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Abstract:  
The paraconsistent propositional logic GT is presented, along with its semantic characterization. It is shown 

that GT’s set of theorems corresponds to the set of valid existential graphs, GET, which turns out to be an 

extension of Peirce’s Gamma system, without becoming Zeman’s gamma-4 system. This result is amplified by 

constructing the paraconsistent system of existential graphs GET4, and its semantic-deductive characterization. 

The paraconsistent propositional logic LG is presented, along with its semantic characterization. It is shown 

that the set of theorems of LG corresponds to the set of valid existential graphs of Charles Sanders Peirce’s 

Gamma system (1903). All evidence is presented in a complete, rigorous, and detailed manner. Finally, 

Zeman’s Gamma-4, Gamma-4.2, and Gamma-5 existential graph systems are proven to be paraconsistent. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 08-11-2025                                                                           Date of Acceptance: 18-11-2025 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 
Existential graphs, alpha, beta, and gamma, were created by Charles Sanders Peirce in the late 19th 

century, see Roberts [10] and Peirce [8]. Alpha graphs correspond to classical propositional calculus, beta 

graphs correspond to classical logic of first-order relations. Gamma charts were introduced by Peirce and later 

extended by Jay Zeman, constructing existential graphs for modal logics S4, S4.2 and S5 in Zeman [14]. On the 

other hand, Brade and Trymble [2] have proposed categorical models for alpha existential graphs. Recently, 

existential graphs were presented for intuitionistic propositional calculus in Oostra [4, 7], for intuitionistic 

relationship calculus in Oostra [5], and for modal logics S4, S4.2, and S5, intuitionist versions, in Oostra [6]. 

Finally, Sierra [11] presents the Gamma-LD system of existential graphs, and Sierra [12] presents the first 

system of paraconsistent existential graphs. 

The paraconsistent propositional logic GT is presented, along with its semantic characterization. It is 

shown that GT’s set of theorems corresponds to the set of valid existential graphs, GET, which turns out to be 

an extension of Peirce’s Gamma system, without becoming Zeman’s gamma-4 system. This result is amplified 

by constructing the paraconsistent system of existential graphs GET4, and its semantic-deductive 

characterization. 

The paraconsistent propositional logic LG is presented, along with its semantic characterization. It is 

shown that the set of theorems of LG corresponds to the set of valid existential graphs of Charles Sanders 

Peirce’s Gamma system. All evidence is presented in a complete, rigorous, and detailed manner. Finally, 

Zeman’s Gamma-4, Gamma-4.2, and Gamma-5 existential graph systems are proven to be paraconsistent. 

These results were presented at SALOME1: 1st South American LOgic MEeting, in Cusco, Peru, January 12-

15, 2024. 

The deductive system for double paracomplete (LD) propositional logic and gamma-LD existential 

graphs are presented in Sierra [11]. LD has 2 negations, the classical (∼) and a paracomplete (¬). Gamma-LD 

has 2 cuts, continuous and continuous-thick. The theorems of LD correspond exactly to the valid existential 

graphs of gamma-LD. LD can be seen as an extension of the modal propositional logic S4, by extending the 

language with a set of strong atomic formulas. LD is characterized by a semantics of possible worlds, where the 

relation of accessibility is reflexive and transitive. 

When the language of LD is restricted to the language of classical propositional logic (LC), the 

constraint associated with gamma-LD coincides with the valid existential graphs of Charles Sanders Peirce’s 

alpha  system [8] where Peirce’s continuous cut corresponds to the continuous cut of Gamma-LD. When the 

language of LD is restricted to the language of intuitionistic propositional logic (LI) van Dalen [13], the 

constraint associated with gamma-LD coincides with the valid existential graphs of the intuitionistic alpha 

system (alpha-I) presented by Oostra [4, 7], and when LD is restricted to LI, the paracomplete negation turns 

out to be the intuitionistic negation, where Peirce’s continuous cut corresponds to the continuous-thick cut of 

Gamma-LD. 
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Definition 1.1  Properly combining the negations of LD yields a paraconsistent negation, and redefining LD 

and Gamma-LD in terms of the classical and paraconsistent negations yields the double logic paraconsistent 

LD’. The theorems of LD’ correspond to the valid existential graphs of the existential graph system Gamma-

LD’, this system has 2 cuts: the continuous and the broken {X}=([(X)]). 

When the strong atomic formulas are removed from the LD’ language, the resulting theorems 

correspond to the valid existential graphs of the GET4 existential graph system. 

Proposition 1.2 GET4 existential graph system coincide with the gamma-4 system presented by Zeman[14]. 

Proof.  In [11] LD is deductively characterized by the propositional logic S4 (adding alternate atomic 

formulas), and characterized by a semantics of possible worlds, whose accessibility relation is reflexive and 

transitive. By translating into the LD’ existential graph system (and also eliminating the alternate atomic 

graphs), the deductive system (GT4) results, which is equivalent to S4 (only that the language remains in terms 

of the paraconsistent negation), but the semantics of possible worlds do not change, it is the same as S4, so the 

LD’ graph system is restricted, is the graphics system associated with S4, i.e. Gamma-4. 

When LD’ language is restricted to LC language, the constraint associated with gamma-4 coincides 

with valid existential alpha graphs; where the classical negation corresponds to the continuous cut. Considering 

all the possible combinations of 3 cuts in Gamma-LD and Gamma-LD’, The diagrams in Figure 1 are obtained. 

 

 
Figure  1: Combining 3 cuts in LD and LD’ 

 

This diagram with the rules of Gamma-LD’, corresponds to the semantics of possible worlds Reflexive 

and transitive (GET4 graphs), omitting the transitivity resulting in the GET graphs (sections 8 to 13). If, in 

addition, (sections 2 to 7), the axioms are properly restricted, so that there is no semantics of possible worlds, 

the deductive system (LG) associated with the Gamma existential graphs proposed by Peirce in CP 4.516 [8] is 

constructed. 

 

II. Deductive System LG 
In this section, the deductive system of propositional logic, LG (Gamma Logic), is presented, and its 

connections with classical propositional calculus. 

Definition 2.1 The set of formulas, FL, of the deductive system, LG, is constructed from a set FA of atomic 

formulas, from the constant ⊥, the unary connective weak negation, {−}, and the binary connective conditional, 

{⊃}, as follows. 1) P∈FA implies P∈FL. 2) ⊥∈FL. 3) X∈FL implies -X∈FL. 4) X,Y∈FL implies X⊃Y,X∩Y∈FL. 

Classical negation, strong affirmation, weak affirmation, disjunction, lambda and biconditional are defined as: 

1) ∼X = X⊃⊥. 2) +X = ∼–X. 3) ⊗X = –∼X. 4) X∪Y = ∼X⊃Y. 5) 𝜆 = ∼⊥. 6) X≡Y = (X⊃Y)∩(Y⊃X). 

Definition 2.2 The LG deductive system consists of the axioms 

(where X,Y,Z∈FL): Ax1) ⊥⊃X. Ax2) X⊃(Y⊃X). Ax3)[X⊃(Y⊃Z)]⊃[(X⊃Y)⊃(X⊃Z)]. Ax4) [(X⊃Y)⊃X]⊃X. 

Ax5) (X⊃⊥)⊃ −X. Ax6) −X⊃ −(X∩Y). Ax7) (X∩Y)⊃X. Ax8) (X∩Y)⊃Y. Ax9) (X⊃Y)⊃[(X⊃Z)⊃(X⊃
{Y∩Z})]. Ax10) −(Y∩ −X)⊃ −(Y∩(X⊃⊥)). Ax11) −(Y∩ −(Z∩(X⊃⊥)))⊃ −(Y∩ −(Z∩ −X)). The only rule 

of inference is the modus ponens Mp: Z is inferred from X and X⊃Z. 

Definition 2.3 Let X, X 1, , X 𝑛 ∈FL. X is a theorem of LG, denoted X∈TL, if there is a proof of X from the 

axioms using the rule Mp, i.e., X is the last row of a finite sequence of lines, in which, each of the lines is an 

axiom, or is inferred from two preceding rows, using the inference rule Mp. The number of lines in the sequence 

is referenced as the length of the X proof. Y is a theorem (or consequence) of {X 1, … , X 𝑛}, denoted 

{X 1, … , X 𝑛} >>Y, if there is a proof of Y, from the axioms and assumptions {X 1,… , X 𝑛}. 
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Proposition 2.4 Let them be X,Y,X 1,… , X 𝑛 ∈FL. If {X 1,… , X 𝑛, X} >>Y then LG, then 

{X 1,… , X 𝑛} >>X⊃Y. 

Proof.  Axioms 2, 3 and 4, with the single inference rule Mp, determine the calculus for the classical 

implication CIC Rasiowa [9], in which the deduction theorem applies. 

Proposition 2.5 For X,Y∈FL. The following formulas are LG theorems: 

1) (X⊃∼Y)⊃(Y⊃∼X). 2) ∼(X⊃X)⊃Y. 3) X∪∼X. 4) X⊃∼∼X. 5) ∼∼X⊃X. 6) (X⊃Y)⊃(∼Y⊃∼X). 

7) (∼Y⊃∼X)⊃(X⊃Y). 

Proof.  1) Suppose X⊃(Y⊃⊥), Y, X. By Mp is derived Y⊃⊥, again by Mp is inferred ⊥. Applying proposition 

2.4, 3 times and using the definition of ∼, we conclude (X⊃∼Y)⊃(Y⊃∼X). 2) Suppose ∼(X⊃X), i.e. (X⊃X)⊃
⊥, but X⊃X is a CIC theorem, resulting in ⊥, using Ax1 follows Y. Applying proposition 2.4 concludes 

∼(X⊃X)⊃Y. 3) By the principle of identity of the CIC we have ∼X ⊃∼X, by the definition we conclude X∪
∼X. 4) Suppose X, X⊃⊥. By Mp it follows ⊥, applying proposition 2.4, 2 times and definition concludes X⊃∼
∼X. 5) Suppose ∼∼X, i.e., ∼X⊃⊥, by Ax1 we have ⊥⊃X, as (∼X⊃⊥)⊃[(⊥⊃X)⊃(∼X⊃X)] is a theorem of the 

CIC deduces ∼X⊃X, i.e. (X⊃⊥)⊃X, using Ax4 implies X. Proposition 2.4 concludes ∼∼X⊃X. 6) and 7). 

Direct consequences for 1), 4) and 5). 

Proposition 2.6 Let them be X,Y,Z∈FL. The following formulas are theorems of L: 

1) X⊃(X∪Y). 2) X⊃(Y∪X). 3) (X⊃Y)⊃[(Z⊃Y)⊃({X∪Z} ⊃Y)]. 

Proof.  1) Suppose X, ∼X, i.e., X⊃⊥, by Mp we obtain ⊥, according to Ax1 we derive Y. Applying proposition 

2.4, 2 times we conclude X⊃(∼X⊃Y), i.e., X⊃(X∪Y). 2) By first part we conclude X⊃(∼X⊃Y), using 

proposition 2.5, it can be said that X⊃(∼Y⊃X), i.e., X⊃(Y∪X). 3) Suppose X⊃Y, Z⊃Y, X∪Z, i.e., ∼X⊃Z, by 

CIC we infer ∼X⊃Y, by proposition 2.5 we derive ∼Y⊃X, by CIC we infer ∼Y⊃Y, i.e. (Y⊃–𝜆)⊃Y, by Ax4 

we get Y. Applying proposition 2.4, 3 times we get (X⊃Y)⊃[(Z⊃Y)⊃({X∪Z} ⊃Y)]. 

Proposition 2.7 For X,Y∈FL. X⊃[Y⊃(X∩Y)]∈TL. 

Proof.  Suppose X, Y. Ax2 results in Ax1⊃X, Ax1⊃Y, Ax8 results in Ax1⊃(X∩Y), Mp results in X∩Y. 

Applying proposition 2.4, 2 times concludes X⊃[Y⊃(X∩Y)]. 

Proposition 2.8 The classical propositional calculus CPC with the language {⊃, ∩, ∪, ≡, ∼} is included in the 

propositional calculus LG. 

Proof.  Axioms 2, 3, 4, 7, 8 and 9 along with propositions 2.5, 2.6, 2.7 and the inference rule Mp determine 

CPC Rasiowa [9]. 

Proposition 2.9 Sean X,Y∈FL. The following formulas are theorems of L: 

1) – –𝜆 ⊃ 𝜆. 2) X∪–X. 3) ∼X⊃–X. 4) −X≡∼+X. 5) +X⊃X. 

Proof.  1) By Ax2 we have 𝜆 ⊃(– –𝜆 ⊃ 𝜆), in addition to Ax1 of has ⊥⊃⊥, i.e., ∼⊥, which means 𝜆, applying 

Mp we conclude that – –𝜆 ⊃ 𝜆. 2) By definition in Ax5, result X∪–X. 3) Ax5. 4) By definition we have ∼
−X≡+X, applying proposition 2.5 we conclude −X≡∼+X. 5) By Ax5 we have ∼X⊃ −X, applying CPC we 

deduce ∼ −X⊃X, i.e., +X⊃X. 

Proposition 2.10 Sean X,Y∈FL. The following formulas are theorems of L: 

1) ∼+∼X≡⊗X. 2) +∼X≡∼⊗X. 3) ∼+X≡ −X. 4) X⊃⊗X. 5) −X⊃⊗∼X. 

