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Abstract:  
In this paper, we prove common fixed point theorem for three self mappings using compatible condition in G-

metric spaces. 
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I. Introduction 
In the metric space, fixed point theory has found its way in more general spaces. In this context Mustafa 

and Sims [4] generalized the concept of metric space. Based on this generalization Mustafa and Sims [3, 4, 5] and 

Mustafa et al. [6, 7] obtained some fixed point theorems for different mappings satisfying contractive conditions. 

They introduced and improved version of the generalized metric structure, which is called as G-metric spaces. In 

this paper, we have extended the result of Badshah et al. [1] for three self mappings. 

 

II. Preliminaries 
Definition 2.1: Let 𝑋 be a non-empty set, 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝑅+ a function satisfying the followings conditions: 

(i) 𝐺(𝑥, 𝑦, 𝑧) = 0 if 𝑥 = 𝑦 = 𝑧, 

(ii) 0 < 𝐺(𝑥, 𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦, 

(iii) 𝐺(𝑥, 𝑥, 𝑦) ≤ 𝐺(𝑥, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 with 𝑧 ≠ 𝑦, 

(iv) 𝐺(𝑥, 𝑦, 𝑧) = 𝐺(𝑥, 𝑧, 𝑦) = 𝐺(𝑦, 𝑧, 𝑥) = ⋯ (Symmetry in all three variables), 

(v) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑎, 𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋 (rectangle inequality). 

The function 𝐺 is called a generalized metric or, more specifically, a G-metric on 𝑋, and the pair (𝑋, 𝐺) 

is called a G-metric spaces. 

 

Definition 2.2: Let (X,G) be a G-metric space, {𝑥𝑛} a sequence of points in 𝑋. A sequence {𝑥𝑛} is G-convergent 

to 𝑥 if lim
𝑛,𝑚→∞

𝐺(𝑥, 𝑥𝑛 , 𝑥𝑚) = 0; that is for each 𝜖 > 0 there exist 𝑁 such that 𝐺(𝑥, 𝑥𝑛 , 𝑥𝑚) < 𝜖 for all 𝑚, 𝑛 ≥ 𝑁. 

We say that 𝑥 the limit of the sequence and write 𝑥𝑛 → 𝑥 or lim
𝑛→∞

𝑥𝑛 = 𝑥. 

 

Proposition 2.3: Let (𝑋, 𝐺) be a G-metric space. Then the following are equivalent: 

(i) {𝑥𝑛} is G convergent to 𝑥, 

(ii) 𝐺(𝑥𝑛 , 𝑥𝑛 , 𝑥) → 0 as 𝑛 → ∞, 

(iii) 𝐺(𝑥𝑛, 𝑥, 𝑥) → 0 as 𝑛 → ∞, 

(iv) 𝐺(𝑥𝑚, 𝑥𝑛 , 𝑥) → 0 as 𝑚, 𝑛 → ∞. 

 

Definition 2.4: Let (𝑋, 𝐺) be G-metric space. A sequence {𝑥𝑛} is called G-Cauchy if, for each 𝜖 > 0 there exist 

an 𝑁 such that 𝐺(𝑥𝑛, 𝑥𝑚 , 𝑥𝑙) < 𝜖 for all 𝑛, 𝑚, 𝑙 ≥ 𝑁. 

 

Proposition 2.5: In a G-metric space (𝑋, 𝐺) the following are equivalent: 

(i) The sequence {𝑥𝑛} is G-Cauchy, 

(ii) for each 𝜖 > 0 there exist an 𝑁 such that 𝐺(𝑥𝑛 , 𝑥𝑚 , 𝑥𝑙) < 𝜖 for all 𝑛, 𝑚, 𝑙 ≥ 𝑁. 

