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Abstract:
In this paper, we prove common fixed point theorem for three self mappings using compatible condition in G-
metric spaces.
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I. Introduction
In the metric space, fixed point theory has found its way in more general spaces. In this context Mustafa
and Sims [4] generalized the concept of metric space. Based on this generalization Mustafa and Sims [3, 4, 5] and
Mustafa et al. [6, 7] obtained some fixed point theorems for different mappings satisfying contractive conditions.
They introduced and improved version of the generalized metric structure, which is called as G-metric spaces. In
this paper, we have extended the result of Badshah et al. [ 1] for three self mappings.

II.  Preliminaries

Definition 2.1: Let X be a non-empty set, G: X X X X X > R* a function satisfying the followings conditions:
A)Gx,y,2z)=0ifx =y =z,
(1) 0 < G(x,x,y) forall x,y € X withx # y,
(1) G(x,x,y) < G(x,y,z) forall x,y,z € X withz # y,
(iv) G(x,y,2) = G(x,2z,y) = G(y,z,x) = -+ (Symmetry in all three variables),
V) G(x,y,2) < G(x,a,a) + G(a,y, z) forall x,y,z,a € X (rectangle inequality).

The function G is called a generalized metric or, more specifically, a G-metric on X, and the pair (X, G)
is called a G-metric spaces.

Definition 2.2: Let (X,G) be a G-metric space, {x,,} a sequence of points in X. A sequence {x,,} is G-convergent
tox if lim G(x,x,, x,;) = 0; that is for each € > 0 there exist N such that G (x, x,,, X,,) < € forallm,n = N.
n,m-oo

We say that x the limit of the sequence and write x,, = x or lim x,, = x.
n—-oo

Proposition 2.3: Let (X, G) be a G-metric space. Then the following are equivalent:
(1) {x,,} is G convergent to x,

(11) G(xy, Xy, x) > 0 asn — oo,

(1ii) G (x,, x,x) = 0 asn — oo,

(iv) G(xp, xp, x) > 0asm,n - oo,

Definition 2.4: Let (X, G) be G-metric space. A sequence {x,} is called G-Cauchy if, for each € > 0 there exist
an N such that G (x,, x,,, x;) < € foralln,m,l = N.

Proposition 2.5: In a G-metric space (X, G) the following are equivalent:
(i) The sequence {x,} is G-Cauchy,
(ii) for each € > 0 there exist an N such that G (x,,, x,,, x;) < € foralln,m,l = N.

Proposition 2.6: Let (X, G) be a G-metric space. Then the function G (x, y, z) is jointly continuous in all three of
its variable.
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Definition 2.7: A G- metric space (X.G) is called a symmetric G-metric space if G(x,y,y) = G(y, x, x) for all
x,yin X.

Proposition 2.8: Every G-metric space (X, G) defines a metric space (X, d.)

D) d.(x,y) =G(x,y,y) + G(y,x,x) for all x,y in X.

If (X, G) is a symmetric G-metric space, then

(ii) d.(x,y) = 2G(x,y,y) forall x,y in X.

However, if (X, ) is not symmetric, then it follows from the G-metric properties that

(iii) 3/2 G(x,y,y) <d.(x,y) <3G(x,y,y)) forall x,y in X.
Proposition 2.9: A G-metric space (X, G) is G-complete if and only if (X, d.) is a complete metric space.

Proposition 2.10: Let (X, G) be a G-metric space. Then, for any x,y, z, a in X it follows that:
(1) ifG(x,y,z) =0,thenx =y = z,
(i) G(x,y,2) < G(x,x,y) + G(x,x, 2),
(iii) G(x, y,¥) < 2G(y, x,x),
(iv) G(x,y,2) < 2G(x,a,2z) + G(a,y,2),
(V) G(x,y,2) < 2/3 {G(x,a,a) + G(y,a,a) + G(z,a,a)}
In 1976, Jungck [2] gave the notion of commutativity to obtain common fixed point theorems.
Afterwards, in 2012, Manro et al. [3] introduced the concept of compatible maps in G-metric space.

Definition 2.11: Let f and g are mappings from G-metric space (X, G) into itself. The maps f and g are said to
be compatible map if there exists a sequence {x,,} such that
lim G(fgx,, gf xn, gf %) = 0 or lim G(gfx,, fgxn fgx,) = 0 whenever {x,} is sequence in X such that
n—-oo n—-oo
lim fx, = lim gx,, =t forsome t € X.

n—-oo

n—oo

III.  Main Result

Let (X, G) be a complete metric spaces and let f, g and t be three self mappings defined on G-metric
spaces satisfying:
(@) f()Ug(x) € t(x), Vx € X,
(i1) one of f or t is continuous,
(iii) either (f,t) or (g, t) is compatible,
(iv) G(fx, fy, fz) < aG(tx,gy,gy) + bG(tx, fx, tx) + cG(tx, gz, gy) + dG(fx, gy, ty) (3.1)
where a+b+c+d <1,
Then f, g and t will have a unique common fixed point.

