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Abstract: 
Mathematical modelling provides a powerful framework for analysing and predicting dynamics of addiction to a 

drug. This study presents a mathematical model to evaluate the impact of education on drug addiction. The 

analysis highlights how increased awareness and preventive education can reduce addiction rates and promote 

rehabilitation. The model employs a compartmental approach, consisting of six non-linear differential equations, 

to analyze these dynamics. The basic reproduction number is derived to determine the threshold for the 

persistence or elimination of addiction. Equilibrium points are identified and it analyses the drug-free equilibrium 

that stands for the absence of addiction in the population and the endemic equilibrium, which indicates the 

presence of addiction. The local stability of the equilibrium points is conducted to find out whether the system 

remains stable or not. Empirical data was collected from treatment and rehabilitation centers through surveys 

and medical records, focusing on education levels, awareness, relapse rates and program effectiveness. 

Numerical simulations confirm the theoretical results, highlighting the need for targeted interventions to reduce 

addiction prevalence and formulating public health strategies. 
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I. Introduction 

Mathematical modelling is the process of using mathematics to represent real-world systems or 

phenomena. It involves translating a problem from the physical, biological, economic or social world into 

mathematical terms, which can then be analysed or solved using various mathematical techniques. The aim of 

mathematical modelling is to gain insight into the system being studied, predict future behaviour or inform 

decision-making. Mathematical modelling is used to understand, analyse and predict complex systems across 

various fields. It helps in disease spread prediction, climate modelling, optimizing industrial processes and 

financial risk assessment. The process of converting a real word problem into the language of mathematics is 

described in figure 1. 

 

 
Figure 1: Scientific Process to connect real world problem with Mathematics 
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Mathematical Model approach is particularly valuable in the field of epidemiology, where it is used to 

study the spread and control of diseases within populations. By applying mathematical models to epidemics, we 

can simulate disease transmission, estimate key epidemiological parameters and evaluate the potential impact of 

various public health interventions. There are two primary types of epidemic models: deterministic and stochastic. 

A stochastic model includes randomness, using probability distributions to reflect uncertainty. So even 

with the same starting conditions, outcomes can differ across simulations. It is ideal for unpredictable systems 

like stock markets or weather forecasting. A deterministic model has no randomness - outcomes are fully 

determined by initial conditions and fixed parameters. It often divides populations into compartments with 

predictable transitions between them. 

Mathematical modelling is playing an important role in spread and control of many addictions including 

drug addiction. Drug addiction is a chronic and relapsing condition characterized by compulsive substance use 

despite harmful consequences, disrupting the brain’s reward system and leading to physical and psychological 

dependence. The development of addiction is influenced by genetic, environmental and social factors, with peer 

pressure, mental health issues and trauma acting as key triggers. Over time, prolonged substance uses results in 

severe health complications, including organ damage, cognitive impairments and an increased risk of infectious 

diseases, which complicate the individual’s struggle with recovery. 

In India, drug addiction is a significant public health concern, affecting millions across various 

demographics. According to the 2019 National Survey, approximately 16 crore people aged 10 - 75 are current 

alcohol users, 3.1 crore use cannabis and 2.06% of the population uses opioids. Recent reports from December 

2024 show over 10.47 crore people are affected by substance abuse, including 15 million children and adolescents. 

The growing prevalence of inhalant use, particularly among children and adolescents, exacerbates this issue, with 

a higher usage rate among youth (1.17%) compared to adults (0.58%). 

The intersection of drug addiction and youth crime is particularly concerning, with increase the regions 

witnessing a rise in juvenile delinquents struggling with addiction. This highlights the urgent need for targeted 

interventions, especially for youth who are at greater risk of long-term dependency. 

To address this crisis, a multifaceted approach is required, combining early intervention, public 

awareness campaigns and comprehensive rehabilitation programs. Policy changes and community engagement 

are essential for creating a supportive environment for recovery. Targeting at-risk groups, such as children, 

adolescents and young adults, can significantly reduce the harmful impacts of addiction on both individuals and 

society. Collaborative efforts involving healthcare professionals, policymakers and community leaders are key to 

breaking the cycle of addiction, reducing its prevalence and improving public health outcomes across the country. 

 

II. Literature Review 

Babaei, A., et al. (2020)[3] developed a mathematical model to explore the interaction between drug 

addiction and HIV/AIDS transmission in Iranian prisons. Initially, they analysed the stability of both addiction 

and HIV/AIDS models independently, excluding medical treatment. The study was later extended by 

incorporating parameters for drug addiction treatment to assess its impact on HIV/AIDS spread. Findings 

highlight that rehabilitative treatments can significantly reduce the disease's transmission, as demonstrated 

through comparative reproduction numbers under different treatment scenarios. 

Binuyo, A. O.  (2021)[4] developed a mathematical model to analyse drug substance addiction among 

students in Nigerian tertiary institutions. The model focuses on the dynamics of mood-altering substance use and 

addiction, with the basic reproduction number derived via the next generation method. The drug-free equilibrium 

is locally asymptotically stable when this number is less than one. The study found that increased student 

recruitment and relapse rates raise the addiction number, while higher interaction rates between users and non-

users lead to more drug use. Policy intervention is recommended to curb drug sales and use among students. 

Bansal, K., et al. (2022)[5] proposed a fractional-order mathematical model to analyse the public health 

impact of illegal drug use. The model is built on epidemiological principles, with drug transmission driven by 

social interactions between susceptible individuals and drug users. A threshold value is derived to assess model 

stability. Using a Lyapunov function, stability of the addiction equilibrium is examined. The model is further 

extended to incorporate time delay, leading to conditions for Hopf bifurcation. Numerical simulations validate 

the theoretical findings and highlight the model’s dynamic behaviour. 

Andrawus, J., et al. (2024)[1] proposed a deterministic nonlinear model to study drug abuse and addiction, 

incorporating interventions like awareness and rehabilitation. The model's mathematical analysis confirmed 

solution positivity, boundedness, and the existence of two equilibria: the drug-free equilibrium (DFE) and the 

drug-endemic equilibrium point (DEEP). The DFE is globally asymptotically stable if 𝑅0 < 1, while the DEEP 

is globally stable when 𝑅0 > 1 and 𝛿1 = 𝛿2 = 0, as shown via a Go-Volterra-type Lyapunov function. 

Simulations emphasized that increasing awareness and rehabilitation rates significantly helps in curbing drug 

addiction. 
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Zanib, S. A., et al.  (2024)[15] addressed drug addiction as a global public health issue and introduced a 

novel mathematical model with compartments: 𝑆𝐷, 𝐸𝐷, 𝐻𝐷, 𝐿𝐷, 𝑅𝐷, and 𝐶𝐷, to study its dynamics. The model 

distinguishes between heavily and lightly addicted individuals, incorporating rehabilitation as a control strategy. 

Using the RK4 method in Maple, the study emphasizes early identification and intervention to prevent escalation 

of addiction severity. Simulation results highlight that interaction rates (𝛾) and rehabilitation rates 𝛿1 and 𝛿2 are 

key factors in reducing the drug-addicted population. 

Ullah, A., et al. (2024)[14] presented a modified NERA model to address marijuana use, introducing a 

new class for addicted individuals under treatment - termed the hospitalized class. The model employs first-order 

nonlinear ODEs to represent marijuana consumption dynamics and classifies the population into non-users, 

experimental users, recreational users, addicts, and hospitalized individuals. Validation through invariant region 

analysis and the basic reproduction number 𝑅0 helped assess initial transmission potential. Sensitivity analysis 

identified key factors influencing marijuana spread, and prevention-based control strategies were tested using 

RK4 simulations in MATLAB, confirming their effectiveness. 

 

III. Mathematical Model 

Here, we formulate a model based on the SIRS (Susceptible (S), Infected (I), Recovered (R)) model of 

drugs addiction. The entire population is divided into six compartments based on addiction status, which are 

referred to as state variables. The compartments are denoted as, Susceptible population (𝑆), Exposed population 
(𝐸), Lightly addicted educated population (𝑀𝐸), Lightly addicted uneducated population (𝑀𝑈𝐸), Heavily 

addicted population (𝐻) and Recovered population (𝑅). 

• Let us assume homogeneous population mixing, i.e., each individual can contact any other individual. 