Proof.  1) By proposition 2.9 we have −∼X≡∼+∼X, by definition it results ⊗X≡∼+∼X. 2) By CPC we 

conclude ∼⊗X≡+∼X. 3) By definition you have ∼ −X≡+X, by CPC you get −X≡∼+X. 4) By proposition 2.9 

we have +∼X⊃∼X, using CPC we deduce X⊃∼+∼X, by part 1 we conclude X⊃⊗X. 5) By definition we have 

−∼X⊃⊗∼∼X, by CPC we conclude −X⊃⊗∼X. 

 

III. Semantics LG 
In this section, the semantics for the LG system are presented, in proposition 3.6 it is proved that the 

theorems of the LG system are valid formulas in the proposed semantics. This semantics follows the ideas 

presented by Batens & De Clercq [1]. 

Definition 3.1 M=(V 𝑀, v) is a model for LG, it means that, V 𝑀 is a function of FL in {0,1}, v is a function of 

−FL in {0, 1}, where −FL = {−X : X∈FL}. 

Definition 3.2 In the model M=(V 𝑀, v), with X,Y∈FL. 

V 𝑀(X)=1 is abbreviated as M(X)=1, and means that in the M model, the formula X is true. V 𝑀(X)=0 is 

abbreviated as M(X)=0, and means that in the M model, the formula X is false. 

The V 𝑀 function satisfies the following rules: 1) V⊥. M(⊥)=0. 2) V⊃. M(X⊃Y)=1 means M(X)=1 implies 

M(Y)=1. 3) V−. M(−X)=1 means M(X)=0 or v(−X)=1. 

4) V− ∩. M(−X)=1 implies M(−(X∩Y))=1. 5) V∩. M(X∩Y)=1 means M(X)=M(Y)=1. 

6) V–∼. M(−(Y∩ −X))=1 implies M(−(Y∩∼X))=1. 

7) V−−∼. M(−(Y∩ −(Z∩∼X)))=1 implies M(−(Y∩ −(Z∩ −X)))=1. 

Proposition 3.3 For X,Y∈FL. 1) V∼. M(∼X)=1 means M(X)=0. 

2) V∪. M(X∪Y)=1 means M(X)=1 o M(Y)=1. 3) V≡. M(X≡Y)=1 means M(X)=M(Y). 4) V+. M(+X)=1 
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means M(–X)=0. 5) V⊗. M(⊗X)=1 means M(–∼X)=1. 

6) M(+X)=1 implies M(X)=1. 7) M(−X)=0 implies M(X)=1. 8) V𝜆. M(𝜆)=1 

Proof.  1), 2) y 3), resulting from CPC semantics. 4) M(+X)=1, means M( ∼ −X)=1), for part a means 

M(−X)=0). 5) M(⊗X)=1 by definition means M(−∼X)=1. 6) If M(+X)=1, for the part 4), we have M(–X)=0, 

applying V− we infer M(X)=1. 7) Direct consequence of V−. 8) If M(𝜆)=0, by V∼ we say M(∼ 𝜆)=1, this 

means M(⊥)=1, which is not the case.             ◼ 

Definition 3.4 For X,X 1,… , X 𝑛 ∈FL. A formula X is said to be valid, denoted X∈VL, if and only if X is true in 

all models for LG. It is said that {X 1,… , X 𝑛} validates Y if and only if (X 1 ∩X 2 ∩ … ∩X 𝑛)⊃Y∈VL. 

Proposition 3.5 Let X∈FL. If X is an axiom of LG, then X∈VL. 

Proof.  Ax1) ⊥⊃X. Suppose ⊥⊃X∉VL, so there exists a model M, such that M(⊥⊃X)=0, by V⊃ we have 

M(⊥)=1, which contradicts V⊥. Hence, Ax1∈VL. 

Ax2, Ax3, Ax4) If X is one of the axioms Ax2, Ax3, Ax4, using the rule V⊃ and proceeding as usual for the 

validity of CPC in van Dalen [13], it is concluded that X∈VL, i.e., Ax2, Ax3, Ax4∈VL. 

Ax5) (X⊃⊥)⊃ −X. Suppose that (X⊃⊥)⊃ −X∉VL, so there is a model, M such that M((X⊃⊥)⊃ −X)=0, by 

V⊃ results M(X⊃⊥)=1 and M(−X)=0, according to V–, M(X)=1 and v(−X)=0, are derived, applying V⊃ it 

follows that M(⊥)=1, which contradicts V⊥. Hence, Ax5∈VL. 

Ax6) −X⊃ −(X∩Y). Suppose that −X⊃ −(X∩Y)∉VL, so there is a model M, such that M((−X⊃ −(X∩Y))=0, 

by V⊃ results M(−X)=1 and M(−(X∩Y))=0, according to V–∩ it is derived, M(−X)=0, which is not the case. 

Hence, Ax6∈VL. 

Ax7) (X∩Y)⊃X and Ax8) (X∩Y)⊃X. From V∩ it follows that M(X∩Y)=1 implies M(X)=M(Y)=1. Hence, 

Ax7∈VL and Ax8∈VL. 

Ax9) (X ⊃ Y) ⊃ [(X ⊃ Z) ⊃ (X ⊃ { Y ∩ Z } )]. Suppose that Ax9 ∉ VL, so there is a model M, such that 

M[(X⊃Y)⊃(X⊃Z)⊃(X⊃ {Y∩Z})])=0, by V⊃ results M(X⊃Y)=1, M(X⊃Z)=1, M(X)=1, M(Y∩Z)=0, applying 

V⊃ we derive M(Y)=1, M(Z)=1, which by V∩ means M(Y∩Z)=1, which is not the case. Hence, Ax9∈VL. 

Ax10) −(Y∩ −X)⊃ −(Y∩(X⊃⊥)). It is satisfied by the rule V–∼: M(−(Y∩ −X))=1 implies M(−(Y∩∼X))=1. 

Hence, Ax10∈VL. 

Ax11) −(Y∩ −(Z∩(X⊃⊥)))⊃ −(Y∩ −(Z∩ −X)). It is satisfied by rule V−−∼: M(−(Y∩ −(Z∩(X⊃⊥))))=1 

implies M(−(Y∩ −(Z∩ −X)))=1. Hence, Ax11∈VL. 

Proposition 3.6 Sean X,Y∈FL. 1) If X∈TL then X∈VL. 

2) If {X 1,… , X 𝑛} >>Y then {X 1, ..., X 𝑛} validates Y. 

Proof.  1) Suppose X∈TL. X∈VL is proved by induction over the length, L, of the proof of X. Base step L=1. It 

means that X is an axiom, which from proposition 3.5 it follows that X∈VL. 

Induction step. As an inductive hypothesis, we have that for every formula Y, if Y∈TL and the length 

of the proof of Y is less than L (where L>1) then Y∈VL. If X∈TL and the length of the proof of X is L, then X 

is an axiom or X is a consequence of applying Mp in earlier steps of the proof. In the first case, we proceed as in 

the base step. In the second case, we have for some formula Y, proofs of Y and Y⊃X, where the length of both 

proofs is less than L, using the inductive hypothesis it is inferred that Y∈VL and Y⊃X∈VL, so that, in any 

model M, we have M(Y)=1 and M(Y⊃X)=1, by V⊃ it turns out that M(X)=1, consequently, X∈VL. Using the 

principle of mathematical induction, it has been proven that, for every X∈FL, X∈TL implies X∈VL. 

2) Suppose that {X 1,…, X 𝑛} >>Y, applying CPC, we have (X 1 ∩X 2 ∩ … ∩X 𝑛)⊃Y∈TL, from the 

part 1 is inferred, (X 1 ∩X 2 ∩ … ∩X 𝑛)⊃Y∈VL, which by definition means that {X 1,… , X 𝑛} validates Y. 

 

IV. Semantic-Deductive Characterization LG 
In this section, the characterization of LG with the semantics of the previous section is presented. In 

proposition 4.5 we have completeness and in proposition 4.6 we have semantic-deductive characterization. 

Definition 4.1 An extension of a set of formulas C of LG, denoted C∈EXT(LG), is obtained by altering the set of 

formulas of C in such a way that the theorems of C are preserved, and that the language of the extension 

matches the language of LG. An extension is locally consistent if there is no X∈FL such that both X and ∼X are 

extension theorems. A set of formulas is locally inconsistent if a contradiction Z∩∼Z for some Z∈FL is derived 

from them. An extension is locally complete if for all X∈FL, either X is an extension theorem or ∼X is an 

extension theorem. 

Proposition 4.2 For X∈FL. 1) LT is locally consistent. 2) If E∈EXT(LG), X∉TL-E, and E 𝑥 ∈EXT(LG) are 

obtained by adding ∼X as a new formula to E, then E 𝑥 is locally consistent. 

Proof.  1) Suppose that LG is not locally consistent, so that there must be Z∈FL such that Z∩∼Z∈TL, i.e. 

Z∩(Z⊃⊥)∈TL, by CPC results ⊥∈TL, by the validity theorem it is concluded that ⊥∈VL, i.e., for every model 

M, M(⊥)=1, which contradicts rule V⊥. Therefore, LG is locally consistent. 

2) Let X∉TL-E, and let E 𝑥 the extension obtained by adding X as a new formula to E. Suppose that E 𝑥 is 

locally inconsistent, so that, for some Z∈FL, we have Z,∼Z∈TL-E 𝑥, by CPC we get ⊥∈TL-E 𝑥, by Ax1 we 
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derive X∈TL-E 𝑥. But E 𝑥 differs from E only in that it has ∼X as an additional axiom, so ’X is a theorem of 

E 𝑥’ is equivalent to ’X is a theorem of E from the set {∼X}’. By proposition 2.4 it follows that ∼X⊃X∈TL-E, 

and by CPC it is inferred that X∈TT-E, which is not the case, therefore E 𝑥 is locally consistent. 

Proposition 4.3 If E∈EXT(LG) is locally consistent, then there is E’∈EXT(LG) that is locally consistent and 

complete. 

Proof.  Let be X 0, X  1, X 2, . . . an enumeration of all LG formulas. A sequence E’ 0, E’ 1, E’ 2, . . . of 

extensions of E as follows: Let E’ 0 = E. If X 0 ∈TL-E’ 0, is E’ 1 = E’ 0, otherwise add ∼X 0 as a new formula 

to get E’  1  from E’  0 . In general, given t ≥  1, to construct E’  𝑡  from E’  𝑡−1 , we proceed as follows: if 

X 𝑡−1 ∈TL-E’ 𝑡−1, then E’ 𝑡 = E’ 𝑡−1, otherwise let E’ 𝑡 be the extension of E’ 𝑡−1 obtained by adding ∼X 𝑡−1 as 

a new formula. The proof is widely known, details in [12]. 

Proposition 4.4 If E’EXT∈(LG) is locally consistent, then there is a model in which all X∈TL-E’ is true. 

Proof.  The model MF=(V 𝑀 𝐹, v) is defined as follows: each extension F is associated with an MF model. For 

each MF and for each X∈FL, V 𝑀𝐹(X)=1 if X∈F; and V 𝑀𝐹(X)=0 if ∼X∈F; v(–X)=1 if and only if −X∈F, 

where F is the locally consistent and complete extension associated with MF. Note that V 𝑀𝐹  is functional 

because F is locally consistent and complete. To claim that MF is a model, rules 1 through 7 of the model 

definitions must be guaranteed. 

1. By CPC we have ⊥⊃⊥∈TL, so ∼⊥∈F, i.e. V 𝑀𝐹(⊥)=0. Therefore, V⊥ is satisfied. 

2. Using CPC we have the following chain of equivalences: V 𝑀𝐹(X⊃Y)=0, i.e. ∼(X⊃Y)∈F, by CPC we follow 

X∩∼Y∈F, resulting by CPC that X∈F and ∼Y∈F, which means that V 𝑀𝐹 (X)=1 y V 𝑀𝐹 (Y)=0, so V⊃ is 

satisfied. 

3. Suppose that V 𝑀𝐹(−Z)=1, so −Z∈F, from which v(–Z)=1, and then V 𝑀𝐹(Z)=0 o v(–Z)=1. 

To prove the reciprocal, suppose V 𝑀𝐹(Z)=0 or v(–Z)=1. For the case V 𝑀𝐹(Z)=0, this means that Z∉F, since F 

is complete, it is inferred that ∼Z∈F, using Ax5 can be assured that −Z∈F, i.e. V 𝑀𝐹(−Z)=1. For the case v(–

Z)=1, this means V 𝑀𝐹(−Z)=1. So, if V 𝑀𝐹(Z)=0 o v(–Z)=1 then V 𝑀𝐹(−Z)=1. Since the reciprocal was initially 

proved, it is concluded that V− is satisfied. 

4. Suppose V 𝑀𝐹(−X)=1, so −X∈F, using Ax6, is derived −(X∩Y)∈F, i.e. V 𝑀𝐹(−(X∩Y))=1. Therefore, V∩ is 

satisfied. 

5. Suppose that V 𝑀𝐹(X∩Y)=1, so X∩Y∈F, applying Ax6 and Ax7 derive X∈F and Y∈F, i.e. V 𝑀𝐹(X)=1 and 

V 𝑀𝐹(Y)=1. To prove the reciprocal, suppose V 𝑀𝐹(X)=1 and V 𝑀𝐹(Y)=1, which means that X∈F and Y∈F, 

using Ax8 results in X∩Y∈F, consequently, V 𝑀𝐹(X∩Y)=1, Since the reciprocal was initially proved, it is 

concluded that V∩ is satisfied. 