Proof: Let x, be any arbitrary point on X and we can choose a sequence {y,,} in X such that

Yn = fxn = gXny1 and Ypiq = thnyp, n=012..

From (3.1), we have

G(fxn' IXn+1, txn+2)
=< aG(txn' IXn+1s gxn+1) + bG(txn,fxn,txn) + CG(txn' IXn+2, gxn+1)
+ dG(fxn: IXn+1, txn+1)
G s Vs Yn2) < A6 (Vn—1, Yy Yn) + DG (Vn—1, Yy Yn—1) + €G (Y1, Yns1, Yn) + dG Vs Yoy Vi)

< (@ + 2b)G (Yn-1,Yn Yn) + €G(Yn-1,Yn) Yn+1) (3:2)

By rectangular inequality of G-metric space
G(Yn-1Yn Yn+1) < G(Yn-1Yn V) + GO Yoy Y1)

< G(yn—l,Yn' Yn) + ZG(Yn' Yn+1' Yn+1) (by prop. 2-10)

From inequality (3.2), we have

GO Ynt1 Yns2) < (@ + 2D)G (Vn1, Y Yn) + €[G (V1,9 Vn) + 26 W, Yns1, Ynss)]

a+2b+c
< (1_—2c) GYn-1, Y Yn)

< SG(yn—lﬂyﬁ'yn)

a+2b+c
where § = ——< 1
1-2¢

Continuing in the same way, we have

G Yn+1 Yn2) < 6"G(Yno1, Yo, Yn)
So that foranym >n,m,n € N
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G(.Vn: Ym Ym) < G(Yn' yn+1'Yn+1) + G(yn+1: Yn+2, yn+2) + -t G(ym—1: Ym ym)
S @™+ 8™+ 4+ ™G Yo, y1, Y1)

n

é
= <1 — 6) G (Yo, Y1, ¥1)

Letting as n,m — oo, we have
711_1)130 GV Ym Ym) =0
Thus {y,,} is a G-Cauchy sequence in X and since (X, G) is complete G-metric space, therefore there exist a point
u € X such that
1111_{1;10 Yn = 1111_{1;10 fxn = 1111_{12) 9Xn+1 = 1111_1;1;)10 txn+2 =u
Since the mapping f or t is continuous, one can assume that f is continuous, therefore
lim f £, = lim fgitnss = fu

Further, f and t are compatible, therefore

1111_1110 G(ftxn, tfxn, tfx,) =0
implies that ilﬁrg ftx, = fu.
Similarly as g and t are compatible therefore

lim G(gtxn, tgxn, tgxn) =0
implies that il_l}‘l(’)lo gtx, = gu.
Consider
G(ffxn, fon, fX0)

< aG(tfxn, 9Xn, gXn) + DG (tf Xy, f 2, tf %) + €G(tf X, X, gXn) + AG(ff X5, gX, tX)
Letting n — oo, we get
G(fu,u,u) < aG(fu,gu, gu) + bG(fu, fu, fu) + cG(fu, gu, gu) + dG(fu, gu, gu)

<(a+c+d)G(fu gu, gu)
implies that
G(fu,u,u) < 0sothat fu = u.
Again consider,

G(fgxn, fu, gu) < aG(tgxy, gu, gu) + bG(fgxn, fgxn, tgxn) + cG(tgxy, gu, gu) + dG(fgxy, gXn, txn)
Letting n - oo, we get
G(gu,u,u) < aG(gu, gu, gu) + bG(gu, fu, tu) + cG(gu, gu, gu) + dG(fu, gu, tu)
< (a +d)G(fu, gu, tu)

Implies that G (gu, u, u) < 0 so that gu = u.
Similarly one can find G (tu, u, u) < 0 so that tu = u.
Hence fu = gu = tu = u. Therefore u is a common fixed point of f, g and t.

Uniqueness
Suppose that v(# u) be another common fixed point of f, g and t. Then, G(u,v,v) > 0

Consider
Gu,v,v) = G(fu, fv, fv)
< aG(tu, gv, gv) + bG(tu, fu, tu) + cG(tu, gv, gv) + dG(fu, gv, tv)
<aG(u,v,v)+ bG(u,u,u) +cGu,v,v) +dG(u,v,v)
<(a+c+d)G(u,vv)
< G(u,v,v).

which is a contradiction, so that u = v.
Hence u is a unique common fixed point of f, g and ¢.

Example 3.1: Let X = {0,1,2} with the G-metric on G:X X X X X = R defined by G(x,y,z) = max {|x —
yl,ly —zl|,|z—x|} forall x,y,z € X. Define f, g, t: X > X by fx =tx =1,gx = 1%, for all x € X. Since f is

continuous and f(x)Ug(x) € t(x). Also G(fx, fy,fz) < aG(x,y,z) holds for all x,y,x € X. Hence 1 is the
unique common fixed point of f, g, t.

IV.  Conclusion
In this paper we have proved common fixed point theorem for three self mappings in complete G-metric
space using compatible condition.
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