• The transitions between the different subpopulations are determined as follows: 

a. Newly recruited individuals enter the susceptible subpopulation 𝑆(𝑡). Susceptible individuals 

become exposed to drug 𝐸(𝑡) use through interaction with drug-exposed individuals at a rate 

𝛼. 

b. An individual exposed to drugs 𝐸(𝑡) may be either lightly addicted and educated 𝑀𝐸(𝑡) or 

lightly addicted and uneducated 𝑀𝑈𝐸(𝑡). 

c. Exposed individuals 𝐸(𝑡) do not get heavily addicted 𝐻(𝑡) directly. 

d. An educated/uneducated person with a lightly drug addicted may be either heavily addicted 

𝐻(𝑡) or recovered 𝑅(𝑡) through self-realization. 

e. Recovered person 𝑅(𝑡) becomes susceptible 𝑆(𝑡) again due to loss of immunity. 

f. The death rate in compartments (𝑆), (𝐸) and (𝑅) is same and denoted by 𝜇. The death rate in 

addicted classes (𝑀𝐸(𝑡)), (𝑀𝑈𝐸(𝑡)) and (𝐻) is same and denoted by 𝛿. 

The notations and parametric values used in this model are given in the following Table 1. 

 

Table 1: Variables and its descriptions 
Variables/ 

Parameters 
Description 

𝑆(𝑡) People who do not use drug yet but might in the future 

𝐸(𝑡) Number of individuals who have been exposed to drugs but have not progressed to addiction 

𝑀𝐸(𝑡) Number of educated individuals with lightly Drug addicted 

𝑀𝑈𝐸(𝑡) Number of uneducated individuals with lightly Drug addicted 

𝐻(𝑡) Number of people who are heavily drug addicted 

𝑅(𝑡) the number of individuals who have successfully quit drug addiction 

𝑁(𝑡) Total population 

𝐵 Recruitment rate 

𝛼 The contact rate of transmission from susceptible individuals to the exposed class 

𝛽 The rate of the exposed and educated individuals who becomes lightly drug addicted 

𝜋 The rate of the exposed and uneducated individuals who becomes lightly drug addicted 

𝜃 The rate at which lightly drug addicted and educated individuals becomes highly drug addicted 

𝜀 The rate at which lightly drug addicted and uneducated individuals becomes highly drug addicted 

𝜆 The rate at which educated individuals recover from lightly drug addicted 

𝛾 The rate at which individuals recover from highly drug addicted 

𝜎 The rate at which uneducated individuals recover from lightly drug addicts 

𝜔 The rate at which recovered individuals relapse and become susceptible (S) to drug addiction again 

𝛿 The death rate due to drug addiction 

𝜇 Natural death rate. 
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The mathematical model, formulated and depicted in Figure 2, utilizes the notations specified in Table 

1 to represent the dynamics of drug addiction. 

 

 
Figure 2: Mathematical Model 

 

By taking the above assumptions into account and the transitions of how people move among classes, 

we can construct a system of differential equations representing the model of the evolution of drug addiction as 

follows: 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐵 −

𝛼𝑆(𝑡)𝐸(𝑡)

𝑁(𝑡)
+ 𝜔𝑅(𝑡) − 𝜇𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛼𝑆(𝑡)𝐸(𝑡)

𝑁(𝑡)
− 𝛽𝐸(𝑡) − 𝜋𝐸(𝑡) − 𝜇𝐸(𝑡) 

𝑑𝑀𝐸(𝑡)

𝑑𝑡
= 𝛽𝐸(𝑡) − 𝜆𝑀𝐸(𝑡) − 𝜃𝑀𝐸(𝑡) − 𝛿𝑀𝐸(𝑡) 

𝑑𝑀𝑈𝐸(𝑡)

𝑑𝑡
= 𝜋𝐸(𝑡) − 𝜀𝑀𝑈𝐸(𝑡) − 𝜎𝑀𝑈𝐸(𝑡) − 𝛿𝑀𝑈𝐸(𝑡) 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝜃𝑀𝐸(𝑡) + 𝜀𝑀𝑈𝐸(𝑡) − 𝛾𝐻(𝑡) − 𝛿𝐻(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝜆𝑀𝐸(𝑡) + 𝛾𝐻(𝑡) + 𝜎𝑀𝑈𝐸(𝑡) − 𝜇𝑅(𝑡) − 𝜔𝑅(𝑡) 

with 

𝑆(𝑡) + 𝐸(𝑡) + 𝑀𝐸(𝑡) + 𝑀𝑈𝐸(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) = 𝑁(𝑡) 

 

IV. Basic Properties 
Invariant Region 

It is necessary to prove that all solutions of system (1) with positive initial data will remain positive for 

all times 𝑡 >  0. This will be established by the following lemma. 

 

Lemma 1: All feasible solution 𝑆(𝑡), 𝐸(𝑡),𝑀𝐸(𝑡),𝑀𝑈𝐸(𝑡), 𝐻(𝑡), 𝑅(𝑡) of system equation (1) are bounded by the 

region 

𝐴 = {(𝑆, 𝐸,𝑀𝐸 , 𝑀𝑈𝐸 , 𝐻, 𝑅) ∈ ℝ6: 𝑆 + 𝐸 + 𝑀𝐸 + 𝑀𝑈𝐸 + 𝐻 + 𝑅 ≤
𝐵

𝜇
} 

Proof. From the system equation (1) 
𝑑𝑁(𝑡)

𝑑𝑡
=

𝑑𝑆(𝑡)

𝑑𝑡
+

𝑑𝐸(𝑡)

𝑑𝑡
+

𝑑𝑀𝐸(𝑡)

𝑑𝑡
+

𝑑𝑀𝑈𝐸(𝑡)

𝑑𝑡
+

𝑑𝐻(𝑡)

𝑑𝑡
+

𝑑𝑅(𝑡)

𝑑𝑡
 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝐵 − 𝜇(𝑆(𝑡) + 𝐸(𝑡) + 𝑀𝐸(𝑡) + 𝑀𝑈𝐸(𝑡) + 𝐻(𝑡) + 𝑅(𝑡)) 

………..1 
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implies that 
𝑑𝑁(𝑡)

𝑑𝑡
≤ 𝐵 − 𝜇𝑁(𝑡) 

It follows that 

𝑁(𝑡) ≤
𝐵

𝜇
+ 𝑁(0)𝑒−𝜇𝑡 

Where 𝑁(0) is the initial value of total number of people, thus lim
𝑡→∞

sup𝑁(𝑡) ≤
𝐵

𝜇
 

Then                                                   𝑆(𝑡) + 𝐸(𝑡) + 𝑀𝐸(𝑡) + 𝑀𝑈𝐸(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) ≤
𝐵

𝜇
 

Hence, for the analysis of model (1), we get the region which is given by the set: 

𝐴 = {(𝑆, 𝐸,𝑀𝐸 , 𝑀𝑈𝐸 , 𝐻, 𝑅) ∈ ℝ6: 𝑆 + 𝐸 + 𝑀𝐸 + 𝑀𝑈𝐸 + 𝐻 + 𝑅 ≤
𝐵

𝜇
} 

which is a positively invariant set for (1), so we only need to consider the dynamics of system on the set 𝐴, the 

non-negative sets of solutions. 

 

Positivity of the solutions of the model 

Lemma 2: If 𝑆(0) ≥ 0, 𝐸(0) ≥ 0,𝑀𝐸(0) ≥ 0,𝑀𝑈𝐸(0) ≥ 0, 𝐻(0) ≥ 0 and 𝑅(0) ≥ 0 then the solution of system 

(1) 𝑆(𝑡), 𝐸(𝑡),𝑀𝐸(𝑡),𝑀𝑈𝐸(𝑡), 𝐻(𝑡) and 𝑅(𝑡) are positive for all 𝑡 > 0. 

Proof. From the system equation (1) 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝐵 −

𝛼𝑆(𝑡)𝐸(𝑡)

𝑁(𝑡)
+ 𝜔𝑅(𝑡) − 𝜇𝑆(𝑡) 

To seek positivity, we can write 
𝑑𝑆(𝑡)

𝑑𝑡
≥ 𝐵 − 𝜇𝑆(𝑡) 

⇒
𝑑𝑆(𝑡)

𝑑𝑡
+ 𝜇𝑆(𝑡) ≥ 𝐵 

The integrating factor of above equation is given by 

𝐼. 𝐹. = 𝑒∫𝜇𝑑𝑡 = 𝑒𝜇𝑡 

Multiplying 𝑒𝜇𝑡 on both side of the equation, we get 
𝑑

𝑑𝑡
(𝑒𝜇𝑡𝑆(𝑡)) ≥ 𝐵𝑒𝜇𝑡 

Now, by integrating above equation, we have 

𝑆(𝑡) ≥
𝐵

𝜇
+ 𝑐𝑒−𝜇𝑡 

where c is an integrating constant. 

Considering the initial value at 𝑡 = 0, 𝑆(𝑡) ≥ 𝑆(0) 

𝑆(0) ≥
𝐵

𝜇
+ 𝑐 ⇒ 𝑆(0) −

𝐵

𝜇
≥ 𝑐 

Substituting the value of c into the above equation, we obtain 

𝑆(𝑡) ≥
𝐵

𝜇
+ (𝑆(0) −

𝐵

𝜇
) 𝑒−𝜇𝑡  

So, at 𝑡 = 0 and 𝑡 ⟶ ∞, 𝑆(𝑡) ≥ 0. By repeating the above procedure, we can prove the positivity of all other 

state variables. 

