. -1 DZ. By proposition 11.11 we have { } >>Z, applying TDG we conclude that (Ax5)’€TGET.

Ax6. (X2-1)2>—X. Suppose (X’({_})), whence X’>> { }, by proposition 11.13 is derived {X’}. Using TDG it
is concluded that (Ax6)’€TGET.

AXT. [{(X2Y)2-A]2[(-X2-2)2(-Y2-2)]. Suppose ({(X°(Y NI{_}),

X} D). ie. ¥(X(Y?)), *X°, by propositions 11.7 and 11.10 follows *(*X’(Y’)), using R3 we deduce
*((Y?)), applying RS we affirm *Y’. Using TDG it is concluded that (Ax7)’€TGET.

Ax+. If Xe€ {Ax1, , Ax7} then —-XD—A is an axiom. Consequence of proposition 11.12: X€TGET implies
X, 2*X,.

Proposition 12.3 For XeFT. a) If XETT then X’ €TGET. b) If X))Y then X' >>Y".

Proof. Part a. Induction on the length of the X demonstration in GT.

Base step. If the length of the proofis 1, then X is an axiom, by proposition 12.2 X’ €TGET.

Induction step. The inductive hypothesis is: if YETT and the length of the proof of Y is less than L then
Y’€TGET. Suppose X€ETT and that the length of the proof of X is L, so X is an axiom or obtained from
previous steps using Mp. In the first case, proceed as in the base step. In the second case, Y and YOZ are taken
in previous steps of the proof of X, i.e., the lengths of the proofs of Y and Y X are less than L, by the inductive
hypothesis it turns out that Y’€TGET and (Y’(X’))ETGET, applying R3 infers ((X’))ETGET, using RS we
conclude X’€TGET. By the principle of mathematical induction, it is proved that the theorems of GT are
graphic theorems.

Part b. If X implies Y, then XOY€ETT, by the part a, (X’(Y*))ETGET, i.e., A >>(X’(Y")), if X’ is assumed, by
R3 follows ((Y?)), applying RS results in Y’, so X’>>Y’.

Proposition 12.4 For X,Y,Z€GT. If X=Y then Y is validly inferred from X, in the case of the most elementary
versions of the rules. Generalization to arbitrary odd or even regions will be presented later.

Proof. R1.({ }). If ~ —Aitis invalid then there is a model with the actual world M such that, M(~ —4)=0, by
V~ follows M(—A)=1, by V— it follows that (3PES)(M<P y P(41)=0). Which contradicts VA. Therefore, R1” is
valid.

R2. XZ|= X. Consider an arbitrary model with the actual world M. Suppose that M(X”NY”)=1, by VN we
derive M(X”)=1. Therefore, R2” is a valid rule in GT.

R3. Y(X)©Y(XY). Consider an arbitrary model with the actual world M. Suppose that M(Y”’N~X")=1, by VN
follow M(Y”)=1, M(~X”)=1, according to V~ derive M(X”’)=0, using VN we affirm M(X’NY”’)=0, by VN we
infer M(~(X”’NY”))=1, Applying V~ we get M(Y”’N ~(X”’NY”’))=1. It has been proved that M(Y”’N~X")=1
implies M(Y”’N~(X”NY”))=1. To prove the reciprocal, suppose that (Y’N~(X’NY”))=1, by Vn follow
M(Y”’)=1 and M(~(X”NY"))=1, resulting M(X’NY"")=0, i.e. M(Y”")=0 or M(X”)=0, but M(Y”’)=1, so M(X")=0,
i.e. M(~X”)=1, and by VN we deduce M(Y”N~X")=1. It has been proved that M(Y”N~(X”NY”))=1 implies
M(Y’N~X")=1. Therefore, R3” is a valid rule in GT.

R4. (X)|= {X}. Consider an arbitrary model with the actual world M. Suppose that M(~X")=1, i.e. M(X")=0,
and since M<M, we can affirm (IN)(M>N) N(X”)=0, by V— we derive M(—X”)=1. It has been proved that
M(~X")=1 implies M(—X")=1. Therefore, R4” is a valid rule in GT.

RS. ((X))|= X. Suppose that M(~~X")=1 is equivalent to M(~X")=0, again by the same rule we conclude
M(X”)=1. It has been proved that M(~~X") =1 implies M(X”)=1. Therefore, R5” is a valid rule in GT.
Proposition 12.5 For X,Y,Z, WEFT. If XOYEVT are valid in GT:

a) (XNZ)>(YNZ). b) —(YNZ)D —(XNZ). ¢) —(WnN —=(XNZ))> —(Wn —(YNZ)).