 

Proposition 2.6: Let (𝑋, 𝐺) be a G-metric space. Then the function 𝐺(𝑥, 𝑦, 𝑧) is jointly continuous in all three of 

its variable. 
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Definition 2.7: A G- metric space (𝑋. 𝐺) is called a symmetric G-metric space if 𝐺(𝑥, 𝑦, 𝑦) = 𝐺(𝑦, 𝑥, 𝑥) for all 

𝑥, 𝑦 in 𝑋. 

 

Proposition 2.8: Every G-metric space (𝑋, 𝐺) defines a metric space (𝑋, 𝑑𝑐) 

(i) 𝑑𝑐(𝑥, 𝑦) = 𝐺(𝑥, 𝑦, 𝑦) + 𝐺(𝑦, 𝑥, 𝑥) for all 𝑥, 𝑦 in 𝑋. 

If (𝑋, 𝐺) is a symmetric G-metric space, then 

(ii) 𝑑𝑐(𝑥, 𝑦) = 2𝐺(𝑥, 𝑦, 𝑦) for all 𝑥, 𝑦 in 𝑋. 

However, if (𝑋, 𝐺) is not symmetric, then it follows from the G-metric properties that 

(iii) 3 2⁄ 𝐺(𝑥, 𝑦, 𝑦) ≤ 𝑑𝑐(𝑥, 𝑦) ≤ 3𝐺(𝑥, 𝑦, 𝑦) ) for all 𝑥, 𝑦 in 𝑋. 

 

Proposition 2.9: A G-metric space (𝑋, 𝐺) is G-complete if and only if (𝑋, 𝑑𝑐) is a complete metric space. 

 

Proposition 2.10: Let (𝑋, 𝐺) be a G-metric space. Then, for any 𝑥, 𝑦, 𝑧, 𝑎 in 𝑋 it follows that: 

(i) if 𝐺(𝑥, 𝑦, 𝑧) = 0, then 𝑥 = 𝑦 = 𝑧, 

(ii) 𝐺(𝑥, 𝑦, 𝑧) ≤ 𝐺(𝑥, 𝑥, 𝑦) + 𝐺(𝑥, 𝑥, 𝑧), 

(iii) 𝐺(𝑥, 𝑦, 𝑦) ≤ 2𝐺(𝑦, 𝑥, 𝑥), 

(iv) 𝐺(𝑥, 𝑦, 𝑧) ≤ 2𝐺(𝑥, 𝑎, 𝑧) + 𝐺(𝑎, 𝑦, 𝑧), 

(v) 𝐺(𝑥, 𝑦, 𝑧) ≤ 2
3⁄ {𝐺(𝑥, 𝑎, 𝑎) + 𝐺(𝑦, 𝑎, 𝑎) + 𝐺(𝑧, 𝑎, 𝑎)} 

In 1976, Jungck [2] gave the notion of commutativity to obtain common fixed point theorems. 

Afterwards, in 2012, Manro et al. [3] introduced the concept of compatible maps in G-metric space. 

 

Definition 2.11: Let 𝑓 and 𝑔 are mappings from G-metric space (𝑋, 𝐺) into itself. The maps  𝑓 and 𝑔 are said to 

be compatible map if there exists a sequence {𝑥𝑛} such that 

lim
𝑛→∞

𝐺(𝑓𝑔𝑥𝑛, 𝑔𝑓𝑥𝑛, 𝑔𝑓𝑥𝑛) = 0  𝑜𝑟 lim
𝑛→∞

𝐺(𝑔𝑓𝑥𝑛 , 𝑓𝑔𝑥𝑛 , 𝑓𝑔𝑥𝑛) = 0 whenever {𝑥𝑛} is sequence in 𝑋 such that 

lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑡 for some 𝑡 ∈ 𝑋. 