Consequently, it is clear that ∀ 𝑡 ≥ 0. 

𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0,𝑀𝐸(𝑡) ≥ 0,𝑀𝑈𝐸(𝑡) ≥ 0, 𝐻(𝑡) ≥ 0, 𝑅(𝑡) ≥ 0 

 

V. Equilibria And Their Stability Analysis 

Equilibrium points and reproduction number (𝑹𝟎) 

Now to find equilibrium points of the mathematical model, put right hand side equals to zero in equations 

given in system (1). In this paper python software is used. This analysis helps in understanding the long-term 

behaviour of drugs dynamics under different conditions and interventions. 

The drug - free equilibrium 𝐸0 (
𝐵

𝜇
, 0,0,0,0,0) is achieved when there are no active drug users in the population 

(𝐸 =  𝑀𝐸 = 𝑀𝑈𝐸 = 𝐻 = 𝑅 = 0). The drug present equilibrium 𝐸∗(𝑆∗, 𝐸∗,  𝑀𝐸
∗,  𝑀𝑈𝐸

∗, 𝐻∗, 𝑅∗) is achieved when 

drug users exist. Where: 

𝑆∗ =
𝑁(𝛽 + 𝜇 + 𝜋)

𝛼
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𝐸∗ =
(𝛿 + 𝛾)(𝜇 + 𝜔)(𝛿 + 𝜀 + 𝜎)(𝛿 + 𝜆 + 𝜃)(𝛼𝐵 − 𝑁𝛽𝜇 − 𝑁𝜇2 − 𝑁𝜇𝜋)

𝛼(𝛽𝛿3𝜇 + 𝛽𝛿3𝜔 + 𝛽𝛿2𝜀𝜇 + 𝛽𝛿2𝜀𝜔 + 𝛽𝛿2𝛾𝜇 + 𝛽𝛿2𝛾𝜔 + 𝛽𝛿2𝜆𝜇 + 𝛽𝛿2𝜇𝜎 + 𝛽𝛿2𝜇𝜃 + 𝛽𝛿2𝜔𝜎

+𝛽𝛿2𝜔𝜃 + 𝛽𝛿𝜀𝛾𝜇 + 𝛽𝛿𝜀𝛾𝜔 + 𝛽𝛿𝜀𝜆𝜇 + 𝛽𝛿𝜀𝜇𝜃 + 𝛽𝛿𝜀𝜔𝜃 + 𝛽𝛿𝛾𝜆𝜇 + 𝛽𝛿𝛾𝜇𝜎 + 𝛽𝛿𝛾𝜇𝜃 + 𝛽𝛿𝛾𝜔𝜎

+𝛽𝛿𝜆𝜇𝜎 + 𝛽𝛿𝜇𝜎𝜃 + 𝛽𝛿𝜔𝜎𝜃 + 𝛽𝜀𝛾𝜆𝜇 + 𝛽𝜀𝛾𝜇𝜃 + 𝛽𝛾𝜆𝜇𝜎 + 𝛽𝛾𝜇𝜎𝜃 + 𝛿3𝜇2 + 𝛿3𝜇𝜔 + 𝛿3𝜇𝜋

+𝛿3𝜔𝜋 + 𝛿2𝜀𝜇2 + 𝛿2𝜀𝜇𝜔 + 𝛿2𝜀𝜇𝜋 + 𝛿2𝜀𝜔𝜋 + 𝛿2𝛾𝜇2 + 𝛿2𝛾𝜇𝜔 + 𝛿2𝛾𝜇𝜋 + 𝛿2𝛾𝜔𝜋 + 𝛿2𝜆𝜇2

+𝛿2𝜆𝜇𝜔 + 𝛿2𝜆𝜇𝜋 + 𝛿2𝜆𝜔𝜋 + 𝛿2𝜇2𝜎 + 𝛿2𝜇2𝜃 + 𝛿2𝜇𝜔𝜎 + 𝛿2𝜇𝜔𝜃 + 𝛿2𝜇𝜋𝜎 + 𝛿2𝜇𝜋𝜃 + 𝛿2𝜔𝜋𝜃

+𝛿𝜀𝛾𝜇2 + 𝛿𝜀𝛾𝜇𝜔 + 𝛿𝜀𝛾𝜇𝜋 + 𝛿𝜀𝜆𝜇2 + 𝛿𝜀𝜆𝜇𝜔 + 𝛿𝜀𝜆𝜇𝜋 + 𝛿𝜀𝜆𝜔𝜋 + 𝛿𝜀𝜇2𝜃 + 𝛿𝜀𝜇𝜔𝜃 + 𝛿𝜀𝜇𝜋𝜃

+𝛿𝜀𝜔𝜋𝜃 + 𝛿𝛾𝜆𝜇2 + 𝛿𝛾𝜆𝜇𝜔 + 𝛿𝛾𝜆𝜇𝜋 + 𝛿𝛾𝜆𝜔𝜋 + 𝛿𝛾𝜇2𝜎 + 𝛿𝛾𝜇2𝜃 + 𝛿𝛾𝜇𝜔𝜎 + 𝛿𝛾𝜇𝜔𝜃 + 𝛿𝛾𝜇𝜋𝜎

+𝛿𝛾𝜇𝜋𝜃 + 𝛿𝛾𝜔𝜋𝜃 + 𝛿𝜆𝜇2𝜎 + 𝛿𝜆𝜇𝜔𝜎 + 𝛿𝜆𝜇𝜋𝜎 + 𝛿𝜇2𝜎𝜃 + 𝛿𝜇𝜔𝜎𝜃 + 𝛿𝜇𝜋𝜎𝜃 + 𝜀𝛾𝜆𝜇2 + 𝜀𝛾𝜆𝜇𝜔

+𝜀𝛾𝜆𝜇𝜋 + 𝜀𝛾𝜇2𝜃 + 𝜀𝛾𝜇𝜔𝜃 + 𝜀𝛾𝜇𝜋𝜃 + 𝛾𝜆𝜇2𝜎 + 𝛾𝜆𝜇𝜔𝜎 + 𝛾𝜆𝜇𝜋𝜎 + 𝛾𝜇2𝜎𝜃 + 𝛾𝜇𝜔𝜎𝜃 + 𝛾𝜇𝜋𝜎𝜃)

 

𝑀𝐸
∗ =

𝛽(𝛿 + 𝛾)(𝜇 + 𝜔)(𝛿 + 𝜀 + 𝜎)(𝛼𝐵 − 𝑁𝛽𝜇 − 𝑁𝜇2 − 𝑁𝜇𝜋)