Proof. Suppose XOY€EVT, so you have the initial result, for every model, (S, Ma, <, V), and for every ME€S,
M(X2DY)=I. Part a. Is CPC result.

Part b. Be M be the actual world of any model. Suppose that M(—(YNZ))=1, then by V—, there is PES, M<P
and P(YNZ)=0. Suppose M(—(XNZ))=0, times V— it follows that, for every N€S, M<N implies N(XNZ)=1,
and as M<P then P(XNZ)=1, times N we have P(X)=1 and P(Z)=1, as P(YNZ)=0, by VN, P(Y)=0 is derived,
but as P(X)=1, and by the initial result, P(X2Y)=1, then by V>, we get P(Y)=1, which is not the case, so
M(—=(XNnZ))=1. It has been proven that, M(—(YNZ))=1 implies M(—(XNZ))=1, which by VD means that
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M(—=(YNZ)> —(XNZ))=1. Therefore, —(YNZ)> —(XNZ)EVT.

Part c. Be M be the actual world of any model. Suppose that M(—(WN —(XNZ)))=1, then by V—, there is P€S,
M<P and P(WN —(XNZ))=0.

Assumption 2, M(—(WN —(YNZ)))=0, times V— it follows that, for every NE€S, M<N implies N(WnN
—(YNZ))=1, and as M<P then P(WN —(YNZ))=1, by VN we have P(W)=1 and P(—(YNZ))=1, by V—it
follows that, there is Q€S, P<Q and Q(YNZ)=0, such as P(W)=1 and P(WnN —(XnNZ))=0, follows
P(—(XNZ))=0, by V— it follows that, for each N€S, P<N implies N(XNZ)=1, as P<Q, in particular,
Q(XNnZ)=1, follows Vn followed by Q(X)=1 and Q(Z)=1, for the initial result, we have Q(X2Y)=1, follows
V2 Q(Y)=1, and having Q(Z)=1, is derived Q(YNZ)=1, which is not the case, so M(—(WN —(YNZ)))=1. It has
been proven that, M(—(WnN —(XNnZ)))=1 implies M(—(WnN —(YNZ)))=1, which by VO means that M(—(Wn
—(XNZ))> —=(Wn —(YNZ)))=1. Therefore, —(WN —(XNZ))> —(WN —(YNZ))EVT.

Proposition 12.6 For X,Y,Z, WeFT. If XoY€ETT are GT theorems:

a) (XNZ)>(YNZ).b) —=(YNZ)D —(XNZ). ¢) =(WN —=(XNZ))D> —(WnN —(YNZ)).

Proof. A direct consequence of propositions 10.10 and 12.5.

Proposition 12.7 For XY, Z, W,VEFT. If X))Y then, a) X ,))Y. b) Y ;)X.

Proof. Induction in the number, 7, of negations surrounding X.

Base step. n=0. XNZ))YNZ, is satisfied by proposition 11.7.

n=1. There are 2 possibilities, —{XNZ} and ~ {XNZ}. For proposition 12.6, we have -{YNZ} >—{XnZ}, for
CPC we have ~ {YNZ} D>~ {XNZ}, so the proposition is satisfied when n=1.

n=2. There are 4 possibilities, -{{WN—{XNZ}}, -{Wn~ {XNZ}}, ~ {Wn—{XNZ}} y ~ {Wn~ {XNZ}}. By
proposition 12.6, we have that, -{Wn—-{XNnZ}} >-{Wn-{YNZ}} y -{Wn~ {XnZ}} >—{Wn~ {YNZ}}, the
other 2 cases ~ {WN—{XNnZ}} o~ {Wn—{YNZ}} y ~ {Wn~ {XNZ}} o~ {Wn~ {YNZ}} are taken for CPC, so
the proposition is satisfied when n=2.

Inductive step. Part a. As an inductive hypothesis we have that, if X is surrounded by 2n negations, then X>
>Y. By proposition 12.6 we have that, {WN—-{XNnZ}} >—-{Wn-{YNZ}} y {Wn~ {XNZ}} >—{Wn~ {YNZ}},
and by CPC we have ~ {WNn—{XNZ}} o~ {Wn—{YNZ}} y ~ {Wn~ {XNZ}} > ~ {Wn~ {YNZ}}, in the
region surrounded by 2n negations, and these are the only cases for which two other negations can be added to
X. Therefore, if X is surrounded by 2n+2 slices, i.e. by 2(n+1) slices, then X>>Y.