6. Suppose that V  𝑀𝐹 (−(Y∩ −X))=1, i.e., −(Y∩ −X)∈F, using Ax10 infers −(Y∩∼X)∈F, which means 

V 𝑀𝐹(−(Y∩ ∼X))=1. Therefore, V−∼ is satisfied. 

7. Suppose that V 𝑀𝐹(−(Y∩ −(Z∩∼X)))=1, i.e −(Y∩ −(Z∩∼X)))∈F, using Ax11 infers −(Y∩ −(Z∩ −X))∈F, 

which means V 𝑀𝐹(−(Y∩ −(Z∩ −X)))=1. Therefore, V−−∼ is satisfied. 

Based on the above analysis, it is inferred that M is an LG model. To conclude the proof, let X be a theorem of 

E’, so X∈E’. Therefore, using the definition of V 𝑀𝐸 , it turns out that V 𝑀𝐸(X)=1, i.e., X is true in the model 

ME=(V 𝑀𝐸 ,v). 

Proposition 4.5 For X,X 1,..., X 𝑛 ∈FL. 1) If X∈VL then X∈TL. 2) If {X 1,… , X 𝑛} validates Y then {X 1, ..., 

X 𝑛} >>Y. 

Proof.  By proposition 4.2, the extension E’, obtained by adding ∼X as a new formula, is locally consistent. 

Thus, according to proposition 4.4, there is a model ME such that every theorem of E’ is true in ME, and since 

∼X∈TL-E’, then ∼X is true in ME, i.e., X is false in ME, hence X∉VL. It has been proven that X∉TL implies 

X∉VL, i.e., X∈VL implies X∈TL. 

2) Suppose {X 1,… , X 𝑛} validates Y, i.e., (X 1 ∩X 2 ∩ … ∩X 𝑛)⊃Y∈VL, by part 1, it follows that, (X 1 ∩X 2 ∩
… ∩X 𝑛)⊃Y∈TL. If {X 1,… , X 𝑛} are assumed, by CPC we infer Y, hence {X  1, ..., X 𝑛} >>Y. 

Proposition 4.6 For X,Y,X 1,...,X 𝑛 ∈FL. 1) X∈VL if and only if X∈TL. 

2) {X 1,… , X 𝑛} validates Y if and only if {X 1, ..., X 𝑛} >>Y. 

Proof.  Direct consequence of propositions 3.6 and 4.5. 

 

V. Existential Graphs GEG 
This section presents the original gamma existential graphs, GEG, proposed in 4.516 of Peirce’s 

Collected Papers [8]. For the construction of existential graphs, a variant of notation is used, proposed by Peirce 

in 4.378 of [8]. 

Definition 5.1 The set of graphs, GG, of original existential gamma graphs, GEG, is constructed from a set of 

atomic graphs, GA, and the constant 𝜆 (empty graph, 𝝀=’_’), as follows. 1) P∈GA implies P∈GG. 2) 𝜆 ∈GG. 3) 

X∈GG implies {X},(X)∈GG. 4) X,Y∈GG implies (X(Y)),XY∈GG. 

Definition 5.2 The graph (X(Y)) it is called a conditional graph. The outer parentheses determine the external 
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cut of the conditional, and the internal parentheses determine the internal cut of the conditional. X is called 

antecedent and Y consequent. Conditional cuts are called continuous cuts. In the {Z} graph, the keys determine 

the broken cut. The part where Z is located is called the inner region of the broken cut or simply the region of 

the broken cut. 

Definition 5.3 Let them be X,Y,Z∈GG. A graph X is said to be in an even region, denoted X  𝑝 , if X is 

surrounded by an even number of cuts (continuous and/or broken). X is in an odd region, denoted X 𝑖, if X is 

surrounded by an odd number of cuts (continuous and/or broken). X 𝑛𝑐 means that the graph X is in a region 

surrounded by n continuous and/or broken cuts (n = 0, 1, 2, 3, ...), where n can be odd or even.  X  𝑝𝑐 indicates 

an even number of continuous cuts. X 1𝑐 indicates an odd number of continuous cuts. X 𝑛𝑐𝑐 means that X is in a 

region of continuous cuts only, i.e., no broken cuts appear. X 1𝑐𝑞  means that X is in a region with at least one 

broken cut. 

Definition 5.4 Let be X∈GG. Lambda is defined as the assertion sheet 𝜆= ’_’. Strong graph is defined as *X = 

({X}). Total falsehood is defined as ⊥={_}. 

Definition 5.5 The system consists of the following RTRA primitive transformation rules: 

R1) Alpha Rules. The primitive transformation rules of Pierce’s Alpha existential graph system are primitive 

transformation rules of the GEG system. These rules are: Erase and Write, Iteration and Deiteration in regions 

of continuous cuts only or no cut, Write and Erase the double cut. The assertion sheet, 𝜆, is the only axiom of 

the Alpha system. 

R2) Writing graphs in broken cut region. On a broken cut that is written on the assertion sheet, any graph can be 

written. EG{}. {X}|⇒ {XY}. 

R3) Writing and erasing in the cuts. A continuous cut can be partially erased (generating a broken cut) when it 

is in an even region. 3a. Ecq. (X) 𝑝|⇒ {X}. 

A broken cut can be completed (generating a continuous cut) when it is in an odd region. 3b. Bcc. {X} 𝑖 |⇒(X) . 
In addition to the primitive rules, you have the following implicit rules: 

RI1) Concatenation. Two graphs that are in the same region can be concatenated. Conversely, two graphs that 

are concatenated can be separated in the same region. Conc. X, Y     ⇔ YX, in any region. 

RI2) Commutativity. Two concatenated graphs can be rewritten by changing the order. Com. XY⇔YX, in any 

region. 

RI3) Associativity. In three graphs that are concatenated, the order in which they were concatenated is 

irrelevant. Initially, the first is concatenated with the second and this result is concatenated with the third, or the 

first is concatenated with the result of concatenating the second with the third. Aso. XY, Z ⇔ X, YZ ⇔ XYZ, 

in any region. 

Remark 5.6 Rules RI1, RI2 and RI3 are called implicit rules, since, given their obviousness and graphic 

naturalness, they may not be referenced, but they are applied. 

Definition 5.7 For X∈GG. X is a graphical theorem of GEG, denoted X∈TG, if there is a proof of X from the 

graph 𝜆, using the graph transformation rules, i.e., X is the last row of a finite sequence of lines, in which each 

of the lines is 𝜆, or is inferred from previous rows, using the transformation rules. Or to put it briefly, X∈TG if 

and only if 𝜆 >>X. The number of lines, of the finite sequence, is referenced as the length of the proof of X. Y>
>X, means that X is obtained from Y using a finite number of transformation rules. 

Proposition 5.8 For X,Y∈GG. Let be R∈RTRA and R≠R2. If X 𝑝 ⟹
    𝑅      

Y then there exists R’∈RTRA such that 

Y 𝑖 ⟹
    𝑅′      

 X. Proof by simple inspection of the primitive rules. 

Proposition 5.9 For X,Y,Z∈GG. When you have an inference, in every even region of the antecedent you infer 

the consequent, provided you don’t use rule R2, then X>>Z implies X 𝑝 >>Z. 

When an inference is made, in every odd region of the consequent the antecedent is inferred, if rule R2 is not 

used, then X>>Z implies Z 𝑖 >>X. 

Proof.  Suppose X>>Z , it must be proved that X 𝑝 >>Z and Z 𝑖 >>X. 

If X >> Z then there are R  1 ,… , R  𝑛 ∈ RTRA, and there are X  1 ,… , X  𝑛−1 ∈ GG, such that 

XR 1X 1R 2X 2 …X 𝑛−1R 𝑛Z, and the length of the transformation of X>>Z is said to be n and denoted by X>
>  𝑛Z. The proof is performed by induction on the length of the transformation. 

Base step. n=1. It means that only one of the primitive rules was applied, and since X is in an even region, then 

R must be of the form X 𝑝 ⟹
    R      

Z with R∈RTRA. From proposition 5.8 it is inferred that there is R’, Z 1 ⟹
    R′      

X 

with R’∈RTRA. Inductive step. Inductive hypothesis (∀n>1)[W>>  𝑛K ⇒ {W 𝑝 >>K and K 𝑖 >>W}]. If X>

>  𝑛+1Z, then XR 1X 1R 2X 2 … X 𝑛−1R 𝑛X 𝑛R 𝑛+1Z, i.e., 

XR  1 X  1 R  2 X  2 …X  𝑛−1 R  𝑛 X  𝑛   and X  𝑛 R  𝑛+1 Z, so X>>  𝑛 X  𝑛  and X  𝑛 R  𝑛+1 Z. Applying the inductive 

hypothesis and proposition 5.8 we get X 𝑝 >>X 𝑛 y X 𝑛R 𝑛+1Z, X 𝑛𝑖 >>X and Z 𝑖R’ 𝑛+1X 𝑛. So, X 𝑝 >>Z 𝑝 

and Z 𝑖 >>X. 
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By the principle of mathematical induction, the truth of the proposition is concluded.             ◼ 

Proposition 5.10 For X,Y,Z∈GG. A conditional graph can be written when the consequent is inferred from the 

antecedent, if the R2 rule is not used. 

I.e., X>>Z |⇒ (X(Z)). 

Proof.  Suppose X>>Z. 𝜆  ⟹
R1  

 ((_)) ⟹
R1

 (X(_)) ⟹
R1

 (X(X)) ⟹
X≫Z  y  proposición  5.9  

 (X(Z)). 

Hence, X>>Z ⇒ (X(Z)). 

 

VI. Equivalence LG And GEG 
In this section, the equivalence between LG and GEG is presented, initially, in proposition 6.3, it is 

proved that LG’s theorems are graphical theorems of, in proposition 6.7, it is proved that the graphical theorems 

of are valid in the semantics of possible worlds, in proposition 6.13, it is proved that LEG’s theorems are 

exactly the graph theorems. 

Definition 6.1 FA=GA Translation function [_]’:FL→GG. Let be X,Y∈FL and P∈FA. 

1) P’=P. 2) [X⊃Y]’=(X’(Y)). 3) [X∨Y]’=((X’)(Y’)). 4) (−X)’={X’}. 5) 𝜆’=𝜆. 6) (X∩Y)’=X’Y’. 

7) (∼X)’=(X’). 8) ⊥’=(𝜆). 

Proposition 6.2  Let X∈FL be. If X is LG’s axiom, then X’∈TG. 

Proof.  Ax1) ⊥⊃ X. By R1 we have ((_)), according to R1 we have ((X’)(_)), i.e. ( ⊥⊃ X)’. Therefore, 

(Ax1)’∈TG. 

Ax2, Ax3, Ax4, Ax7, Ax8 and Ax9. Their translations are valid thanks to R1, since these are axioms of CPC, 

which is validated by the Alpha system.  Ax5) (X⊃–𝜆)⊃–X. (X’)>> {X’} is satisfied by rule R3. It is 

concluded that (Ax5)’∈TG. 

Ax6) −X⊃ −(X∩Y). {X’} >> {X’Y’} is satisfied by rule R2. It is concluded that (Ax6)’∈TG. 

Ax10) − (Y ∩ − X) ⊃ − (Y ∩ ( ⊥⊃ X)). By R1 we have the sequence ((_)), so ( { Y { X’ }} (_)), we derive 

({Y{X’}}({Y{X’}})), applying R3 we infer ({Y{X’}}({Y(X’)})). It is concluded that (Ax10)’∈TG. 

Ax11) −(Y∩ −(Z∩(X⊃⊥)))⊃ −(Y∩ −(Z∩ −X)). By R1 we have the sequence ((_)), so ({Y{Z(X’)}}(_)), is 

derived ({Y{Z(X’)}}({Y{Z(X’)}})), applying R3 infers ({Y{Z(X’)}} ({Y{Z{X’}} })). It is concluded that 

(Ax11)’∈TG. 

Proposition 6.3 For X∈FL. 1) If X∈TL then X’∈TG. 2) If X>>Y then X’>>Y’. 

Proof.  1) Induction about the length of the X demonstration in LG. Base step. If the length of the proof is 1, 

then X is an axiom, by the proposition 6.2 X’∈TG. 

Induction step. The inductive hypothesis is: if Y∈TG and the length of the proof of Y is less than L, then 

Y’∈TG. Suppose X∈TG and that the length of the proof of X is L, so X is an axiom or obtained from previous 

steps using Mp. In the first case, proceed as in the base step. In the second case, Y and Y⊃X are taken in 

previous steps of the proof of X, i.e., the lengths of the proofs of Y and Y⊃X are less than L, by the inductive 

hypothesis it turns out that Y’∈TG and (Y’(X’))∈TG, applying R1 infers ((X’))∈TG, using R1 concludes 

X’∈TG. By the principle of mathematical induction, LG’s theorems are proved to be graphical theorems. 

2) If X>>Y, then X⊃Y∈TL, by the part 1, (X’(Y’))∈TG, i.e., 𝜆 >>(X’(Y’))), if X’ is assumed, by R1 follows 

((Y’)), applying R1 results in Y’, so X’>>Y’. 

Definition 6.4 Translation function, (_)”:GG→FG. For X,Y∈FL and P∈GA. 1) P”=P. 2) 𝜆”=⊥⊃⊥ . 3) 

(X(Y))”=X”⊃Y”. 4) ((X)(Y))”=X”∪Y”. 5) {X}”=−X”. 6) [XY]”= X”∩Y”. 7) (X)”=∼X”. 