𝛼(𝛽𝛿3𝜇 + 𝛽𝛿3𝜔 + 𝛽𝛿2𝜀𝜇 + 𝛽𝛿2𝜀𝜔 + 𝛽𝛿2𝛾𝜇 + 𝛽𝛿2𝛾𝜔 + 𝛽𝛿2𝜆𝜇 + 𝛽𝛿2𝜇𝜎 + 𝛽𝛿2𝜇𝜃 + 𝛽𝛿2𝜔𝜎

+𝛽𝛿2𝜔𝜃 + 𝛽𝛿𝜀𝛾𝜇 + 𝛽𝛿𝜀𝛾𝜔 + 𝛽𝛿𝜀𝜆𝜇 + 𝛽𝛿𝜀𝜇𝜃 + 𝛽𝛿𝜀𝜔𝜃 + 𝛽𝛿𝛾𝜆𝜇 + 𝛽𝛿𝛾𝜇𝜎 + 𝛽𝛿𝛾𝜇𝜃 +

𝛽𝛿𝛾𝜔𝜎 + 𝛽𝛿𝜆𝜇𝜎 + 𝛽𝛿𝜇𝜎𝜃 + 𝛽𝛿𝜔𝜎𝜃 + 𝛽𝜀𝛾𝜆𝜇 + 𝛽𝜀𝛾𝜇𝜃 + 𝛽𝛾𝜆𝜇𝜎 + 𝛽𝛾𝜇𝜎𝜃 + 𝛿3𝜇2 + 𝛿3𝜇𝜔 +

𝛿3𝜇𝜋 + 𝛿3𝜔𝜋 + 𝛿2𝜀𝜇2 + 𝛿2𝜀𝜇𝜔 + 𝛿2𝜀𝜇𝜋 + 𝛿2𝜀𝜔𝜋 + 𝛿2𝛾𝜇2 + 𝛿2𝛾𝜇𝜔 + 𝛿2𝛾𝜇𝜋 + 𝛿2𝛾𝜔𝜋 +

𝛿2𝜆𝜇2 + 𝛿2𝜆𝜇𝜔 + 𝛿2𝜆𝜇𝜋 + 𝛿2𝜆𝜔𝜋 + 𝛿2𝜇2𝜎 + 𝛿2𝜇2𝜃 + 𝛿2𝜇𝜔𝜎 + 𝛿2𝜇𝜔𝜃 + 𝛿2𝜇𝜋𝜎 + 𝛿2𝜇𝜋𝜃

+𝛿2𝜔𝜋𝜃 + 𝛿𝜀𝛾𝜇2 + 𝛿𝜀𝛾𝜇𝜔 + 𝛿𝜀𝛾𝜇𝜋 + 𝛿𝜀𝜆𝜇2 + 𝛿𝜀𝜆𝜇𝜔 + 𝛿𝜀𝜆𝜇𝜋 + 𝛿𝜀𝜆𝜔𝜋 + 𝛿𝜀𝜇2𝜃 + 𝛿𝜀𝜇𝜔𝜃

+𝛿𝜀𝜇𝜋𝜃 + 𝛿𝜀𝜔𝜋𝜃 + 𝛿𝛾𝜆𝜇2 + 𝛿𝛾𝜆𝜇𝜔 + 𝛿𝛾𝜆𝜇𝜋 + 𝛿𝛾𝜆𝜔𝜋 + 𝛿𝛾𝜇2𝜎 + 𝛿𝛾𝜇2𝜃 + 𝛿𝛾𝜇𝜔𝜎 +

𝛿𝛾𝜇𝜔𝜃 + 𝛿𝛾𝜇𝜋𝜎 + 𝛿𝛾𝜇𝜋𝜃 + 𝛿𝛾𝜔𝜋𝜃 + 𝛿𝜆𝜇2𝜎 + 𝛿𝜆𝜇𝜔𝜎 + 𝛿𝜆𝜇𝜋𝜎 + 𝛿𝜇2𝜎𝜃 + 𝛿𝜇𝜔𝜎𝜃 + 𝛿𝜇𝜋𝜎𝜃

+𝜀𝛾𝜆𝜇2 + 𝜀𝛾𝜆𝜇𝜔 + 𝜀𝛾𝜆𝜇𝜋 + 𝜀𝛾𝜇2𝜃 + 𝜀𝛾𝜇𝜔𝜃 + 𝜀𝛾𝜇𝜋𝜃 + 𝛾𝜆𝜇2𝜎 + 𝛾𝜆𝜇𝜔𝜎 + 𝛾𝜆𝜇𝜋𝜎 + 𝛾𝜇2𝜎𝜃
+𝛾𝜇𝜔𝜎𝜃 + 𝛾𝜇𝜋𝜎𝜃)

 

𝑀𝑈𝐸
∗ =

𝜋(𝛿 + 𝛾)(𝜇 + 𝜔)(𝛿 + 𝜆 + 𝜃)(𝛼𝐵 − 𝑁𝛽𝜇 − 𝑁𝜇2 − 𝑁𝜇𝜋)

𝛼(𝛽𝛿3𝜇 + 𝛽𝛿3𝜔 + 𝛽𝛿2𝜀𝜇 + 𝛽𝛿2𝜀𝜔 + 𝛽𝛿2𝛾𝜇 + 𝛽𝛿2𝛾𝜔 + 𝛽𝛿2𝜆𝜇 + 𝛽𝛿2𝜇𝜎 + 𝛽𝛿2𝜇𝜃 +

𝛽𝛿2𝜔𝜎 + 𝛽𝛿2𝜔𝜃 + 𝛽𝛿𝜀𝛾𝜇 + 𝛽𝛿𝜀𝛾𝜔 + 𝛽𝛿𝜀𝜆𝜇 + 𝛽𝛿𝜀𝜇𝜃 + 𝛽𝛿𝜀𝜔𝜃 + 𝛽𝛿𝛾𝜆𝜇 + 𝛽𝛿𝛾𝜇𝜎 +
𝛽𝛿𝛾𝜇𝜃 + 𝛽𝛿𝛾𝜔𝜎 + 𝛽𝛿𝜆𝜇𝜎 + 𝛽𝛿𝜇𝜎𝜃 + 𝛽𝛿𝜔𝜎𝜃 + 𝛽𝜀𝛾𝜆𝜇 + 𝛽𝜀𝛾𝜇𝜃 + 𝛽𝛾𝜆𝜇𝜎 + 𝛽𝛾𝜇𝜎𝜃 +

𝛿3𝜇2 + 𝛿3𝜇𝜔 + 𝛿3𝜇𝜋 + 𝛿3𝜔𝜋 + 𝛿2𝜀𝜇2 + 𝛿2𝜀𝜇𝜔 + 𝛿2𝜀𝜇𝜋 + 𝛿2𝜀𝜔𝜋 + 𝛿2𝛾𝜇2 + 𝛿2𝛾𝜇𝜔 +

𝛿2𝛾𝜇𝜋 + 𝛿2𝛾𝜔𝜋 + 𝛿2𝜆𝜇2 + 𝛿2𝜆𝜇𝜔 + 𝛿2𝜆𝜇𝜋 + 𝛿2𝜆𝜔𝜋 + 𝛿2𝜇2𝜎 + 𝛿2𝜇2𝜃 + 𝛿2𝜇𝜔𝜎 +

𝛿2𝜇𝜔𝜃 + 𝛿2𝜇𝜋𝜎 + 𝛿2𝜇𝜋𝜃 + 𝛿2𝜔𝜋𝜃 + 𝛿𝜀𝛾𝜇2 + 𝛿𝜀𝛾𝜇𝜔 + 𝛿𝜀𝛾𝜇𝜋 + 𝛿𝜀𝜆𝜇2 + 𝛿𝜀𝜆𝜇𝜔 +

𝛿𝜀𝜆𝜇𝜋 + 𝛿𝜀𝜆𝜔𝜋 + 𝛿𝜀𝜇2𝜃 + 𝛿𝜀𝜇𝜔𝜃 + 𝛿𝜀𝜇𝜋𝜃 + 𝛿𝜀𝜔𝜋𝜃 + 𝛿𝛾𝜆𝜇2 + 𝛿𝛾𝜆𝜇𝜔 + 𝛿𝛾𝜆𝜇𝜋 +

𝛿𝛾𝜆𝜔𝜋 + 𝛿𝛾𝜇2𝜎 + 𝛿𝛾𝜇2𝜃 + 𝛿𝛾𝜇𝜔𝜎 + 𝛿𝛾𝜇𝜔𝜃 + 𝛿𝛾𝜇𝜋𝜎 + 𝛿𝛾𝜇𝜋𝜃 + 𝛿𝛾𝜔𝜋𝜃 + 𝛿𝜆𝜇2𝜎 +

𝛿𝜆𝜇𝜔𝜎 + 𝛿𝜆𝜇𝜋𝜎 + 𝛿𝜇2𝜎𝜃 + 𝛿𝜇𝜔𝜎𝜃 + 𝛿𝜇𝜋𝜎𝜃 + 𝜀𝛾𝜆𝜇2 + 𝜀𝛾𝜆𝜇𝜔 + 𝜀𝛾𝜆𝜇𝜋 + 𝜀𝛾𝜇2𝜃 +

𝜀𝛾𝜇𝜔𝜃 + 𝜀𝛾𝜇𝜋𝜃 + 𝛾𝜆𝜇2𝜎 + 𝛾𝜆𝜇𝜔𝜎 + 𝛾𝜆𝜇𝜋𝜎 + 𝛾𝜇2𝜎𝜃 + 𝛾𝜇𝜔𝜎𝜃 + 𝛾𝜇𝜋𝜎𝜃)

 

𝐻∗ =
(𝜇 + 𝜔)(𝛼𝐵 − 𝑁𝛽𝜇 − 𝑁𝜇2 − 𝑁𝜇𝜋)(𝛽𝛿𝜃 + 𝛽𝜀𝜃 + 𝛽𝜎𝜃 + 𝛿𝜀𝜋 + 𝜀𝜆𝜋 + 𝜀𝜋𝜃)