 

III. Main Result 
Let (𝑋, 𝐺) be a complete metric spaces and let 𝑓, 𝑔 and 𝑡 be three self mappings defined on G-metric 

spaces satisfying: 

(i) 𝑓(𝑥)⋃𝑔(𝑥) ⊆ 𝑡(𝑥), ∀𝑥 ∈ 𝑋, 

(ii) one of 𝑓 or 𝑡 is continuous, 

(iii) either (𝑓, 𝑡) or (𝑔, 𝑡) is compatible, 

(iv) 𝐺(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) ≤ 𝑎𝐺(𝑡𝑥, 𝑔𝑦, 𝑔𝑦) + 𝑏𝐺(𝑡𝑥, 𝑓𝑥, 𝑡𝑥) + 𝑐𝐺(𝑡𝑥, 𝑔𝑧, 𝑔𝑦) + 𝑑𝐺(𝑓𝑥, 𝑔𝑦, 𝑡𝑦)   (3.1) 

where  𝑎 + 𝑏 + 𝑐 + 𝑑 < 1, 

Then 𝑓, 𝑔 and 𝑡 will have a unique common fixed point. 

 

Proof: Let 𝑥0 be any arbitrary point on 𝑋 and we can choose a sequence {𝑦𝑛} in 𝑋 such that 

𝑦𝑛 = 𝑓𝑥𝑛 = 𝑔𝑥𝑛+1 and 𝑦𝑛+1 = 𝑡𝑥𝑛+2,    𝑛 = 0,1,2 … 

From (3.1), we have 

𝐺(𝑓𝑥𝑛 , 𝑔𝑥𝑛+1, 𝑡𝑥𝑛+2)

≤ 𝑎𝐺(𝑡𝑥𝑛 , 𝑔𝑥𝑛+1, 𝑔𝑥𝑛+1) + 𝑏𝐺(𝑡𝑥𝑛,𝑓𝑥𝑛,𝑡𝑥𝑛) + 𝑐𝐺(𝑡𝑥𝑛 , 𝑔𝑥𝑛+2, 𝑔𝑥𝑛+1)

+ 𝑑𝐺(𝑓𝑥𝑛 , 𝑔𝑥𝑛+1, 𝑡𝑥𝑛+1) 

𝐺(𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+2) ≤ 𝑎𝐺(𝑦𝑛−1, 𝑦𝑛 , 𝑦𝑛) + 𝑏𝐺(𝑦𝑛−1, 𝑦𝑛, 𝑦𝑛−1) + 𝑐𝐺(𝑦𝑛−1, 𝑦𝑛+1, 𝑦𝑛) + 𝑑𝐺(𝑦𝑛, 𝑦𝑛 , 𝑦𝑛) 

≤ (𝑎 + 2𝑏)𝐺(𝑦𝑛−1,𝑦𝑛, 𝑦𝑛) + 𝑐𝐺(𝑦𝑛−1,𝑦𝑛 , 𝑦𝑛+1)                        (3.2) 

By rectangular inequality of G-metric space 

𝐺(𝑦𝑛−1,𝑦𝑛 , 𝑦𝑛+1) ≤ 𝐺(𝑦𝑛−1,𝑦𝑛, 𝑦𝑛) + 𝐺(𝑦𝑛, 𝑦𝑛 , 𝑦𝑛+1) 

≤ 𝐺(𝑦𝑛−1,𝑦𝑛, 𝑦𝑛) + 2𝐺(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+1)    (by prop. 2.10) 

From inequality (3.2), we have 

𝐺(𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+2) ≤ (𝑎 + 2𝑏)𝐺(𝑦𝑛−1,𝑦𝑛, 𝑦𝑛) + 𝑐[𝐺(𝑦𝑛−1,𝑦𝑛 , 𝑦𝑛) + 2𝐺(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+1)] 

≤  (
𝑎 + 2𝑏 + 𝑐

1 − 2𝑐
) 𝐺(𝑦𝑛−1, 𝑦𝑛 , 𝑦𝑛) 

≤ 𝛿𝐺(𝑦𝑛−1, 𝑦𝑛 , 𝑦𝑛) 

where 𝛿 =
𝑎+2𝑏+𝑐

1−2𝑐
< 1 

Continuing in the same way, we have 

𝐺(𝑦𝑛, 𝑦𝑛+1, 𝑦𝑛+2) ≤ 𝛿𝑛𝐺(𝑦𝑛−1, 𝑦𝑛 , 𝑦𝑛) 