Proposition 6.5 Rules R1 and R2 are valid rules in LG semantics 

Proof.  R1) Peirce’s Alpha system rules are validated by CPC. Therefore, R1” is valid. R2) {X}|⇒ {XY}. 

Consider an arbitrary model M=(V 𝑀,v). By V− ∩ M(−X”)=1 implies M(−(X”∩Y”))=1. Therefore, R2”, is a 

valid rule in LG. 

Proposition 6.6 The R3. (X) 𝑝|⇒ {X} and {X} 𝑖|⇒(X) are valid in LG’s semantics. 

Proof.  Induction in the number, n, of negations surrounding X. 

Base step. n=1. (X)|⇒ {X}. Let M=(V 𝑀,v) be any model. Suppose that V 𝑀(∼X)=1, by V∼ it turns out that 

V 𝑀 (X)=0, applying V− we infer V 𝑀 (−X”)=1. Therefore, V 𝑀 (∼X”)=1 implies V 𝑀 (−X”)= 1, so R3 is 

satisfied for n=1. 

n=2. There are 2 possibilities, {Y{X}} ⇒ {Y(X)} and (Y{X})⇒(Y(X)). For the first case, by the rule V–∼ we 

have M( − (Y” ∩ − X”))=1 implies M( − (Y” ∩∼ X”))=1, so the rule is satisfied. For the second case, let 

M=(V 𝑀,v) be any model, suppose that V 𝑀(∼(Y”∩ −X”))=1, i.e. V 𝑀(Y”∩ −X”)=0, resulting in V 𝑀(Y”)=0 or 

V 𝑀(−X”)=0, using the result when n=1, deduces V 𝑀(Y”)=0 or V 𝑀(∼X”)=0, which means that it is not the 

case that V 𝑀(Y”∩∼X”)=1, and then V 𝑀 (∼(Y”∩∼X”))=1, has been tested, V 𝑀 (∼(Y”∩ −X”))=1 implies 

V 𝑀(∼(Y”∩∼X”))=1, so the rule is satisfied. Therefore, R3 is satisfied for n=2. 

n=3. There are 2 possibilities, {Y{Z(X)}} ⇒ {Y{Z{X}}} and (Y{Z(X)})⇒(Y{Z{X}}). For the first case, by rule 

V−−∼ we have M(−(Y”∩ −(Z”∩∼X”)))=1 implies M(−(Y”∩ −(Z”∩ −X”)))=1, so the rule is satisfied. For 

the second case, let M=(VM,v) be any model, suppose that V 𝑀((∼(Y”∩ −(Z”∩∼X”)))=1, i.e. V 𝑀(Y”∩ −(Z”∩
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∼X”))=0, resulting in V 𝑀(Y”)=0 o V 𝑀(−(Z”∩∼X”))=0, using the result when n=2, we deduce V 𝑀(Y”)=0 o 

V 𝑀(−(Z”∩ −X”))=0, which means that it is not the case that V 𝑀(Y”∩ −(Z”∩ −X”))=1, and then V 𝑀(∼(Y”∩
−(Z”∩ −X”)))=1, has been tested, V 𝑀(∼(Y”∩ −(Z”∩ ∼X”)))=1 implies V 𝑀(∼(Y”∩ −(Z”∩ −X”)))=1, so the 

rule is satisfied. Therefore, R3 is satisfied for n=3. 

Inductive step. Rule 3a. As an inductive hypothesis we have that, if (X”) is surrounded by 2n negations, then 

R3a is satisfied. 

{Y”{Z”(X”)}} ⇒ {Y”{Z”{X”}}} and (Y”{Z”(X”)})⇒(Y”{Z”{X”}}), are the only non-trivial cases in which two 

other negations can be added to X, and they result in valid rules, as proved in the base step when n=3. 

Therefore, if X is surrounded by 2n+2 slices, i.e., by 2(n+1) slices, then R3a is satisfied. 

Rule 3b. As an inductive hypothesis it is that, if (X) is surrounded by 2n+1 negations, then R3b is satisfied. 

{Y”{Z”(X”)}} ⇒ {Y”{Z”{X”}}} and (Y”{Z” (X”)})⇒(Y”{Z”{X”}}), are the only non-trivial cases in which, to 

X, two other negations can be added, and they result in valid rules, as proved in the base step when n=3. 

Therefore, if X is surrounded by 2n+3 cuts, i.e. by 2(n+1)+1 cuts, then R3b is satisfied. 

By the principle of mathematical induction, the validity of R3 has been tested. 

Proposition 6.7 For X∈GG. 1) The primitive rules of G are valid rules in the semantics of LG. 2) If X∈TG then 

X”∈VL. 

Proof.  1) Direct consequence of propositions 6.5 and 6.6. 

2) If X∈TG then 𝜆 >>X’, so there are R 1,… , R 𝑛 ∈RTRA, and there are X 1,… , X 𝑛−1 ∈GE, such that 

𝜆R 1X 1R 2X 2…X 𝑛−1R 𝑛X (Proof length is n). 

The proof is performed by induction over the length L of the demonstration. Base step. L=1. It means that only 

one of the primitive rules was applied, then X”∈VG. 

Inductive step. Inductive hypothesis: The proposition is valid if L ≤ n with n > 0. Let L=n+1, so 

𝜆R 1X 1R 2X 2 …X 𝑛−1R 𝑛X 𝑛R 𝑛+1X, i.e., 𝜆R 1X 1R 2X 2 …X 𝑛−1R 𝑛X 𝑛   and X 𝑛R 𝑛+1X, both demonstrations 

with length less than n+1. Applying the inductive hypothesis is it turns out that X” 𝑛 ∈VG and from X” 𝑛 is 

validly inferred X”, hence X”∈VG. By the principle of mathematical induction, the truth of the proposition is 

concluded. 

Proposition 6.8 For X,Y∈GG. 1) If X∈TG then X”∈TL. 

2) If X>>Y, then X”>>Y”. 

Proof.  1) By Proposition 4.6 we have that, X”∈VL if and only if X”∈TL, and by Proposition 6.7 we have that, 

if X∈TG then X”∈VL. Therefore, if X∈TG then X”∈TL. 2) Direct consequence of part 1 and proposition 3.6. 

Definition 6.9 Be T1=[_]’:FG → GG and T2=[_]”:GG → FG, be the translation functions presented in 

definitions 6.1 and 6.4. They are defined: the composite function T1oT2:GG → GG such that 

(T1oT2)[X]=T1[T2[X]]. The composite function, T2oT1:FG → FG such that (T2oT1)[X]=T2[T1[X]]. The 

identity function in FG, IdFK:FG→FG such that (IdFG)[X]=X. The identity function in G IdGG:GG→GG such 

that (IdGG)[X]=X. 

Definition 6.10 For P∈GA, X,Y∈GET. The function, C , complexity of a graph, assigns each graph a non-

negative integer, as follows: 1) C[P] = C[𝜆] = 0. 2) C[{X}] = 1+C[X]. 

3) C[XY] = 1+max {C[X], C[Y]}. 4) C[((X)(Y))] = 2+max {C[X], C[Y]}. 5) C[(X(Y))] = 1+max {C[X], 

C[Y]+1}. 

Definition 6.11 Sean P∈ FA; X,Y∈ FT. The function, K, complexity of a formula,  assigns each formula a non-

negative integer, as follows: 1) K[P] = K[𝜆] = 0. 

2) K[−X] = 1+K[X]. 3) K[X∩Y] = K[X∪Y] = K[X⊃Y] = 1+max{K[X], K[Y]}. 

Proposition 6.12 The translations presented in definitions 6.1 and 6.4 are inverse functions. For G∈GG and 

X∈FL. 1) [X’]”=X. 2) [G”]’=G. 

Proof.  For T1=( )’ and T2=( )”. Proof part 1. Induction on the complexity, C, of graph G. Base step. C[G]=0, 

then there are 2 cases. Case 1: G=P. (T1oT2)[P]=T1[T2[P]]=T1[P]=P. 

Case 2: G=𝜆. (T1oT2)[𝜆]=T1[T2[𝜆]]=T1[𝜆]=𝜆. Inductive step. C[G]≥1. As an inductive hypothesis we have 

that (T1oT2)[G1]=G1, (T1oT2)[G2]=G2. There are 4 cases. 

Case 3: G={G1}. (T1oT2)[{G1}]=T1[T2[{G1}]]= T1[-T2[G1]]={T1[T2[G1]]}={G1}. 

Case 4: G=G1G2. (T1oT2)[G1G2] = T1[T2[G1G2]] = T1[T2[G1] T2[G2]] 

=T1[T2[G1]] T1[T2[G2]]=G1G2. 

Case 5: G=(G1(G2)). (T1oT2) [(G1(G2))]=T1[T2[(G1(G2))]] = T1(T2[G1] ⊃ T2[G2]) 

=(T1[T2[G1]](T1[T2[G2]])) =(G1(G2)). 

Case 6: G = ((G1)(G2)). (T1oT2) [((G1)(G2))] = T1[T2[((G1)(G2)]] = T1[T2(G1)∪ T2(G2)] 

= ((T1[T2[G1])(T1[T2[G2])) = ((G1)(G2)). 

By the principle of mathematical induction it has been proved that (T1oT2)=IdGG. 

Proof part 2. Induction on the complexity, K, of the formula X. Base step. K[X)=0, then there are 2 cases. Case 

1: X=P. (T2oT1)[P] = T2[T1[P]] = T2[P] = P. 

Case 2: X=𝜆.  (T2oT1)[𝜆] = T2[T1[𝜆]] = T2[𝜆] = 𝜆. Inductive step. K[X]≥ 1. As an inductive hypothesis we 
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have that (T2oT1)[X1]=X1, (T2oT1)[X2]=X2. There are 4 cases. 

Case 3. X=−X1. (T2oT1) [−X1]=T2[T1[−X1]]=T2[{ T1[X1]}]=−(T2oT1)[X1]=−X1. 

Case 4. X = X1∩X2. (T2oT1)X1∩X2] = T2[T1[X1∩X2]] = T2[T1[X1]T1[X2]] = T2[T1[X1]]∩[T1[X2]] = 

X1∩X2. 

Case 5. X=X1⊃X2. (T2oT1)[X1⊃X2] = T2[T1[X1⊃X2]] = T2[(T1[X1](T1[X2]))] = T2[T1[X1]]⊃T2[T1[X2]] 

= X1⊃X2. 

Case 6. X=X1 ∪ X2. (T2oT1)[X1 ∪ X2] = T2[T1[X1 ∪ X2]] = T2[((T1[X1])(T1[X2]))]  = 

T2[T1[X1]]∪T2[T1[X2]] = X1∪ X2. By the principle of mathematical induction, (T2oT1)=IdFG. 

Proposition 6.13 For G,H∈GG and X,Y∈FL. 1) G∈TG if and only if G”∈TL. 2) X’∈TG if and only if X∈TL. 3) 

G>>H if and only if G”>>H”. 4) X’>>Y’ if and only if X>>Y. 

Proof.  1) By proposition 6.8 we have that, if G∈TG then G”∈TL, in addition, by proposition 6.3 we have that, 

if G”∈TL then (G”)’∈TG, but by proposition 6.12 we know that, (G”)’=G, resulting that, if G”∈TL then G∈TG, 

and since we have the reciprocal, we conclude that, G∈TG if and only if G”∈TL. 

2) By proposition 6.3 we have that, if X∈TL then X’∈TG, in addition, by proposition 6.8 we have that, if 

X’∈TG then (X’)”∈TL, but by proposition 6.12 we know that, (X’)”=X, resulting that, if X’∈TG then X∈TL, 

and since we have the reciprocal, we conclude that, X’∈TG if and only if X∈TL. 

3) By proposition 6.3 we have, if G”>>H” then [G”]’>>[H”]’, by proposition 6.12 we have [G”]’=G and 

[H”]’=H, so if G”>>H” then G>>H, in addition by proposition 6.8 we have the reciprocal. Therefore, G>>H 

if and only if G”>>H”. 

4) by proposition 6.8 we have, if X’>>Y’ then [X’]”>>[Y’]”, by proposition 6.12 we have [X’]”=X and 

[Y’]”=Y, so if X’>>Y’ then X>>Y, by proposition 6.3 we have the reciprocal. Therefore, X’>>Y’ if and only 

if X>>Y. 

 

VII. Partial Remarks 
In this section, in proposition 7.2, it is proved that the Original Gamma existential graphs are 

paraconsistent. Finally, in proposition 7.3, it is proven that Gamma-4, Gamma-4.2 and Gamma-5 systems are 

paraconsistent. 

Definition 7.1 Let SD be a deductive system with a negation operator N and let X be a formula for SD. SD is 

said to be paraconsistent when SD does not derive all SD formulas from X and NX. 

Proposition 7.2 For G,H,K∈GG. 1) G”⊃(−G”⊃H”)∉VG. 2) GEG is paraconsistent. 3) LG is paraconsistent. 

Proof.  Consider a model M=(V 𝑀,v), such that V 𝑀(G”)=1, V 𝑀(H”)=0 and v(−G”)=1. As v(−G”)=1, then 

V  𝑀 ( − G”)=1, and as V  𝑀 (H”)=0, then V  𝑀 ( − G” ⊃ H”)=0, but also V  𝑀 (G”)=1, consequently 

V  𝑀 (G”⊃(−G”⊃H”))=0. Therefore, G”⊃(−G”⊃H”)∉VG. 2) Applying propositions 4.6 and 6.13 yields 

(G(({G}(H))))∉TG, which implies that this is not the case: G{G} >>H. Therefore, GEG is paraconsistent. 3) 

Using proposition 6.13 it turns out that LG is paraconsistent. 