𝛼(𝛽𝛿3𝜇 + 𝛽𝛿3𝜔 + 𝛽𝛿2𝜀𝜇 + 𝛽𝛿2𝜀𝜔 + 𝛽𝛿2𝛾𝜇 + 𝛽𝛿2𝛾𝜔 + 𝛽𝛿2𝜆𝜇 + 𝛽𝛿2𝜇𝜎 + 𝛽𝛿2𝜇𝜃 + 𝛽𝛿2𝜔𝜎

+𝛽𝛿2𝜔𝜃 + 𝛽𝛿𝜀𝛾𝜇 + 𝛽𝛿𝜀𝛾𝜔 + 𝛽𝛿𝜀𝜆𝜇 + 𝛽𝛿𝜀𝜇𝜃 + 𝛽𝛿𝜀𝜔𝜃 + 𝛽𝛿𝛾𝜆𝜇 + 𝛽𝛿𝛾𝜇𝜎 + 𝛽𝛿𝛾𝜇𝜃 + 𝛽𝛿𝛾𝜔𝜎

+𝛽𝛿𝜆𝜇𝜎 + 𝛽𝛿𝜇𝜎𝜃 + 𝛽𝛿𝜔𝜎𝜃 + 𝛽𝜀𝛾𝜆𝜇 + 𝛽𝜀𝛾𝜇𝜃 + 𝛽𝛾𝜆𝜇𝜎 + 𝛽𝛾𝜇𝜎𝜃 + 𝛿3𝜇2 + 𝛿3𝜇𝜔 + 𝛿3𝜇𝜋

+𝛿3𝜔𝜋 + 𝛿2𝜀𝜇2 + 𝛿2𝜀𝜇𝜔 + 𝛿2𝜀𝜇𝜋 + 𝛿2𝜀𝜔𝜋 + 𝛿2𝛾𝜇2 + 𝛿2𝛾𝜇𝜔 + 𝛿2𝛾𝜇𝜋 + 𝛿2𝛾𝜔𝜋 + 𝛿2𝜆𝜇2

+𝛿2𝜆𝜇𝜔 + 𝛿2𝜆𝜇𝜋 + 𝛿2𝜆𝜔𝜋 + 𝛿2𝜇2𝜎 + 𝛿2𝜇2𝜃 + 𝛿2𝜇𝜔𝜎 + 𝛿2𝜇𝜔𝜃 + 𝛿2𝜇𝜋𝜎 + 𝛿2𝜇𝜋𝜃 + 𝛿2𝜔𝜋𝜃

+𝛿𝜀𝛾𝜇2 + 𝛿𝜀𝛾𝜇𝜔 + 𝛿𝜀𝛾𝜇𝜋 + 𝛿𝜀𝜆𝜇2 + 𝛿𝜀𝜆𝜇𝜔 + 𝛿𝜀𝜆𝜇𝜋 + 𝛿𝜀𝜆𝜔𝜋 + 𝛿𝜀𝜇2𝜃 + 𝛿𝜀𝜇𝜔𝜃 + 𝛿𝜀𝜇𝜋𝜃

+𝛿𝜀𝜔𝜋𝜃 + 𝛿𝛾𝜆𝜇2 + 𝛿𝛾𝜆𝜇𝜔 + 𝛿𝛾𝜆𝜇𝜋 + 𝛿𝛾𝜆𝜔𝜋 + 𝛿𝛾𝜇2𝜎 + 𝛿𝛾𝜇2𝜃 + 𝛿𝛾𝜇𝜔𝜎 + 𝛿𝛾𝜇𝜔𝜃 + 𝛿𝛾𝜇𝜋𝜎

+𝛿𝛾𝜇𝜋𝜃 + 𝛿𝛾𝜔𝜋𝜃 + 𝛿𝜆𝜇2𝜎 + 𝛿𝜆𝜇𝜔𝜎 + 𝛿𝜆𝜇𝜋𝜎 + 𝛿𝜇2𝜎𝜃 + 𝛿𝜇𝜔𝜎𝜃 + 𝛿𝜇𝜋𝜎𝜃 + 𝜀𝛾𝜆𝜇2 + 𝜀𝛾𝜆𝜇𝜔

+𝜀𝛾𝜆𝜇𝜋 + 𝜀𝛾𝜇2𝜃 + 𝜀𝛾𝜇𝜔𝜃 + 𝜀𝛾𝜇𝜋𝜃 + 𝛾𝜆𝜇2𝜎 + 𝛾𝜆𝜇𝜔𝜎 + 𝛾𝜆𝜇𝜋𝜎 + 𝛾𝜇2𝜎𝜃 + 𝛾𝜇𝜔𝜎𝜃 + 𝛾𝜇𝜋𝜎𝜃)

 

𝑅∗ =

(𝛼𝐵 − 𝑁𝛽𝜇 − 𝑁𝜇2 − 𝑁𝜇𝜋)(𝛽𝛿²𝜆 + 𝛽𝛿𝜀𝜆 + 𝛽𝛿𝛾𝜆 + 𝛽𝛿𝛾𝜃 + 𝛽𝛿𝜆𝜎 + 𝛽𝜀𝛾𝜆 + 𝛽𝜀𝛾𝜃 + 𝛽𝛾𝜆𝜎 +

𝛽𝛾𝜎𝜃 + 𝛿²𝜋𝜎 + 𝛿𝜀𝛾𝜋 + 𝛿𝛾𝜋𝜎 + 𝛿𝜆𝜋𝜎 + 𝛿𝜋𝜎𝜃 + 𝜀𝛾𝜆𝜋 + 𝜀𝛾𝜋𝜃 + 𝛾𝜆𝜋𝜎 + 𝛾𝜋𝜎𝜃)

𝛼(𝛽𝛿3𝜇 + 𝛽𝛿3𝜔 + 𝛽𝛿2𝜀𝜇 + 𝛽𝛿2𝜀𝜔 + 𝛽𝛿2𝛾𝜇 + 𝛽𝛿2𝛾𝜔 + 𝛽𝛿2𝜆𝜇 + 𝛽𝛿2𝜇𝜎 + 𝛽𝛿2𝜇𝜃 + 𝛽𝛿2𝜔𝜎

+𝛽𝛿2𝜔𝜃 + 𝛽𝛿𝜀𝛾𝜇 + 𝛽𝛿𝜀𝛾𝜔 + 𝛽𝛿𝜀𝜆𝜇 + 𝛽𝛿𝜀𝜇𝜃 + 𝛽𝛿𝜀𝜔𝜃 + 𝛽𝛿𝛾𝜆𝜇 + 𝛽𝛿𝛾𝜇𝜎 + 𝛽𝛿𝛾𝜇𝜃 + 𝛽𝛿𝛾𝜔𝜎

+𝛽𝛿𝜆𝜇𝜎 + 𝛽𝛿𝜇𝜎𝜃 + 𝛽𝛿𝜔𝜎𝜃 + 𝛽𝜀𝛾𝜆𝜇 + 𝛽𝜀𝛾𝜇𝜃 + 𝛽𝛾𝜆𝜇𝜎 + 𝛽𝛾𝜇𝜎𝜃 + 𝛿3𝜇2 + 𝛿3𝜇𝜔 + 𝛿3𝜇𝜋

+𝛿3𝜔𝜋 + 𝛿2𝜀𝜇2 + 𝛿2𝜀𝜇𝜔 + 𝛿2𝜀𝜇𝜋 + 𝛿2𝜀𝜔𝜋 + 𝛿2𝛾𝜇2 + 𝛿2𝛾𝜇𝜔 + 𝛿2𝛾𝜇𝜋 + 𝛿2𝛾𝜔𝜋 + 𝛿2𝜆𝜇2

+𝛿2𝜆𝜇𝜔 + 𝛿2𝜆𝜇𝜋 + 𝛿2𝜆𝜔𝜋 + 𝛿2𝜇2𝜎 + 𝛿2𝜇2𝜃 + 𝛿2𝜇𝜔𝜎 + 𝛿2𝜇𝜔𝜃 + 𝛿2𝜇𝜋𝜎 + 𝛿2𝜇𝜋𝜃 + 𝛿2𝜔𝜋𝜃

+𝛿𝜀𝛾𝜇2 + 𝛿𝜀𝛾𝜇𝜔 + 𝛿𝜀𝛾𝜇𝜋 + 𝛿𝜀𝜆𝜇2 + 𝛿𝜀𝜆𝜇𝜔 + 𝛿𝜀𝜆𝜇𝜋 + 𝛿𝜀𝜆𝜔𝜋 + 𝛿𝜀𝜇2𝜃 + 𝛿𝜀𝜇𝜔𝜃 + 𝛿𝜀𝜇𝜋𝜃

+𝛿𝜀𝜔𝜋𝜃 + 𝛿𝛾𝜆𝜇2 + 𝛿𝛾𝜆𝜇𝜔 + 𝛿𝛾𝜆𝜇𝜋 + 𝛿𝛾𝜆𝜔𝜋 + 𝛿𝛾𝜇2𝜎 + 𝛿𝛾𝜇2𝜃 + 𝛿𝛾𝜇𝜔𝜎 + 𝛿𝛾𝜇𝜔𝜃 + 𝛿𝛾𝜇𝜋𝜎

+𝛿𝛾𝜇𝜋𝜃 + 𝛿𝛾𝜔𝜋𝜃 + 𝛿𝜆𝜇2𝜎 + 𝛿𝜆𝜇𝜔𝜎 + 𝛿𝜆𝜇𝜋𝜎 + 𝛿𝜇2𝜎𝜃 + 𝛿𝜇𝜔𝜎𝜃 + 𝛿𝜇𝜋𝜎𝜃 + 𝜀𝛾𝜆𝜇2 + 𝜀𝛾𝜆𝜇𝜔

+𝜀𝛾𝜆𝜇𝜋 + 𝜀𝛾𝜇2𝜃 + 𝜀𝛾𝜇𝜔𝜃 + 𝜀𝛾𝜇𝜋𝜃 + 𝛾𝜆𝜇2𝜎 + 𝛾𝜆𝜇𝜔𝜎 + 𝛾𝜆𝜇𝜋𝜎 + 𝛾𝜇2𝜎𝜃 + 𝛾𝜇𝜔𝜎𝜃 + 𝛾𝜇𝜋𝜎𝜃)
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To determine the drugs generation number 𝑅0 using the next generation matrix method, we first identify 