So that for any 𝑚 > 𝑛, 𝑚, 𝑛 ∈ 𝑁 
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𝐺(𝑦𝑛 , 𝑦𝑚, 𝑦𝑚) ≤ 𝐺(𝑦𝑛 , 𝑦𝑛+1, 𝑦𝑛+1) + 𝐺(𝑦𝑛+1, 𝑦𝑛+2, 𝑦𝑛+2) + ⋯ + 𝐺(𝑦𝑚−1, 𝑦𝑚, 𝑦𝑚) 

≤ (𝛿𝑛 + 𝛿𝑛+1 + ⋯ + 𝛿𝑚−1)𝐺(𝑦0 , 𝑦1, 𝑦1) 

≤ (
𝛿𝑛

1 − 𝛿
) 𝐺(𝑦0, 𝑦1, 𝑦1) 

Letting as 𝑛, 𝑚 → ∞, we have 

lim
𝑛→∞

𝐺( 𝑦𝑛 , 𝑦𝑚, 𝑦𝑚) = 0 

Thus {𝑦𝑛} is a G-Cauchy sequence in 𝑋 and since (𝑋, 𝐺) is complete G-metric space, therefore there exist a point 

𝑢 ∈ 𝑋 such that 

lim
𝑛→∞

𝑦𝑛 = lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛+1 = lim
𝑛→∞

𝑡𝑥𝑛+2 = 𝑢 

Since the mapping 𝑓 or 𝑡 is continuous, one can assume that 𝑓 is continuous, therefore 

lim
𝑛→∞

𝑓 𝑓𝑥𝑛 = lim
𝑛→∞

𝑓𝑔𝑥𝑛+1 = 𝑓𝑢 

Further, 𝑓 and 𝑡 are compatible, therefore 

lim
𝑛→∞

𝐺(𝑓𝑡𝑥𝑛 , 𝑡𝑓𝑥𝑛 , 𝑡𝑓𝑥𝑛) = 0 

implies that lim
𝑛→∞

𝑓𝑡𝑥𝑛 = 𝑓𝑢. 

Similarly as 𝑔 and 𝑡 are compatible therefore 

lim
𝑛→∞

𝐺(𝑔𝑡𝑥𝑛 , 𝑡𝑔𝑥𝑛 , 𝑡𝑔𝑥𝑛) = 0 

implies that lim
𝑛→∞

𝑔𝑡𝑥𝑛 = 𝑔𝑢. 

Consider 

𝐺(𝑓𝑓𝑥𝑛 , 𝑓𝑥𝑛 , 𝑓𝑥𝑛)
≤ 𝑎𝐺(𝑡𝑓𝑥𝑛 , 𝑔𝑥𝑛, 𝑔𝑥𝑛) + 𝑏𝐺(𝑡𝑓𝑥𝑛, 𝑓𝑓𝑥𝑛 , 𝑡𝑓𝑥𝑛) + 𝑐𝐺(𝑡𝑓𝑥𝑛 , 𝑔𝑥𝑛 , 𝑔𝑥𝑛) + 𝑑𝐺(𝑓𝑓𝑥𝑛 , 𝑔𝑥,, 𝑡𝑥𝑛) 

Letting 𝑛 → ∞, we get 

𝐺(𝑓𝑢, 𝑢, 𝑢) ≤ 𝑎𝐺(𝑓𝑢, 𝑔𝑢, 𝑔𝑢) + 𝑏𝐺(𝑓𝑢, 𝑓𝑢, 𝑓𝑢) + 𝑐𝐺(𝑓𝑢, 𝑔𝑢, 𝑔𝑢) + 𝑑𝐺(𝑓𝑢, 𝑔𝑢, 𝑔𝑢) 

≤ (𝑎 + 𝑐 + 𝑑)𝐺(𝑓𝑢, 𝑔𝑢, 𝑔𝑢) 

implies that 

𝐺(𝑓𝑢, 𝑢, 𝑢) ≤ 0 so that 𝑓𝑢 = 𝑢. 