Part b. As an inductive hypothesis we have that, if X is surrounded by 2n+/ negations, then Y>>X. By
proposition 12.6 we have that, {Wn-{XnZ}} o{Wn-{YNZ}} y {Wn~ {XNZ}} >-{Wn~ {YNZ}}, and by
CPC we have ~ {WN—{XNZ}} o~ {Wn-{YNZ}} y ~{WnN ~ {XNZ}} o~ {Wn~ {YNZ}}, in the region
surrounded by 2n+1 negations, and these are the only cases for which two other negations can be added to X.
Therefore, if X is surrounded by 2rn+1+2 negations, i.e. by 2(n+1)+1 negations, then Y>>X. By the principle
of mathematical induction, the proposition has been proved.

Proposition 12.8 For X,Y,Z€EGET. a) Primitive GET rules are valid rules in GT semantics. b) If XEGET then
X’eVG.

Proof. Part a. Direct consequence of propositions 12.4 and 12.7.

Part b. If XETT then A >>X, then there are R1, ..., RnERTRA, and there are X 4, ..., X,,_; EGET, such that
AR 1 X 1R ;X 5... X ;1R ,X. The proof is performed by induction over the length L of the demonstration. Base
step. L=1. It means that only one of the primitive rules was applied, then X”€VG.

Inductive step. Inductive hypothesis: The proposition is valid if L <n+l with n>0. Be L=ntl, so
AR ;X R, X, X R X R i1 X, e AR X R, X, X 1R . X, and X ,R 41X, both demonstrations
with a length shorter than n+1. Applying the inductive hypothesis, it turns out that X ,,”€VG and from X ,,”
is validly inferred X”, hence X”€VG. By the principle of mathematical induction, the truth of the proposition is
concluded.

Proposition 12.9 For X, YEGET. a) If XETGET then X "€TT. b) If X>>Y then X” implies Y”.

Proof. Part a. By proposition 10.10 we have that, X”€VT if and only if X”€TT, and by proposition 12.8 we
have that, if XETGET then X”€VG. Therefore, if XETGET then X”€TT.

Part b. Consequence of part a and proposition 10.10.

Definition 12.10 Be TI=/ |":FG->GG and T2=[ ]”:GG—-FG, be the translation functions presented in
definition 12.1. They are defined: the composite function T1oT2:GG—GG such that (T10T2)[X]=TI1[T2[X]],
the composite function, T20T1:FG— FG such that (T20T1)[X]=T2[T1[X]], the identity function in FG,
Id p:FG—FG such that (Id r¢)[X]=X, the identity function in G 1d ;;:GG—GG such that (Id ¢¢)[X]=X.
Proposition 12.11 a) T10T2 = 1d ¢¢. b) T20T1= 1d pr. c) T1 is the inverse function of T2. d) T2 is the inverse
function of T1. Proof similar to proposition 6.12.

Proposition 12.12 For G,HEGET, and X, YEFT. a) GETGET if and only if G”€TT. b) X' €TT if and only if
X€TGET. ¢) G>>H if and only if G”))H”. d) X’>>Y" if and only if X))Y.

Proof. Part a. By proposition 12.9 we have that, if GETGET then G”€TT, furthermore, by proposition 12.3 we
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have that, if G”’€TT then (G”)’€TGET, but by proposition 12.11 we know that, (G”)’=G, resulting that, if
G”€TT then GETGET, and since we have the reciprocal, we conclude that, GETGET if and only if G’€TT.

Part b. By proposition 12.3 we have that, if X€TT then X’€TGET, furthermore, by proposition 12.9 we have
that, if X’€TGET then (X’)”’€TT, by proposition 12.11 (X’)’=X, resulting that, if X’€TGET then X€TT, and
since we have the reciprocal, we conclude that, X’€TGET if and only if X€TT.

Part c. By proposition 12.3 we have, if G”))H” then [G”]’>>[H”]’, but [G”’]’=G and [H”]’=H, so if G”))H”
then G>>H, in addition by proposition 12.9 we have the reciprocal. Therefore, G>>H if and only if G”))H”.

Part d. By proposition 12.9 we have, if X’))Y’ then [X’]”>>[Y"]’, by proposition 12.11 we have [X’]”’=X and
[Y’T=Y, so if X*))Y’ then X>>Y, by proposition 12.3 we have the reciprocal. Therefore, X>>Y if and only if
XNy’

XIII.  Final Remark GT And GET
Remark 13.1 @) GET is paraconsistent. b) GT is paraconsistent.

Proof similar to proposition 7.2.
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