the infection classes in our model. The matrices 𝐹 and 𝑉 are constructed based on the rates of transition between 

different drugs states. Let, 

𝐹 = [

𝛼𝐵

𝑁𝜇
0 0

𝛽 0 0
𝜋 0 0

]      and     𝑉 = [
𝛽 + 𝜋 + 𝜇 0 0

0 𝜆 + 𝜃 + 𝛿 0
0 0 𝜀 + 𝜎 + 𝛿

] 

Thus, the next generation matrix is 

𝐹𝑉−1 =

[
 
 
 
 
 
 

𝛼𝐵

𝑁𝜇(𝛽 + 𝜋 + 𝜇)
0 0

𝛽

𝛽 + 𝜋 + 𝜇
0 0

𝜋

𝛽 + 𝜋 + 𝜇
0 0

]
 
 
 
 
 
 

 

 
The drug generation number 𝑅0 is found by calculating the spectral radius 𝜌(𝐹𝑉−1), which simplifies to: 

𝑅0 =
𝛼𝐵

𝑁𝜇(𝛽 + 𝜋 + 𝜇)
 

This 𝑅0 value represents the average number of new drug addicts that a single addict would generate in 

a fully susceptible population. It is a key metric for understanding the potential spread and persistence of drug 

addiction within the community, influence of various rates of transition and treatment. 

 

Local Stability Analysis 

Local Stability at 𝑬𝟎 

Evaluating the Jacobian matrix of system (1) at 𝐸0 gives 

𝐽(𝐸0) =

[
 
 
 
 
 
 
 
 −𝜇 −

𝛼𝐵

𝑁𝜇
0 0 0 𝜔

0
𝛼𝐵

𝑁𝜇
− 𝛽 − 𝜇 − 𝜋 0 0 0 0

0 𝛽 −𝛿 − 𝜆 − 𝜃 0 0 0
0 𝜋 0 −𝛿 − 𝜀 − 𝜎 0 0
0 0 𝜃 𝜀 −𝛿 − 𝛾 0
0 0 𝜆 𝜎 𝛾 −𝜇 − 𝜔]

 
 
 
 
 
 
 
 

 

The eigen values are given by 

𝜆1 = −𝜇, 𝜆2 =
𝐵𝛼

𝑁𝜇
− 𝛽 − 𝜇 − 𝜋, 𝜆3 = −𝛿 − 𝜆 − 𝜃, 𝜆4 = −𝛿 − 𝜀 − 𝜎, 𝜆5 = −𝛿 − 𝛾, 𝜆6 = −𝜇 − 𝜔 

Hence 𝐸0 is locally asymptotically stable if 𝑅0 < 1. For 𝑅0 = 1, if 𝜆𝑖 < 0 for 𝑖 = 1,3,4,5,6 and 𝜆2 = 0, 

𝐸0 is locally stable. If  𝑅0 > 1, the characteristic equation has a real positive eigenvalue, and therefore 𝐸0 is 

unstable. 

 

Local Stability at 𝑬∗ 

Evaluating the Jacobian matrix of system (1) at 𝐸∗gives 

𝐽(𝑃∗) =

[
 
 
 
 
 
 
 −

𝛼𝐸∗

𝑁
− 𝜇 −

𝛼𝑆∗

𝑁
0 0 0 𝜔

𝛼𝐸∗

𝑁
−𝛽 − 𝜇 − 𝜋 +

𝛼𝑆∗

𝑁
0 0 0 0

0 𝛽 −𝛿 − 𝜆 − 𝜃 0 0 0
0 𝜋 0 −𝛿 − 𝜀 − 𝜎 0 0
0 0 𝜃 𝜀 −𝛿 − 𝛾 0
0 0 𝜆 𝜎 𝛾 −𝜇 − 𝜔]

 
 
 
 
 
 
 

 

𝐽(𝐸∗) =

[
 
 
 
 
 
b11 b12 0 0 0 b16

b21 b22 0 0 0 0
0 b32 b33 0 0 0
0 b42 0 b44 0 0
0 0 b53 b54 b55 0
0 0 b63 b64 b65 b66]
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where, 

𝑏11 = −
𝛼𝐸∗

𝑁
− 𝜇, 𝑏12 = −

𝛼𝑆∗

𝑁
, 𝑏16 = 𝜔, 𝑏21 =

𝛼𝐸∗

𝑁
, 𝑏22 = −𝛽 − 𝜇 − 𝜋 +

𝛼𝑆∗

𝑁
, 𝑏32 = 𝛽, 

𝑏33 = −𝛿 − 𝜆 − 𝜃, 𝑏42 = 𝜋, 𝑏44 = −𝛿 − 𝜀 − 𝜎, 𝑏53 = 𝜃, 𝑏54 = 𝜀, 𝑏55 = −𝛿 − 𝛾, 𝑏63 = 𝜆, 

𝑏64 = 𝜎, 𝑏65 = 𝛾, 𝑏66 = −𝜇 − 𝜔 

The characteristic Polynomial of 𝐸∗ is given by 

𝜆6 + 𝐵1𝜆
5 + 𝐵2𝜆

4 + 𝐵3𝜆
3 + 𝐵4𝜆

2 + 𝐵5𝜆 + 𝐵6 = 0 

where, 

𝐵1 = −(𝑏11 + 𝑏22 + 𝑏33 + 𝑏44 + 𝑏55 + 𝑏66) 

B2 = 𝑏11𝑏22 + 𝑏11𝑏33 + 𝑏11𝑏44 + 𝑏11𝑏55 + 𝑏11𝑏66 − 𝑏12𝑏21 + 𝑏22𝑏33 + 𝑏22𝑏44 + 𝑏22𝑏55 + 𝑏22𝑏66 + 𝑏33𝑏44 + 

           𝑏33𝑏55 + 𝑏33𝑏66 + 𝑏44𝑏55 + 𝑏44𝑏66 + 𝑏55𝑏66 

B3 = −𝑏11𝑏22𝑏33 − 𝑏11𝑏22𝑏44 − 𝑏11𝑏22𝑏55 − 𝑏11𝑏22𝑏66 − 𝑏11𝑏33𝑏44 − 𝑏11𝑏33𝑏55 − 𝑏11𝑏33𝑏66 − 𝑏11𝑏44𝑏55 − 

              𝑏11𝑏44𝑏66 − 𝑏11 𝑏55𝑏66 + 𝑏12𝑏21𝑏33 + 𝑏12𝑏21𝑏44 + 𝑏12𝑏21𝑏55 + 𝑏12𝑏21𝑏66 − 𝑏22𝑏33𝑏44 − 𝑏22𝑏33𝑏55 − 

              −𝑏22𝑏33𝑏66 − 𝑏22𝑏44𝑏55 − 𝑏22𝑏44𝑏66 − 𝑏22𝑏55𝑏66 − 𝑏33𝑏44𝑏55 − 𝑏33𝑏44𝑏66 − 𝑏33𝑏55𝑏66 − 𝑏44𝑏55𝑏66 

B4 = 𝑏11𝑏22𝑏33𝑏44 + 𝑏11𝑏22𝑏33𝑏55 + 𝑏11𝑏22𝑏33𝑏66 + 𝑏11𝑏22𝑏44𝑏55 + 𝑏11𝑏22𝑏44𝑏66 + 𝑏11𝑏22𝑏55𝑏66 + 

           𝑏11𝑏33𝑏44𝑏55 + 𝑏11𝑏33𝑏44𝑏66 + 𝑏11𝑏33𝑏55𝑏66 + 𝑏11𝑏44𝑏55𝑏66 − 𝑏12𝑏21𝑏33𝑏44 − 𝑏12𝑏21𝑏33 𝑏55 − 

           𝑏12𝑏21𝑏33𝑏66 − 𝑏12𝑏21𝑏44𝑏55 − 𝑏12𝑏21𝑏44𝑏66 − 𝑏12𝑏21𝑏55𝑏66 − 𝑏16𝑏21𝑏32𝑏63 − 𝑏16𝑏21𝑏42𝑏64 + 