Proposition 7.3 The Gamma-4, Gamma-4.2 and Gamma-5 systems presented by Zeman [14] are paraconsistent. 

Proof.  Gamma-4, Gamma-4.2 and Gamma-5 correspond to the modal logic systems S4, S4.2 and S5 which are 

characterized by semantics of possible worlds, in which the broken cut corresponds to the possibility of the 

classical negation, so the rule {X} ⇒(X), corresponds to the modal formula ⊗∼X⊃∼X, which by CPC is 

equivalent to X⊃∼⊗∼X, i.e., X⊃+X (where is the operator of necessity of such systems), and in such systems 

the reciprocal is valid, so we would have X≡+X, if ⊗∼X⊃∼X were valid, but the formula X≡+X, in fact, is 

not valid in such semantics (and should not be, since, in that case, the modalities would make no difference with 

the statement of classical logic, S4, S4.2 and S5 would collapse into CPC), for details see Hughes and Cresswell 

[3], consequently, ⊗∼X⊃∼X is not valid, neither in Gamma-4, nor in Gamma-4.2 nor in Gamma-5. Therefore, 

the 3 systems of existential graphs are paraconsistent. 

 

VIII. Deductive System GT 
In this section, the deductive system of propositional logic GT is presented, its connections with 

classical propositional calculus, and some of its theorems. 

Definition 8.1 The FT set of GT formulas is constructed from a set FA of atomic formulas, from the constant 𝜆, 

the unary connective weak negation {−}, and the binary connective conditional {⊃} as follows.  1) P∈FA 

implies P∈FT. 2) 𝜆 ∈FT. 3) X∈FT implies −X∈FT. 4) X,Y∈FT implies X⊃∈FT. 

Classical negation, strong affirmation, weak affirmation, disjunction, conjunction and biconditional are defined 

as:  a) ∼X = X⊃ −𝜆. b) +X = ∼–X. c) ⊗X = –∼X. 

d) X∪Y =∼X⊃Y. e) X∩Y = ∼(X⊃∼Y). f) X≡Y = (X⊃Y)∩(Y⊃X). 

Definition 8.2 The GT system consists of the axioms (where X,Y,Z∈FT): 

Ax1. 𝜆. Ax2. X⊃(Y⊃X). Ax3. [X⊃(Y⊃Z)]⊃[(X⊃Y)⊃(X⊃Z)]. Ax4. [(X⊃Y) ⊃X]⊃X. Ax5. –𝜆 ⊃Z. Ax6. 

(X⊃–𝜆)⊃–X. Ax7. [–(X⊃Y)⊃–𝜆]⊃[(–X⊃–𝜆)⊃(–Y⊃–𝜆)]. Ax+. If X∈ {Ax1, ..., Ax7, Ax+} then –X⊃–𝜆 is an 
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axiom. Only rule of inference is modus ponens Mp: from X and X⊃Z we infer Z. 

Definition 8.3 For X, X 1, ..., X 𝑛 ∈FT. X is a theorem of GT, denoted X∈TT, is defined similar to definition 2.3. 

Proposition 8.4 For X,Y,X 1,..., X 𝑛 ∈FT. If {X 1, ..., X 𝑛, X} implies Y in GT, then {X 1, ..., X 𝑛} implies   X⊃Y. 

Proof.  Axioms 2, 3 and 4, with the single inference rule Mp, determine the calculus for the classical 

implication CIC, Rasiowa [9], in which the deduction theorem, TD, applies. 

Proposition 8.5 For X,Y∈FT. +(X⊃Y)⊃(+X⊃+Y)∈TT. 

Proof by Ax7 and definition. 

Proposition 8.6 For X∈FT. If X∈TT then +X∈TT. 

Proof.  Suppose X∈TT, +X∈TT will be tested, by induction over the length of the proof of X.  Base step. The 

length of the proof of X is 1, i.e., X is an axiom. If X is one of axioms 1 to 7 or Ax+, Ax+ gives +X. 

Induction step. As an inductive hypothesis, if the length of the proof of Y is less than L, then +Y is a theorem. 

Suppose that the proof of X has length L greater than 1. It follows that X is an axiom or X is a consequence of 

previous steps using the inference rule Mp. In the first case, proceed as in the base step. In the second case, we 

have, for some formula Z, proofs of Z⊃X and Z, both of which are shorter in length than L. From the inductive 

hypothesis we infer +(Z⊃X),+Z∈TT. By proposition 8.5 we have +(Z⊃X)⊃(+Z⊃+X)∈TT, applying the rule 

Mp twice we get that +X∈TT. 

So, according to the principle of mathematical induction, it has been proved X∈TT implies +X∈TT.  ◼ 

Proposition 8.7 For X,Y∈FT. GT theorems are: a) (X⊃∼Y)⊃(Y⊃∼X). b) ∼(X⊃X)⊃Y. c) X∪∼X. 

d) X⊃∼∼X.  e) ∼∼X⊃X. f) (X⊃Y)⊃(∼Y⊃∼X)∩ (∼Y⊃∼X) ⊃(X⊃Y). 

Proof.  Part a. Suppose X⊃(Y⊃–𝜆), Y, X. By Mp is derived Y⊃ −𝜆, again by Mp is inferred −𝜆. Applying TD 

3 times and using the definition of ∼, concludes (X⊃∼Y)⊃(Y⊃∼X). 

Part b. Suppose ∼(X⊃X), i.e. (X⊃X)⊃–𝜆, but X⊃X is a theorem of CIC, resulting in –𝜆, using Ax5 follows Y. 

Applying TD concludes ∼(X⊃X)⊃Y. 

Part c. By the principle of identity of the CIC we have ∼X⊃∼X, by the definition of ∪ we conclude X∪∼X. 

Part d. Suppose X, X⊃–𝜆. By Mp we follow –𝜆, applying TD 2 times and definition of ∼ we conclude X⊃∼
∼X. 

Part e. Suppose ∼∼X, i.e., ∼X⊃–𝜆, by Ax5 we have –𝜆 ⊃X, by CIC we deduce ∼X⊃X, i.e., (X⊃ 𝜆–)⊃X, using 

Ax4 implies X. By TD we conclude ∼∼X ⊃X. 

Part f. Direct consequence of parts a, d and e. 

Proposition 8.8 Sean X,Y,Z∈FT. GT theorems are: a) X⊃(X∪Y). b) X⊃(Y∪X). 

c) (X⊃Y)⊃[(Z⊃Y)⊃({X∪Z} ⊃Y)]. 

Proof.  Part a. Suppose X, X⊃–𝜆, i.e., ∼X, by Mp we get –𝜆, according to Ax5 we derive Y. Applying TD 2 

times concludes X⊃(∼X⊃Y), i.e. X⊃(X∪Y). 

Part b. By part a we conclude X⊃(∼X⊃Y), using proposition 8.7, it can be said that X⊃(∼Y⊃X), i.e., 

X⊃(Y∪X). 

Part c. Suppose X⊃Y, Z⊃Y, X∪Z, i.e. ∼X⊃Z, by CPC we infer ∼X⊃Y, by proposition 8.7 we derive ∼Y⊃X, 

by CIC we infer ∼Y⊃Y, i.e. (Y⊃–𝜆)⊃Y, by Ax4 we get Y. Applying TD 3 times we get (X⊃Y)⊃[(Z⊃Y)⊃ 

({X∪Z} ⊃Y)]. 

Proposition 8.9 For X,Y∈FT. GT theorems are: a) (X∩Y)⊃X. b) (X∩Y)⊃Y. 

c) (X⊃Y)⊃[(X⊃Z)⊃(X⊃ {Y∩Z})]. d) X⊃[Y⊃(X∩Y)]. e) +(X∩Y)≡(+X∩+Y). 

Proof.  Part a. Suppose X∩Y, i.e., ∼(X⊃∼Y), so (X⊃∼Y)⊃–𝜆, by Ax5 we have –𝜆 ⊃X, by CIC we infer (X⊃
∼Y)⊃X, using Ax4 results X. By TD we conclude (X∩Y)⊃X. 

Part b. Suppose X∩Y, i.e., ∼(X⊃∼Y), so that (X⊃∼Y)⊃ −𝜆, using proposition 8.7 we deduce (Y⊃∼X)⊃–𝜆, by 

Ax5 we have –𝜆 ⊃Y, by CIC we infer (Y⊃∼X)⊃Y and, using Ax4 we get Y. By TD we conclude (X∩Y)⊃Y. 

Part c. Suppose X⊃Y, X⊃Z, ∼Y∪∼Z. By proposition 8.7 are derived ∼Y⊃∼X, ∼Z⊃∼X, applying proposition 

8.8 is inferred ∼X, by TD results (∼Y∪∼Z)⊃∼X, by proposition 8.7 we can affirm X⊃∼(∼Y∪∼Z), i.e. X⊃
∼(∼∼Y⊃∼Z), 

so X⊃∼(Y⊃∼Z), and this means X⊃ {Y∩Z}. Applying TD 2 times concludes (X⊃Y)⊃[(X⊃Z)⊃(X⊃ {Y∩Z})]. 

Part d. Suppose X, Y. Ax2 results 𝜆 ⊃X, 𝜆 ⊃Y, by part c derives 𝜆 ⊃(X∩Y), using Ax1 infers X∩Y. Applying 

TD 2 times concludes X⊃ [Y⊃(X∩Y)]. 

Part e. Parts a and b gives (X∩Y)⊃X and (X∩Y)⊃Y, using proposition 8.6 we derive +[(X∩Y)⊃X] and 

+[(X∩Y)⊃Y], by proposition 8.5 we get +(X∩Y)⊃+X and +(X∩Y)⊃+Y, according to part c we conclude 

+(X∩Y)⊃(+X∩+Y). To prove the reciprocal, by the part d we have X⊃[Y⊃(X∩Y)]∈FT, using proposition 8.4 

results +{X⊃[Y⊃(X∩Y)]}, by proposition 8.5 we derive +X⊃+[Y⊃(X∩Y)], again by proposition 8.5 and CIC 

we affirm +X⊃[+Y⊃+(X∩Y)]. Suppose +X∩+Y, applying parts a and b infer +X and +Y, by Mp 2 times 

derives +(X∩Y), using the deduction theorem follows (+X∩+Y)⊃+(X∩Y). Finally, applying part d and the 

definition of ≡, we conclude +(X∩Y)≡(+X∩+Y). 

Proposition 8.10 The classical propositional calculus CPC with the language 
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{⊃, ∩, ∪, ≡, ∼} is included in the propositional calculus GT. 

Proof.  Axioms 2, 3 and 4 along with propositions 8.7, 8.8 and 8.9, with the inference rule Mp determine CPC 

Rasiowa [9]. 

Proposition 8.11 For X,Y∈FT. So, GT theorems: a) – –𝜆 ⊃ 𝜆. b) X∪–X. c) ∼X⊃–X. d) −X≡∼+X. 

e) +X⊃X. 

Proof.  Part a. By Ax2 we have 𝜆 ⊃(− −𝜆 ⊃ 𝜆), in addition to by Ax𝜆 of has 𝜆, applying Mp we conclude that 

– –𝜆 ⊃ 𝜆. 

Part b. By Ax6 we have ∼X⊃ −X, by definition it means X∪–X. 

Part c. By definition in Ax6. 

Part d. By definition we have ∼ −X≡+X, applying CPC we conclude −X≡∼+X. 

Part e. By Ax6 we have ∼X⊃ −X, applying CPC we deduce ∼ −X⊃X, i.e., +X⊃X. 

Proposition 8.12 For X,Y∈FT. So, GT theorems: a) ∼+∼X≡⊗X, +∼X≡∼⊗X, ∼+X≡ −X. b) X⊃⊗X. 

c) −X⊃⊗∼X. d) ∼(Z 1 ∩  ∩Z 𝑘 ∩Y)∈TT implies ∼(+Z 1 ∩∩+Z 𝑘 ∩⊗Y)∈TT. 

Proof.  Part a. By proposition 8.11 we have −∼X≡∼+∼X, by definition it results ⊗X≡∼+∼X. By CPC we 

conclude ∼⊗X≡+∼X. By definition you have ∼ −X≡+X, by CPC you get −X≡∼+X. 

Part b. By proposition 8.11 we have +∼X⊃∼X, using CPC we deduce X⊃∼+∼X, according to part a we 

conclude X⊃⊗X. 

Part c. By definition we have −∼∼X⊃⊗∼X, by CPC we conclude −X⊃⊗∼X. Part d. Suppose ∼(Z 1 ∩ … 

∩Z 𝑘 ∩Y)∈TT, which by CPC means, 

(Z 1 ∩ … ∩Z 𝑘)⊃∼Y∈TT. Using proposition 8.6 it turns out that +((Z 1 ∩ … ∩ Z 𝑘)⊃∼Y)∈TT, from proposition 

8.5 we infer +(Z 1 ∩ … ∩Z 𝑘)⊃+∼Y∈TT, by proposition 8.9 we get (+Z 1 ∩ … ∩+Z 𝑘)⊃+∼Y∈TT, which, by 

CPC implies ∼(+Z 1 ∩ … ∩+Z 𝑘 ∩∼+∼Y)∈TT, and for the part a, equivalent to ∼(+Z 1 ∩ … ∩+Z 𝑘 ∩⊗Y)∈TT. 