           𝑏22𝑏33𝑏44𝑏55 + 𝑏22𝑏33𝑏44𝑏66 + 𝑏22𝑏33𝑏55𝑏66 + 𝑏22𝑏44𝑏55𝑏66 + 𝑏33𝑏44𝑏55𝑏66 

B5 = −𝑏11𝑏22𝑏33𝑏44𝑏55 − 𝑏11𝑏22𝑏33𝑏44𝑏66 − 𝑏11𝑏22𝑏33𝑏55𝑏66 − 𝑏11𝑏22𝑏44𝑏55𝑏66 − 𝑏11𝑏33𝑏44𝑏55𝑏66 + 

              𝑏12𝑏21𝑏33𝑏44𝑏55 + 𝑏12𝑏21𝑏33 𝑏44𝑏66 + 𝑏12𝑏21𝑏33𝑏55𝑏66 + 𝑏12𝑏21𝑏44𝑏55𝑏66 − 𝑏16𝑏21𝑏32𝑏44𝑏63 − 

              𝑏16𝑏21𝑏32𝑏53𝑏65 + 𝑏16𝑏21𝑏32𝑏55𝑏63 + 𝑏16𝑏21𝑏33𝑏42𝑏64 − 𝑏16𝑏21𝑏42𝑏54𝑏65 + 𝑏16𝑏21𝑏42𝑏55𝑏64 − 

              𝑏22𝑏33𝑏44𝑏55𝑏66 

B6 = 𝑏11𝑏22𝑏33𝑏44𝑏55𝑏66 − 𝑏12𝑏21𝑏33𝑏44𝑏55𝑏66 + 𝑏16𝑏21𝑏32𝑏44𝑏53𝑏65 − 𝑏16𝑏21𝑏32𝑏44𝑏55𝑏63 + 

         𝑏16𝑏21𝑏33𝑏42𝑏54𝑏65 − 𝑏16𝑏21𝑏33𝑏42𝑏55𝑏64 

To determine the local stability of the equilibrium point 𝐸∗ using the Routh-Hurwitz criteria, we evaluate 

the polynomial equation associated with the system dynamics. The roots of this polynomial will have negative 

real parts if the following conditions are met: 

𝐵1 > 0,              |
𝐵1 1
𝐵3 𝐵2

| > 0,                |

𝐵1 1 0
𝐵3 𝐵2 𝐵1

𝐵5 𝐵4 𝐵3

| > 0,               |

𝐵1 1 0 0
𝐵3 𝐵2 𝐵1 1
𝐵5 𝐵4 𝐵3 𝐵2

0 𝐵6 𝐵5 𝐵4

| > 0, 

|
|

𝐵1 1 0 0 0
𝐵3 𝐵2 𝐵1 1 0
𝐵5 𝐵4 𝐵3 𝐵2 𝐵1

0 𝐵6 𝐵5 𝐵4 𝐵3

0 0 0 𝐵6 𝐵5

|
|
> 0,             

|

|

𝐵1 1 0 0 0 0
𝐵3 𝐵2 𝐵1 1 0 0
𝐵5 𝐵4 𝐵3 𝐵2 𝐵1 1
0 𝐵6 𝐵5 𝐵4 𝐵3 𝐵2

0 0 0 𝐵6 𝐵5 𝐵4

0 0 0 0 0 𝐵6

|

|
> 0 

Hence, the equilibrium point 𝐸∗ is locally asymptotically stable if all the above conditions are satisfied. 

 

Global Stability Analysis 

Global Stability at 𝑬𝟎 

Consider Lyapunov function as given below 

𝑌 = 𝑆 + 𝐸 + 𝑀𝐸 + 𝑀𝑈𝐸 + 𝐻 + 𝑅 

𝑑𝑌

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+

𝑑𝐸

𝑑𝑡
+

𝑑𝑀𝐸

𝑑𝑡
+

𝑑𝑀𝑈𝐸

𝑑𝑡
+

𝑑𝐻

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
 

       = 𝐵 − 𝜇𝑆 − 𝜇𝐸 − 𝛿𝑀𝐸 − 𝛿𝑀𝑈𝐸 − 𝛿𝐻 − 𝜇𝑅 

       = 𝐵 − 𝜇 (
𝐵

𝜇
) − 𝜇(𝐸 + 𝑀𝐸 + 𝑀𝑈𝐸 + 𝐻 + 𝑅) 

       = −𝜇(𝐸 + 𝑀𝐸 + 𝑀𝑈𝐸 + 𝑅 + 𝐻) 
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We have 
𝑑𝑌

𝑑𝑡
≤ 0 with 

𝑑𝑌

𝑑𝑡
= 0 only if 𝐸 = 𝑀𝐸 = 𝑀𝑈𝐸 = 𝐻 = 𝑅 = 0. This condition indicates that the 

Lyapunov function 𝑌 is non-increasing over time and only remains constant when the system reaches the drug-

free equilibrium. 

By LaSalle’s Invariance Principle, all system trajectories will ultimately converge to the largest invariant 

set where 
𝑑𝑌

𝑑𝑡
= 0, which in this case is the equilibrium point 𝐸0 (

𝐵

𝜇
, 0,0,0,0,0). Hence, every solution of the system 

converges to 𝐸0 as time progresses, confirming that the drug-free equilibrium is globally asymptotically stable. 

 

Global Stability at 𝑬∗ 

Consider Lyapunov function as given below 

𝑌(𝑡) =
1

2
[(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝑀𝐸 − 𝑀𝐸

∗) + (𝑀𝑈𝐸 − 𝑀𝑈𝐸
∗) + (𝐻 − 𝐻∗) + (𝑅 − 𝑅∗)]2 

𝑌′(𝑡) = [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝑀𝐸 − 𝑀𝐸
∗) + (𝑀𝑈𝐸 − 𝑀𝑈𝐸

∗) + (𝐻 − 𝐻∗) + (𝑅 − 𝑅∗)] 

                (𝑆′ + 𝐸′ + 𝑀𝐸
′ + 𝑀𝑈𝐸

′ + 𝐻′ + 𝑅′) 

𝑌′(𝑡) = [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝑀𝐸 − 𝑀𝐸
∗) + (𝑀𝑈𝐸 − 𝑀𝑈𝐸

∗) + (𝐻 − 𝐻∗) + (𝑅 − 𝑅∗)] 

               (𝐵 − 𝜇𝑆 − 𝜇𝐸 − 𝛿𝑀𝐸 − 𝛿𝑀𝑈𝐸 − 𝛿𝐻 − 𝜇𝑅) 

𝑌′(𝑡) = [(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝑀𝐸 − 𝑀𝐸
∗) + (𝑀𝑈𝐸 − 𝑀𝑈𝐸

∗) + (𝐻 − 𝐻∗) + (𝑅 − 𝑅∗)] 

                (𝜇𝑆∗ + 𝜇𝐸∗ + 𝜇𝑀𝐸
∗ + 𝜇𝑀𝑈𝐸

∗ + 𝜇𝐻∗ + 𝜇𝑅∗ − 𝜇𝑆 − 𝜇𝐸 − 𝜇𝑀𝐸 − 𝜇𝑀𝑈𝐸 − 𝜇𝐻 − 𝜇𝑅) 

= −𝜇[(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐴 − 𝐴∗) + (𝑊 − 𝑊∗) + (𝐼 − 𝐼∗) + (𝑅 − 𝑅∗)]2 

≤ 0 

where 𝐵 = 𝜇𝑆∗ + 𝜇𝐸∗ + 𝜇𝑀𝐸
∗ + 𝜇𝑀𝑈𝐸

∗ + 𝜇𝐻∗ + 𝜇𝑅∗ 

Therefore, based on the Lyapunov function 𝑌(𝑡) and its derivative 𝑌′(𝑡), which satisfies 𝑌′(𝑡) ≤ 0 

indicating that 𝑌(𝑡) is non-increasing, we conclude that the unique positive equilibrium point 𝐸∗ is globally 

asymptotically stable. 

 

VI. Data Collection 

To study the impact of education on drug addiction, a structured questionnaire was developed to collect 

data from various treatment centers and rehabilitation facilities. The questionnaire focused on key aspects such 

as the educational background of patients, awareness programs conducted at the centers, relapse rates and the 

effectiveness of educational interventions. Additional data points included total admissions for drug rehabilitation, 

number of drug users not classified as addicted, lightly addicted patients categorized by education level (above 

and below Grade 10), transitions from light to heavy addiction among both educated and uneducated individuals, 

current treatment status of lightly and heavily addicted patients, total recoveries and the number of addiction-

related deaths. 