 

IX. Semantics GT 
In this section, the semantics of possible worlds for the GT system are presented, in proposition 9.6, it is proved 

that the theorems of the GT system are valid formulas in the proposed semantics. 

Definition 9.1 (S, Ma, <, V) is a model for GT, it means that, S is a non-empty set of possible worlds, Ma is a 

possible world, called the actual world, < is a binary relation in S, V is a valuation of S×FT at {0, 1}. The 

relationship, <, satisfies the following constraints. Reflexivity of <. RR: (∀M∈S)(M<M). 

Definition 9.2 In the model Mo=(S, Ma, <, V), with X,Y∈FT. 

V(M, X)=1 is abbreviated as M(X)=1, and means that in the possible world M, the formula X is true. V(M, 

X)=0 is abbreviated as M(X)=0, and means that in the possible world M, the formula X is false. X is true in Mo 

means that V(Ma, X)=1. 

Valuation V satisfies the following rules: 1) V𝜆. M(𝜆)=1. 

2) V⊃. M(X⊃Y)=1 equivalent to M(X)=1 implies M(Y)=1. 

3) V−. M(−X)=1 equivalent to (∃P∈S)(M<P and P(X)=0). 

Proposition 9.3 For X,Y∈FT. a) V∼. M(∼X)=1 equivalent to M(X)=0. 

b) V∪. M(X∪Y)=1 equivalent to M(X)=1 or M(Y)=1.  c) V∩. M(X∩Y)=1 equivalent to M(X)=M(Y)=1. 

d) V≡. M(X≡Y)=1 equivalent to M(X)=M(Y).  e) V+. M(+X)=1 equivalent to (∀N∈S)(M<N implies N(X)=1). 

f) V⊗. M(⊗X)=1 equivalent to (∃P∈S)(M<P)(P(X)=1). g) M(+X)=1 implies M(X)=1. 

h) M(−X)=0 implies M(X)=1. i) M(−𝜆)=0 

Proof.  Parts a, b, c, and d. By CPC. 

Part e. If M(+X)=1 equivalent to M(∼ −X)=1, by part a equivalent to M(−X)=0, by V− equivalent to (∀N∈S) 

(M<N implies N(X)=1). 

Part f. If M(⊗X)=1, then M(∼+∼X)=1, i.e., M(+∼X)=0, by V+, follows (∃P∈S)(M<P and P(X)=1). 

Part g. If M(+X)=1, for the part e, we have (∀N∈S)(M<N implies N(X)=1), as M<M then M(X)=1. 

Part h. If M(−X)=0, by V− results (∀P∈S)(M<P implies P(X)=1), but M<M, so M(X)=1. 

Part i. If M(−𝜆)=1, by V− affirms the existence of a world N, M<N and N(𝜆)=0, which contradicts V𝜆. 

Definition 9.4 For X,X 1,..., X 𝑛 ∈FT, a formula X is said to be valid, denoted X∈VT, if and only if X is true in 

all models for GT, i.e., X is true in the actual world of all models for GT. It is said that {X 1, ..., X 𝑛} validates Y 

if and only if (X 1 ∩X 2 ∩...∩X 𝑛)⊃Y∈VT. 

Proposition 9.5 For X∈FT. If X is an axiom of GT, then X∈VT. 

Proof.  Ax1. By V𝜆 we have for all M∈S, V(𝜆)=1. Hence, Ax𝜆 ∈VT. 

Ax2, Ax3, Ax4. Using the rule V⊃ and proceeding as usual for the validity of the intuitionistic propositional 

calculus in van Dalen [13], it is concluded that X∈VT, i.e., Ax2, Ax3, Ax14∈VT. 

Ax5. Suppose that –𝜆 ⊃Z∉VT, so there is a model, such that in the actual world M, M(–𝜆 ⊃Z)=0 by V⊃ results 

M(−𝜆)=1, contradiction. Hence, Ax5∈VT. 

Ax6 Suppose that (X⊃–𝜆)⊃–X∉VT, so there is a model, such that in the actual world M, M((X⊃–𝜆)⊃–X)=0, 
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by V⊃ results M(X⊃–𝜆)=1 y M(–X)=0, applying V– follows (∀P∈S)(M<P implies P(X)=1), as M<M follows 

M(X)=1, by V⊃ derives M(–𝜆)=1, contradiction. Hence, Ax6∈VT. 

Ax7 Suppose that [–(X⊃Y)⊃–𝜆]⊃[(–X⊃–𝜆)⊃(–Y⊃–𝜆)]∉VT, so there is a model, such that in the actual world 

M, M([–(X⊃Y)⊃–𝜆]⊃[(–X⊃–𝜆)⊃(–Y⊃–𝜆)])=0, by V⊃ results M(–(X⊃Y)⊃–𝜆)=1, M(–X⊃–𝜆)=1 y M(–Y⊃–

𝜆)=0, by V⊃ we get M(–Y)=1 y M(–𝜆)=0, applying V𝜆 we derive M(–(X⊃Y))=0. Since M(–Y)=1 according to 

V– means (∃P∈S)(M<P y P(Y)=0), since M(–(X⊃Y))=0, according to V– we obtain (∀P∈S)(M<P implies 

P(X⊃Y)=1), by V⊃ we get P(X)=0, in addition, as M(–X⊃–𝜆)=1 y M(–𝜆)=0, by V⊃ we infer M(−X)=0, by 

V− follows (∀P∈S)(M<P implies P(X)=1), in particular P(X)=1, which is impossible. Therefore, Ax7∈VT. 

Ax+ If X∈ {Ax1, ... , Ax7} then –X⊃–𝜆 is an axiom. Suppose that X∈ {Ax1, ..., Ax7} and –X⊃–𝜆 ∉VT, so 

there is a model, such that in the present world M, M(–X⊃–𝜆)=0, by V⊃ results M(–X)=1, by V– equivalent to 

(∃P∈S)(M<P y P(X)=0), resulting in X∉VT, but as X∈ {Ax1, ... , Ax8}, the opposite has already been proved 

above. Hence, Ax+∈VT. 

Proposition 9.6 For X,Y∈FT. 1) X∈TT then X∈VT. 2) If {X1, ..., X 𝑛} implies Y then {X1, ..., X 𝑛} valid to Y. 

Proof.  Part 1. Suppose X∈TΓ, X∈VT is proved by induction over the length, L, of the proof of X. Base step L 

= 1. It means that X is an axiom, which from proposition 9.5 follows that X∈VT. 

Induction step. As an inductive hypothesis, we have that for every formula Y, if∈ Y∈TT and the length of the 

proof of Y is less than L (where L>1) then Y∈VT. If X∈TT and the length of the proof of X is L, then X is an 

axiom or X is a consequence of applying Mp in earlier steps of the proof. In the first case, we proceed as in the 

base case. In the second case, we have for some formula Y, proofs of Y and Y⊃X, where the length of both 

proofs is less than L, using the inductive hypothesis it is inferred that Y∈VT and Y⊃X∈VT, so that, in the 

current world, M, of any model we have M(Y)=1 and M(Y ⊃ X)=1, by V ⊃  it turns out that M(X)=1, 

consequently, X∈VΓ. Using the principle of mathematical induction, it has been proved that, for every X∈FT, 

X∈TT implies X∈VT. 

Part 2. Suppose that {X 1, ..., X  𝑛} implies Y, applying CPC, we have 

(X 1 ∩... ∩X 𝑛)⊃Y∈TT, from the part a is inferred, (X 1 ∩X 2 ∩...∩X 𝑛)⊃Y∈VT, which means that {X 1, ..., 

X 𝑛} validates Y. 

 

X. Semantic-Deductive Characterization GT 
In this section, we present the characterization of GT with the semantics of the previous section. Completeness 

is proved in proposition 10.9 (valid formulas in semantics are theorems of GT), and characterization is achieved 

in proposition 10.10 (theorems of GT are the valid formulas of semantics and only they). 

Definition 10.1 Extension locally consistent and extension locally complete similar to definition 4.1. 

Proposition 10.2 For X∈FT. a) GT is locally consistent. b) If E∈EXT(GT), X∉TT-E, and Ex∈EXT(GT) are 

obtained by adding ∼X as a new formula to E, then Ex is locally consistent. The proof is similar to proposition 

4.2. 

Proposition 10.3 If E∈EXT(GT) is locally consistent, then there exists 

E’∈EXT(GT) which is locally consistent and complete. The proof is similar to proposition 4.3. 

Proposition 10.4 For Y, Z 1, ..., Z 𝑘 ∈FT. If {+Z 1, ..., +Z 𝑘, ⊗Y} is locally consistent then {Z 1, ..., Z 𝑘, Y} is 

locally consistent. 

Proof.  Suppose {Z 1, ..., Z  𝑘, Y} is locally inconsistent in GT, so there exists a formula W∈FT such that, from 

{Z 1 , ..., Z 𝑘 , Y}, W∩∼W is inferred in GT, using CPC it turns out that    ∼(Z 1 ∩ … ∩Z 𝑘 ∩Y)∈TΓ , by 

proposition 8.12 ∼(+Z 1  ∩ … ∩+Z 𝑘 ∩⊗Y)∈TT so {+Z 1, … , +Z 𝑘, ⊗Y} is locally inconsistent in GT. It has 

been proved that {Z 1, … , Z 𝑘, Y} locally inconsistent implies that {+Z 1, … , +Z 𝑘, ⊗Y} locally inconsistent, 

i.e., {+Z 1, …, +Z 𝑘, ⊗Y} locally consistent implies {Z 1, … , Z 𝑘, Y} locally consistent. 

Definition 10.5 Be locally consistent and complete E,F∈EXT(GT). F is said to be subordinate to E if and only if 

there is Y∈FT, such that Y∈E, and furthermore for every Z∈FT, such that +Z∈E, we have to Y,Z∈F. 

Proposition 10.6 For E∈EXT(GT), X∈FT. If E is locally consistent and complete and X∈E, then there exists 

F∈EXT(GT) locally consistent and complete such that X∈F and F is subordinate to E. 

Proof. Suppose X∈E. For EX ={X}∪{Z: +Z∈E}, since E is locally consis- tent, then for proposition 10.4, 

EX is also locally consistent. By adding to EX the axioms of GT and all their consequences, we get an extension 

of GT that includes EX , using proposition 10.3, we construct a locally consistent and lo- cally complete 

extension F of GT which includes EX . Like X∈EX , also X∈F. If +W∈E, by definition, W∈EX , so W∈F. 

Therefore, F is subordinate to E.  ■ 

Proposition 10.7 For locally consistent and complete E,F,G∈EXT(GT). 

RR. Reflexivity. F is subordinate to F. 

Proof.  For X be the axiom Ax1, so X∈TT, and since by CPC we have X⊃X, it follows that X∈TT, then X∈F. 

Suppose that +W∈F, by proposition 8.11 it follows that W∈F. Hence, F subordinate to F. 

Proposition 10.8 If E’∈EXT(GT) is locally consistent and complete, then there exists a model in which all 
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X∈TT-E’ is true. 

Proof.  The model (S, ME 𝑎, <, V) is defined as follows: For E, F, G, ..., be locally  consistent and complete 

extensions of E’ (E 𝑡𝑜 the initial and the other subordinates), presented in the preceding propositions. To each 

extension F, a possible world MF is associated, for S the set of such possible worlds and ME 𝑡𝑜 the actual 

world. The accessibility relation, <, is constructed as follows: MF<MG if and only if G is subordinate to F. 

For each MF∈S and for each X∈F, V(MF,X)=1 if X∈F and V(MF,X)=0 if ∼X∈F, where F is the locally 

consistent and complete extension associated with MF. Note that V is functional because F is locally consistent 

and complete. To claim that M is a model, rules 1 to 3 of definition 9.2 must be guaranteed. 

1. By Ax𝜆 You have 𝜆 ∈TT, so 𝜆 ∈F, i.e., V(MF,𝜆)=1. Therefore, V𝝀 is satisfied. 

2. In the case of the conditional X ⊃ Y. Using CPC we have the following chain of equivalences: 

V(MF,X⊃Y)=0, i.e. ∼(X⊃Y)∈F, by CPC we follow X∩∼Y∈F, resulting in CPC that X∈F y ∼Y∈F, which 

means that V(MF,X)=1 and V(MF,Y)=0, so V⊃ is satisfied. 

3. In the case of rule V−. Sea MF is a world associated with F, MG is a world associated with G and Z∈FK. 

Suppose that V(MF,−Z)=1, so −Z∈F, and by proposition 8.12 ⊗∼Z∈F, by proposition 10.6, there exists G 

subordinate to F, such that ∼Z∈G, resulting that, (∃MG∈S)(MF<MG y MG(Z)=0). 

To prove the reciprocal, suppose (∃MG∈S)(MF<MG y MG(Z)=0). If V(MF,−Z)=0, then it follows that ∼
−Z∈F, i.e. +Z∈F, and since MF<MG, i.e., G is subordinate to F, then Z∈G, i.e., MG(Z)=1, result, by the 

hypothesis, that G is locally inconsistent, which is not the case. Therefore, V(MF, −Z)=1. Since the reciprocal 

has already been proved, then definition V− is satisfied. 

Based on the above analysis, it is inferred that V is a valuation, and since the constraint RR is guaranteed by 

proposition 10.7, it is finally concluded that M is a model. 

To conclude the proof, for X a theorem of E’, so X is in E’. Therefore, using the definition of V, it turns out that 

V(MEa,X)=1, i.e., X is true in the model M=(S, MEa, <, V). 

Proposition 10.9 For X,X1, ..., X 𝑛 ∈FT. a) If X∈VT then X∈TT. 

b) If {X 1,… , X 𝑛} validates Y then Y is a consequence of {X 1,… , X 𝑛}. 

Proof.  Part a. If X∉TT, then, by proposition 10.2, the extension E’, obtained by adding ∼X as a new formula, 

is locally consistent. Thus, according to proposition 10.8, there is a model M such that every theorem of E’ is 

true in M, and since ∼X∈TT-E’, then ∼X is true in M, i.e., X is false in M, hence X∉VT. It has been proved 

that X∉TT implies X∉VT, i.e., X∈VT implies X∈TT. 

Part b. Suppose {X  1 ,… , X  𝑛}  validates Y, i.e., (X  1 ∩X  2 ∩ … ∩X  𝑛 )⊃Y∈VT, by part a, follows that, 

(X  1 ∩X  2 ∩ …  ∩X  𝑛 )⊃Y∈TT. If    {X  1 ,… , X  𝑛}  are assumed, by CPC Y is inferred, therefore Y is a 

consequence of {X 1, ..., X 𝑛}. 

Proposition 10.10 For X,Y,X1,..., X 𝑛  ∈FT. a) X∈VT if and only if X∈TT. 

b) {X 1, ..., X 𝑛} validates   Y   if and only if {X 1, ..., X 𝑛} implies Y. 

Proof.  Direct consequence of propositions 9.6 and 10.9. 

 

XI. Existential Graphs GET 
In this section, we present the primitive existential graphs for the GT system. For the construction of existential 

graphs, a variant of the notation proposed by Peirce in 4.378 of Peirce’s Collected Papers [8] is used. 

Definition 11.1 The set, GET, of existential graphs for the GT system, is constructed from a set of atomic 

graphs, GA, and the constant (𝜆 empty graph, =’_’), as follows. 

1) P∈GA implies P∈GET. 2) 𝜆 ∈GET. 3) X∈GET implies {X} ∈GET. 4) X,Y∈GET implies (X(Y))∈GET. 

Definition 11.2 The graph (X(Y)) it is called a conditional graph. In (X(Y))), X is called antecedent and Y 

consequent. Conditional cuts, (...(...)), are called continuous cuts. In the {Z} graph, the cut {...}, it’s called a 

broken cut. 

Definition 11.3 For X∈GET. Lambda is defined as the assertion sheet 

𝜆 = ’_’. Strong graph as *X = ({X}). Total falsehood as ⊥ = { }. 

Definition 11.4 RTRA. Primitive Transformation Rules 

R1. Strong double cut writing. The strong double cut is a graphical theorem, i. e., ({_}), ({𝜆}). 

R2. 1) Graphs erasure. A graph can be deleted when it is in an even region. XY 𝑝|⇒ X 𝑝. 2) Writing graphs. In 

an odd region,  any graph can be written. X 𝑖 |⇒ XY 𝑖 
R3. Unrestricted iteration and de-iteration of graphs in continuous cuts-only region. A chart can be iterated or 

unrotated in any region, odd or even, if the region is only surrounded by zero or more continuous cuts.) 

Y(X) 𝑛𝑐𝑐    ⇔ Y(XY) 𝑛𝑐𝑐.  X   ⇔ XX 

R4. 1) Erased in a cut. A continuous cut can be partially erased (generating a broken cut) when it is in an even 

region. (X) 𝑝| ⇒ {X} 𝑝. 2) Writing on a cut. A broken cut can be completed (generating a continuous cut) when 

it is in an odd region. {X} 𝑖 |⇒ (X) 𝑖 
R5. Erasure of continuous double cutting. A continuous double cut can be erased in an even region. ((X 𝑝))|⇒ 
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X 𝑝 

Continuous double cut writing. A continuous double cut can be written around a graph that is in an odd 

region.X 𝑖 |⇒((X 𝑖)) 
Rules RI1, RI2 and RI3 presented in definition 5.5. 

Definition 11.5 For X∈GET. X is a graphical theorem of GET, denoted X∈ TGET, if there is a proof of X from 

the graph, using the graph 𝜆 transformation rules, i.e. X is the last row of a finite sequence of lines, in which 

each of the lines is , or is inferred from previous rows, using the transformation rules. Or to put it briefly, 

X∈TGET if and only if 𝜆 >>X. The number of lines, of the finite sequence, is referenced as the length of the 

proof of X. 

Y>>X, means that X is obtained from Y using a finite number of transformation rules. 

Proposition 11.6 For X,Y∈GET. (∀R∈RTRA)[X 𝑝 ⟹
  𝑅    

Y](∃R’∈RTRA)[Y 𝑖 ⟹
  R′  

X]. Proof by simple inspection of 

the primitive rules. 

Proposition 11.7 For X,Z∈GET. a)X>>Z |⇒ X 𝑝 >>Z. b) X>>Z |⇒ Z 𝑖 >>X. 

Proof.  Suppose X>>Z , it must be proved that [X 𝑝 >>Z and Z 𝑖 >>X]. 

If X >> Z then there are R  1 , … , R  𝑛 ∈ RTRA, and there are X  1 , … , X  𝑛−1 ∈ GET, such that 

XR 1X 1R 2X 2 … X 𝑛−1R 𝑛Z, and the length of the X>>Z transformation is said to be n and X>>  𝑛Z is 

denoted. The proof is performed by induction on the length of the transformation. Base step. n=1. It means that 

only one of the primitive rules was applied, and since X is in an even region, then R must be of the form 

X 𝑝 ⟹
    𝐑      

Z with R∈RTRA. From proposition 11.6 it is inferred that Z 1 ⟹
    R′      

X with R’∈RTRA. 

Inductive step. Inductive hypothesis ( ∀n> 1)[W >>  𝑛 K ⇒ { W  𝑝 >> K, K  𝑖 >> W } , so X >>  𝑛 X  𝑛  and 

X 𝑛R 𝑛+1Z. Applying the inductive hypothesis and proposition 11.6 we get X 𝑝 >>X 𝑛 and X 𝑛R 𝑛+1Z, X 𝑛𝑖 >

>X and Z 𝑖R’ 𝑛+1X 𝑛… . So, X 𝑝 >>Z 𝑝 y Z 𝑖 >>X.  By the principle of mathematical induction, the truth of 

the proposition is concluded. 

Proposition 11.8 TDG. Graphic deduction theorem. For X,Z ∈ GET. X >> Z | ⇒ (X(Z)). Proof similar to 

proposition 5.10. 

Proposition 11.9  For X∈GET. a) ((_)), *𝜆, {(_)}, ⊗ 𝜆, 𝜆. b) X 𝑝 |⇒((X 𝑝)). c) ((X)) ⇔ X. 

Proof.  Part a. By R1 we have ({_}), i.e. ({𝜆}), which means *𝜆. By having ({_}), by R4 we infer ((_)), again by 

R4 we derive {(_)}, i.e. {(𝜆)}, which means ⊗ 𝜆. Since we already have ((_)), i.e. ((𝜆)), Using R5 we conclude 

𝜆. 

Part b. Suppose X, for part a, we have ((_)), applying R3 we conclude ((X)). X⇒((X)) has been tested. 

Part c results from parts b together with rule R5. 

Proposition 11.10 For X∈GET. a) *X 𝑝|⇒ X 𝑝. i.e. ({X 𝑝}) |⇒ X 𝑝. b) X 𝑖 |⇒*X 𝑖,   𝑖. 𝑒.  X 𝑖 |⇒({X 𝑖}). 

Proof.  Part a. Suppose ({Xp}), by R4 we get ((Xp)), according to R5 we derive Xp. Therefore, ({Xp})|⇒ Xp. 

Part b. Using proposition 11.7 concludes X 𝑖 |⇒ ({X 𝑖}). 

Proposition 11.11 For X∈GET. {_} 𝑝 |⇒X 𝑝, for everything X∈GET 

Proof.  By R1 we have ({_}), using R2 we infer ({_}(X)), Suppose {_}, by R3 we ensure ((X)), according to R5 

we conclude X, we have proved, {_} >>X. By proposition 11.7 we conclude {_} 𝑝 |⇒ X 𝑝. 

Proposition 11.12 For X∈GET. X∈TGET implies X 𝑝  |⇒*X 𝑝. i.e.    X 𝑝  |⇒({X}) 𝑝 

Proof.  If X∈TGET then 𝜆 >>X, applying proposition 11.7 we derive 𝜆p>>Xp, and by R1 we have ({𝜆p}), 

then we conclude ({Xp}). Therefore, Xp⇒({X}), i.e., Xp ⇒ *X. 

Proposition 11.13 For X∈GET. a) X>> {_} implies {X}. b) {X} >> {_} implies X. 

Proof.  Part a. Suppose X>> {_}, by TD results (X({_})), by R1 we have ({_}), applying R3 we deduce (X), 

according to R4 we conclude {X}. 

Part b. Suppose {X} >> {_}, by TD results ({X}({_})), by R1 we have ({_}), applying R3 we deduce ({X}), 

according to proposition 11.10 we conclude X. 

 

XII. Equivalence Between GT And GET 
In this section, the equivalence between GT and GET is presented, initially, in proposition 12.3, it is 

proved that the theorems of GT are graphical theorems of GET, in proposition 12.8, it is proved that the 

graphical theorems of GET are valid in the semantics of possible worlds, in proposition 12.12, it is proved that 

the theorems of GT are exactly the graphic theorems. 

Definition 12.1 Translation function [_]’ of FT in GET. Be X,Y∈FT and P∈FA. 

1) P’ = P. 2) [X⊃Y]’ =(X’(Y)).  3) [X∪Y]’ = ((X’)(Y’)). 4) [−X]’ = {X’}. 5) [X∩Y]’ = X’Y’. 

6) [∼X]’ = (X’). 7) 𝜆’ = 𝜆. 

Translation function, (_)” of GET in FT. For X,Y∈GET, P∈GA. 1) P”=P. 2) 𝜆”=𝜆. 

3) (X(Y))”=X”⊃Y”. 4) ((X)(Y))” = X”∪Y”. 5) {X}”= −X’. 6) (XY)”=X”∩Y”. 
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Proposition 12.2 For X∈FT. If X is an axiom of GT then X’∈TGET. 

Proof.  Using primitive rules, you have: 

Ax1. 𝜆. Since 𝜆’=𝜆, then for proposition 11.9, 𝜆 ∈TGET. 

Ax2. X⊃(Z⊃X). By proposition 11.9 we have ((_)) and ((_)), by R3 we derive ((((_)))), using the rule R2 

follows (X’(((_))), applying R3 results (X’(((X’)))), again by R2 we derive (X’((Z’(X’)))), i.e. (Ax2)’∈TGET. 

Ax3. (X⊃(Y⊃Z))⊃((X ⊃Y)⊃(X⊃Z)). Suppose (X’((Y’(Z’)))), (X’(Y’)) and X’. By R3 we can deduce 

((Y’(Z’)))), ((Y’)), applying R5 we follow (Y’(Z’)), Y’, using R3 we infer ((Z’)), by R5 we conclude Z’. By 

TDG (proposition 11.8) 2 times, it has been proved that (Ax3)’∈TGET. 

Ax4. [(X⊃Y)⊃ X]⊃X. Suppose ((X’(Y’))(X’)), by R2 we get ((X’)(X’)), as R3 results ((X’)), applying R2 

derives X’. Using TDG it is concluded that (Ax4)’∈TGET. 

Ax5. –𝜆 ⊃Z. By proposition 11.11 we have {_} >>Z, applying TDG we conclude that (Ax5)’∈TGET. 

Ax6. (X⊃–𝜆)⊃–X. Suppose (X’({_})), whence X’>> {_}, by proposition 11.13 is derived {X’}. Using TDG it 

is concluded that (Ax6)’∈TGET. 

Ax7. [–(X⊃Y)⊃–𝜆]⊃[(–X⊃–𝜆)⊃(–Y⊃–𝜆)]. Suppose ({(X’(Y’))}({_})), 

({X’}({_})). i.e. *(X’(Y’)), *X’, by propositions 11.7 and 11.10 follows *(*X’(Y’)), using R3 we deduce 

*((Y’)), applying R5 we affirm *Y’. Using TDG it is concluded that (Ax7)’∈TGET. 

Ax+. If X∈ {Ax1, , Ax7} then –X⊃–𝜆 is an axiom. Consequence of proposition 11.12: X∈TGET implies 

X 𝑝  ⇒*X 𝑝. 

Proposition 12.3 For X∈FT. a) If X∈TT then X’∈TGET. b) If X〉〉Y then X’>>Y’. 

Proof.  Part a. Induction on the length of the X demonstration in GT. 

Base step. If the length of the proof is 1, then X is an axiom, by proposition 12.2 X’∈TGET. 

Induction step. The inductive hypothesis is: if Y∈TT and the length of the proof of Y is less than L then 

Y’∈TGET. Suppose X∈TT and that the length of the proof of X is L, so X is an axiom or obtained from 

previous steps using Mp. In the first case, proceed as in the base step. In the second case, Y and Y⊃Z are taken 

in previous steps of the proof of X, i.e., the lengths of the proofs of Y and Y⊃X are less than L, by the inductive 

hypothesis it turns out that Y’∈TGET and (Y’(X’))∈TGET, applying R3 infers ((X’))∈TGET, using R5 we 

conclude X’∈TGET. By the principle of mathematical induction, it is proved that the theorems of GT are 

graphic theorems. 