The collected data was then used to estimate the values of different parameters and transition rates in our 

mathematical model. This helped us understand how drug addiction spreads and how effective various 

intervention strategies might be. 

The value of different parameters were extracted from the collected data and initial conditions were 

determined for numerical simulations. The initial values represent different groups within the population and are 

as follows: 𝑆(𝑡) = 600, 𝐸(𝑡) = 531, 𝑀𝐸(𝑡) = 335, 𝑀𝑈𝐸(𝑡) = 185, 𝐻(𝑡) = 222, 𝑅(𝑡) = 381. Here, total 

population(𝑁(𝑡)) is 2254. 

 

Table 2: Parameters and its value 

Parameters Value Descriptions 

𝐵 0.016 Recruitment rate 

𝛼 0.88 The contact rate of transmission from susceptible individuals to the exposed class 

𝛽 0.63 The rate of the exposed and educated individuals who becomes lightly drug addicted 

𝜋 0.35 The rate of the exposed and uneducated individuals who becomes lightly drug addicted 

𝜃 0.46 The rate at which lightly drug addicted and educated individuals becomes highly drug addicted 

𝜀 0.36 The rate at which lightly drug addicted and uneducated individuals becomes highly drug addicted 

𝜆 0.50 The rate at which educated individuals recover from lightly drug addicted 

𝛾 0.41 The rate at which individuals recover from highly drug addicted 

𝜎 0.66 The rate at which uneducated individuals recover from lightly drug addicts 

𝜔 0.62 The rate at which recovered individuals relapse and become susceptible (S) to drug addiction again 

𝛿 0.03 The death rate due to drug addiction 

𝜇 0.009 Natural death rate. 
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VII. Sensitivity Analysis 

Sensitivity indices of 𝑅0 to all the different parameters tell us that how crucial each parameter is to the 

addiction spread. This helps us choose the right parameters responsible for making the scenario endemic. 

 

Local Sensitivity Analysis 

To assess the influence of individual parameters on the basic reproduction number 𝑅0, a local sensitivity 

analysis was performed. Local sensitivity indices were derived using the normalized forward sensitivity index: 

(𝑅0)𝑝 =
𝜕𝑅0

𝜕𝑝
∙

𝑝

𝑅0

 

where 𝑝 denotes a parameter. This index measures the relative change in 𝑅0 with respect to a relative 

change in parameter 𝑝. 

We calculate the sensitivity indices for those parameters on which the value of basic reproduction 

depends. The results are given in Table 3. 

 

Table 3: Local Sensitivity indices of 𝑅0 to the parameters 
Parameters Sign Value 

𝑁 - 1 

𝐵 + 1 

𝛼 + 1 

𝛽 - 0.64 

𝜋 - 0.35 

𝜇 - 1.009 

 

 
Figure 3: Local Sensitivity analysis for reproduction number R_0 

 

Global Sensitivity Analysis 

Global sensitivity analysis approach was adopted, as it accounts for the simultaneous variation of all 

parameters across their probable ranges, thereby providing a comprehensive understanding of parameter 

importance. 

Since local sensitivity only reflects behaviour near baseline values, we also performed a global 

sensitivity analysis using Partial Rank Correlation Coefficients (PRCCs). This approach considers the 

simultaneous variation of all parameters across their probable ranges, capturing nonlinearities and interactions. 

For global sensitivity analysis, each parameter was varied within ±10 % of its nominal (baseline) value. 

A total of 1,000 parameter sets were generated using Latin Hypercube Sampling (LHS) within biologically 

probable range. For each set, 𝑅0 was calculated. PRCC values were then estimated between each parameter and 

𝑅0, with significance tested using corresponding P - values. PRCC values close to +1 (or −1) indicate a strong 

positive (or negative) monotonic relationship. 

 

Table 4: Global Sensitivity indices of 𝑅0 to the parameters 
Parameters Sign Value 

𝑁 + 0.0091 

𝐵 + 0.9610 

𝛼 + 0.9340 

𝛽 - 0.8522 
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𝜋 - 0.6523 

𝜇 - 0.9478 

 

 
Figure 3: Local Sensitivity analysis for reproduction number 𝑅0 

 

Our analysis shows that the effect of parameters on 𝑅0 depends on whether we look at local or global 

sensitivity. In the local case, when we study small changes around the baseline values, the progression rate (𝛼) 

and natural death rate (𝜇) have the strongest impact on 𝑅0. However, when we consider global sensitivity using 

Latin Hypercube Sampling with ±10 %  variation in all parameters, the birth rate (𝐵) and natural death rate (𝜇) 

emerge as the most influential. This means that while 𝛼 directly affects 𝑅0 at the baseline, in a wider range of 

scenarios the demographic factors (𝐵 𝑎𝑛𝑑 𝜇) play a more dominant role in shaping the overall behaviour of the 

system. 

 

 
Figure 4: Distribution of 𝑅0 from 100 LHS Samples 

 

Figure 5 shows the spread of 𝑅0 values from 1000 samples with ±10 % change in parameters. The 

values form a single peak, close to a bell shape, with an average of 1.58. The fixed (deterministic) value of 1.60 

is almost the same as the average, which means the chosen parameters represent the system well. Since most 𝑅0 

values are above 1, the results suggest that the addiction is likely to continue spreading even when parameters 

change within this range. 

 

VIII. Result And Discussion 

To predict future trends of the addiction, we conducted simulations using the extracted parameters and 

initial values of table 2. 
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Figure 6: Graph of different compartments (population) vs. days based on the initial and parameter values: (a) 

Susceptible population vs. Days, (b) Engaged population vs. Days, (c) Lightly Addicted Educated population vs. 

Days, (d) Lightly addicted uneducated population vs. Days, (e) Heavily Addicted population vs. Days, (f) 

Recovered population vs. Days. Parameters: [Table 2] 

 

Figure 6(a) shows that the susceptible population initially increases, reaching a peak quickly due to a 

lack of awareness or control measures. However, after a brief fluctuation, the population stabilizes and remains 

steady throughout the simulation period. This indicates that once interventions like education or awareness 

programs take effect, the number of individuals at risk of drug addiction stays constant without further growth. 

Figure 6(b) shows the exposed population experiences a sharp rise early on as individuals transition from 

susceptibility to exposure due to influence or availability of drugs. This is followed by a slight decline and 

stabilization, indicating that once initial exposure spreads, the rate of new exposures decreases - likely due to the 

impact of educational awareness or social resistance forming. 

Figure 6(c) for lightly addicted educated individuals shows a rapid increase followed by a gradual decline 

and long-term stabilization. This trend suggests that while a portion of the exposed population becomes lightly 

addicted, education helps control the addiction severity and progression, resulting in fewer long - term addicted 

cases among the educated group. 

Figure 6(d) Similar to the educated group, the uneducated lightly addicted population initially spikes but 

at a lower peak, then stabilizes over time. The lower steady state implies that uneducated individuals are more 

vulnerable but may also face higher transition into heavier addiction or lower rates of seeking help, keeping their 

numbers comparatively suppressed or redirected to other compartments. 

Figure 6(e) The heavily addicted population rises quickly and then settles at a steady level. This shows 

that a segment of the lightly addicted individuals (especially the uneducated ones) likely progresses to heavy 
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addiction early. However, stabilization afterward reflects the influence of recovery programs or natural limits in 

the population’s progression to heavy addiction. 

Figure 6(f) This compartment sees a significant early increase as education and intervention efforts 

enable addicted individuals to recover. After reaching a peak, the number stabilizes, indicating that a sustainable 

recovery rate is achieved. The early success of recovery efforts shows that education not only prevents addiction 

but also actively contributes to rehabilitation. 

 

IX. Conclusion 

Drug addiction is a serious social and public health issue that can affect individuals, families and 

communities. Mathematical modelling helps to understand how addiction spreads and how different actions can 

reduce its impact. In this study, a mathematical model with real-life data is used to show how people move through 

different stages - starting from being at risk, getting exposed, becoming lightly or heavily addicted and then 

becoming aware, getting help and finally recovering. 

A critical outcome of the model is the basic reproduction number, 𝑅0 = 1.58, which exceeds the 

threshold of 1. This means that one addicted person can lead to more than one new case, which highlights the 

importance of early action and education in preventing the spread of addiction. The graphs show that after some 

initial changes, the numbers of people in each group become steady, meaning the situation becomes stable over 

time due to education and awareness. 

These findings show that education and awareness programs are important and effective in reducing 

drug addiction. When addiction rates go down, it creates a positive cycle that helps improve and expand 

prevention efforts. Adding education to public health plans is a low-cost way to stop drug addiction from 

increasing and to create a healthier, stronger community. In the future, the model can be improved by adding more 

real-life data, looking at how different ages and backgrounds are affected and including factors like peer pressure 

and relapse. These changes will help test how well different programs and policies might work before putting 

them into action. 
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