Part b. If X implies Y, then X⊃Y∈TT, by the part a, (X’(Y’))∈TGET, i.e., 𝜆 >>(X’(Y’)), if X’ is assumed, by 

R3 follows ((Y’)), applying R5 results in Y’, so X’>>Y’. 

Proposition 12.4 For X,Y,Z∈GT. If X⇒Y then Y” is validly inferred from X”, in the case of the most elementary 

versions of the rules. Generalization to arbitrary odd or even regions will be presented later. 

Proof.  R1. ({_}). If ∼ −𝜆 it is invalid then there is a model with the actual world M such that, M(∼ −𝜆)=0, by 

V∼ follows M(−𝜆)=1, by V− it follows that (∃P∈S)(M<P y P(𝜆)=0). Which contradicts V𝜆. Therefore, R1” is 

valid. 

R2. XZ|⇒ X. Consider an arbitrary model with the actual world M. Suppose that M(X”∩Y”)=1, by V∩ we 

derive M(X’)=1. Therefore, R2” is a valid rule in GT. 

R3. Y(X)⇔Y(XY). Consider an arbitrary model with the actual world M. Suppose that M(Y”∩∼X”)=1, by V∩ 

follow M(Y”)=1, M(∼X”)=1, according to V∼ derive M(X”)=0, using V∩ we affirm M(X”∩Y”)=0, by V∩ we 

infer M(∼(X”∩Y”))=1, Applying V∼ we get M(Y”∩ ∼(X”∩Y”))=1. It has been proved that M(Y”∩∼X”)=1 

implies M(Y”∩∼(X”∩Y”))=1.  To prove the reciprocal, suppose that (Y”∩∼(X”∩Y”))=1, by V∩  follow 

M(Y”)=1 and M(∼(X”∩Y”))=1, resulting M(X”∩Y”)=0, i.e. M(Y”)=0 or M(X”)=0, but M(Y”)=1, so M(X”)=0, 

i.e. M(∼X”)=1, and by V∩ we deduce M(Y”∩∼X”)=1. It has been proved that M(Y”∩∼(X”∩Y”))=1 implies 

M(Y”∩∼X”)=1. Therefore, R3” is a valid rule in GT. 

R4. (X)|⇒ {X}. Consider an arbitrary model with the actual world M. Suppose that M(∼X”)=1, i.e. M(X”)=0, 

and since M<M, we can affirm (∃N)(M>N) N(X”)=0, by V− we derive M(−X”)=1. It has been proved that 

M(∼X”)=1 implies M(−X”)=1. Therefore, R4” is a valid rule in GT. 

R5. ((X))|⇒ X. Suppose that M(∼∼X”)=1 is equivalent to M(∼X”)=0, again by the same rule we conclude 

M(X”)=1. It has been proved that M(∼∼X”) =1 implies M(X”)=1. Therefore, R5” is a valid rule in GT. 

Proposition 12.5 For X,Y,Z,W∈FT. If X⊃Y∈VT are valid in GT: 

a) (X∩Z)⊃(Y∩Z). b) −(Y∩Z)⊃ −(X∩Z).   c) −(W∩ −(X∩Z))⊃ −(W∩ −(Y∩Z)). 

Proof.  Suppose X⊃Y∈VT, so you have the initial result, for every model, (S, Ma, <, V), and for every M∈S, 

M(X⊃Y)=1. Part a. Is CPC result. 

Part b. Be M be the actual world of any model. Suppose that M(−(Y∩Z))=1, then by V−, there is P∈S, M<P 

and P(Y∩Z)=0. Suppose M(−(X∩Z))=0, times V− it follows that, for every N∈S, M<N implies N(X∩Z)=1, 

and as M<P then P(X∩Z)=1, times ∩ we have P(X)=1 and P(Z)=1, as P(Y∩Z)=0, by V∩, P(Y)=0 is derived, 

but as P(X)=1, and by the initial result, P(X⊃Y)=1, then by V⊃, we get P(Y)=1, which is not the case, so 

M(−(X∩Z))=1. It has been proven that, M(−(Y∩Z))=1 implies M(−(X∩Z))=1, which by V⊃ means that 
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M(−(Y∩Z)⊃ −(X∩Z))=1. Therefore, −(Y∩Z)⊃ −(X∩Z)∈VT. 

Part c. Be M be the actual world of any model. Suppose that M(−(W∩ −(X∩Z)))=1, then by V−, there is P∈S, 

M<P and P(W∩ −(X∩Z))=0. 

Assumption 2, M(−(W∩ − (Y∩Z)))=0, times V−  it follows that, for every N∈S, M<N implies N(W∩
−(Y∩Z))=1, and as M<P then P(W∩ −(Y∩Z))=1, by V∩ we have P(W)=1 and P(−(Y∩Z))=1, by V− it 

follows that, there is Q ∈ S, P < Q and Q(Y ∩ Z)=0, such as P(W)=1 and P(W ∩ − (X ∩ Z))=0, follows 

P(−(X∩Z))=0, by V−  it follows that, for each N∈S, P<N implies N(X∩Z)=1, as P<Q, in particular, 

Q(X∩Z)=1, follows V∩ followed by Q(X)=1 and Q(Z)=1, for the initial result, we have Q(X⊃Y)=1, follows 

V⊃ Q(Y)=1, and having Q(Z)=1, is derived Q(Y∩Z)=1, which is not the case, so M(−(W∩ −(Y∩Z)))=1. It has 

been proven that, M(−(W∩ −(X∩Z)))=1 implies M(−(W∩ −(Y∩Z)))=1, which by V⊃ means that M(−(W∩
−(X∩Z))⊃ −(W∩ −(Y∩Z)))=1. Therefore, −(W∩ −(X∩Z))⊃ −(W∩ −(Y∩Z))∈VT. 

Proposition 12.6 For X,Y,Z,W∈FT. If X⊃Y∈TT are GT theorems: 

a) (X∩Z)⊃(Y∩Z). b) −(Y∩Z)⊃ −(X∩Z).  c) −(W∩ −(X∩Z))⊃ −(W∩ −(Y∩Z)). 

Proof.  A direct consequence of propositions 10.10 and 12.5. 

Proposition 12.7 For X,Y,Z,W,V∈FT. If X〉〉Y then, a) X 𝑝〉〉Y. b) Y 𝑖〉〉X. 

Proof.  Induction in the number, n, of negations surrounding X. 

Base step. n=0. X∩Z〉〉Y∩Z, is satisfied by proposition 11.7. 

n=1. There are 2 possibilities, –{X∩Z} and ∼ {X∩Z}. For proposition 12.6, we have –{Y∩Z} ⊃–{X∩Z}, for 

CPC we have ∼ {Y∩Z} ⊃∼ {X∩Z}, so the proposition is satisfied when n=1. 

n=2. There are 4 possibilities, –{W∩–{X∩Z}}, –{W∩∼ {X∩Z}}, ∼ {W∩–{X∩Z}} y ∼ {W∩∼ {X∩Z}}. By 

proposition 12.6, we have that, –{W∩–{X∩Z}} ⊃–{W∩–{Y∩Z}} y –{W∩∼ {X∩Z}} ⊃–{W∩∼ {Y∩Z}}, the 

other 2 cases ∼ {W∩–{X∩Z}} ⊃∼ {W∩–{Y∩Z}} y ∼ {W∩∼ {X∩Z}} ⊃∼ {W∩∼ {Y∩Z}} are taken for CPC, so 

the proposition is satisfied when n=2. 

Inductive step. Part a. As an inductive hypothesis we have that, if X is surrounded by 2n negations, then X>
>Y. By proposition 12.6 we have that, –{W∩–{X∩Z}} ⊃–{W∩–{Y∩Z}} y –{W∩∼ {X∩Z}} ⊃–{W∩∼ {Y∩Z}}, 

and by CPC we have ∼ {W∩–{X∩Z}} ⊃∼ {W∩–{Y∩Z}} y ∼ {W∩∼ {X∩Z}} ⊃ ∼ {W∩∼ {Y∩Z}}, in the 

region surrounded by 2n negations, and these are the only cases for which two other negations can be added to 

X. Therefore, if X is surrounded by 2n+2 slices, i.e. by 2(n+1) slices, then X>>Y. 

Part b. As an inductive hypothesis we have that, if X is surrounded by 2n+1 negations, then Y>>X. By 

proposition 12.6 we have that, –{W∩–{X∩Z}} ⊃–{W∩–{Y∩Z}} y –{W∩∼ {X∩Z}} ⊃–{W∩∼ {Y∩Z}}, and by 

CPC we have ∼ {W∩–{X∩Z}} ⊃∼ {W∩–{Y∩Z}} y ∼ {W∩ ∼ {X∩Z}} ⊃∼ {W∩∼ {Y∩Z}}, in the region 

surrounded by 2n+1 negations, and these are the only cases for which two other negations can be added to X. 

Therefore, if X is surrounded by 2n+1+2 negations, i.e. by 2(n+1)+1 negations, then Y>>X. By the principle 

of mathematical induction, the proposition has been proved. 

Proposition 12.8 For X,Y,Z∈GET. a) Primitive GET rules are valid rules in GT semantics. b) If X∈GET then 

X”∈VG. 

Proof.  Part a. Direct consequence of propositions 12.4 and 12.7. 

Part b. If X∈TT then 𝜆 >>X, then there are R1, ..., Rn∈RTRA, and there are X 1, ..., X 𝑛−1 ∈GET, such that 

𝜆R 1X 1R 2X 2... X 𝑛−1R 𝑛X. The proof is performed by induction over the length L of the demonstration. Base 

step. L=1. It means that only one of the primitive rules was applied, then X”∈VG. 

Inductive step. Inductive hypothesis: The proposition is valid if L < n+1 with n > 0. Be L=n+1, so 

𝜆R 1X 1R 2X 2... X 𝑛−1R 𝑛X 𝑛R 𝑛+1X, i.e. 𝜆R 1X 1R 2X 2... X 𝑛−1R 𝑛X 𝑛 and X 𝑛R 𝑛+1X, both demonstrations 

with a length shorter than n+1. Applying the inductive hypothesis, it turns out that   X 𝑛”∈VG and from X  𝑛” 

is validly inferred X”, hence X”∈VG.  By the principle of mathematical induction, the truth of the proposition is 

concluded. 

Proposition 12.9 For X,Y∈GET. a) If X∈TGET then X”∈TT. b) If X>>Y then X” implies Y”. 

Proof.  Part a. By proposition 10.10 we have that, X”∈VT if and only if X”∈TT, and by proposition 12.8 we 

have that, if X∈TGET then X”∈VG. Therefore, if X∈TGET then X”∈TT. 

Part b. Consequence of part a and proposition 10.10. 

Definition 12.10 Be T1=[_]’:FG→GG and T2=[_]”:GG →FG, be the translation functions presented in 

definition 12.1. They are defined: the composite function T1oT2:GG→GG such that (T1oT2)[X]=T1[T2[X]], 

the composite function, T2oT1:FG → FG such that (T2oT1)[X]=T2[T1[X]], the identity function in FG, 

Id 𝐹𝐺:FG→FG such that (Id 𝐹𝐺)[X]=X, the identity function in G Id 𝐺𝐺:GG→GG such that (Id 𝐺𝐺)[X]=X. 

Proposition 12.11 a) T1oT2 = Id 𝐺𝐺. b) T2oT1= Id 𝐹𝑇.  c) T1 is the inverse function of T2. d) T2 is the inverse 

function of T1. Proof similar to proposition 6.12. 

Proposition 12.12 For G,H∈GET, and X,Y∈FT. a) G∈TGET if and only if G”∈TT. b) X’∈TT if and only if 

X∈TGET. c) G>>H if and only if G”〉〉H”. d) X’>>Y’ if and only if X〉〉Y. 

Proof.  Part a. By proposition 12.9 we have that, if G∈TGET then G”∈TT, furthermore, by proposition 12.3 we 
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have that, if G”∈TT then (G”)’∈TGET, but by proposition 12.11 we know that, (G”)’=G, resulting that, if 

G”∈TT then G∈TGET, and since we have the reciprocal, we conclude that, G∈TGET if and only if G”∈TT. 

Part b. By proposition 12.3 we have that, if X∈TT then X’∈TGET, furthermore, by proposition 12.9 we have 

that, if X’∈TGET then (X’)”∈TT, by proposition 12.11 (X’)”=X, resulting that, if X’∈TGET then X∈TT, and 

since we have the reciprocal, we conclude that, X’∈TGET if and only if X∈TT. 

Part c. By proposition 12.3 we have, if G”〉〉H” then [G”]’>>[H”]’, but [G”]’=G and [H”]’=H, so if G”〉〉H” 

then G>>H, in addition by proposition 12.9 we have the reciprocal. Therefore, G>>H if and only if G”〉〉H”. 

Part d. By proposition 12.9 we have, if X’〉〉Y’ then [X’]”>>[Y”]’, by proposition 12.11 we have [X’]”=X and 

[Y’]”=Y, so if X’〉〉Y’ then X>>Y, by proposition 12.3 we have the reciprocal. Therefore, X>>Y if and only if 

X’〉〉Y’. 

 

XIII. Final Remark GT And GET 

Remark 13.1 a) GET is paraconsistent. b) GT is paraconsistent. 

Proof similar to proposition 7.2. 
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