Again consider, 

𝐺(𝑓𝑔𝑥𝑛 , 𝑓𝑢, 𝑔𝑢) ≤ 𝑎𝐺(𝑡𝑔𝑥𝑛 , 𝑔𝑢, 𝑔𝑢) + 𝑏𝐺(𝑓𝑔𝑥𝑛, 𝑓𝑔𝑥𝑛, 𝑡𝑔𝑥𝑛) + 𝑐𝐺(𝑡𝑔𝑥𝑛 , 𝑔𝑢, 𝑔𝑢) + 𝑑𝐺(𝑓𝑔𝑥𝑛 , 𝑔𝑥𝑛 , 𝑡𝑥𝑛) 

Letting 𝑛 → ∞, we get 

𝐺(𝑔𝑢, 𝑢, 𝑢) ≤ 𝑎𝐺(𝑔𝑢, 𝑔𝑢, 𝑔𝑢) + 𝑏𝐺(𝑔𝑢, 𝑓𝑢, 𝑡𝑢) + 𝑐𝐺(𝑔𝑢, 𝑔𝑢, 𝑔𝑢) + 𝑑𝐺(𝑓𝑢, 𝑔𝑢, 𝑡𝑢) 

≤ (𝑎 + 𝑑)𝐺(𝑓𝑢, 𝑔𝑢, 𝑡𝑢) 

Implies that 𝐺(𝑔𝑢, 𝑢, 𝑢) ≤ 0 so that 𝑔𝑢 = 𝑢. 

Similarly one can find 𝐺(𝑡𝑢, 𝑢, 𝑢) ≤ 0 so that 𝑡𝑢 = 𝑢. 

Hence 𝑓𝑢 = 𝑔𝑢 = 𝑡𝑢 = 𝑢. Therefore 𝑢 is a common fixed point of 𝑓, 𝑔 and 𝑡. 

 

Uniqueness 

Suppose that 𝑣(≠ 𝑢) be another common fixed point of 𝑓, 𝑔 and 𝑡. Then, 𝐺(𝑢, 𝑣, 𝑣) > 0 

 

 

Consider 

𝐺(𝑢, 𝑣, 𝑣) = 𝐺(𝑓𝑢, 𝑓𝑣, 𝑓𝑣) 

≤ 𝑎𝐺(𝑡𝑢, 𝑔𝑣, 𝑔𝑣) + 𝑏𝐺(𝑡𝑢, 𝑓𝑢, 𝑡𝑢) + 𝑐𝐺(𝑡𝑢, 𝑔𝑣, 𝑔𝑣) + 𝑑𝐺(𝑓𝑢, 𝑔𝑣, 𝑡𝑣) 

≤ 𝑎𝐺(𝑢, 𝑣, 𝑣) + 𝑏𝐺(𝑢, 𝑢, 𝑢) + 𝑐𝐺(𝑢, 𝑣, 𝑣) + 𝑑𝐺(𝑢, 𝑣, 𝑣) 

≤ (𝑎 + 𝑐 + 𝑑)𝐺(𝑢, 𝑣, 𝑣) 

< 𝐺(𝑢, 𝑣, 𝑣). 

which is a contradiction, so that 𝑢 = 𝑣. 

Hence 𝑢 is a unique common fixed point of 𝑓, 𝑔 and 𝑡. 

 

Example 3.1: Let 𝑋 = {0,1,2} with the G-metric on 𝐺: 𝑋 × 𝑋 × 𝑋 → 𝑅 defined by 𝐺(𝑥, 𝑦, 𝑧) = max {|𝑥 −

𝑦|, |𝑦 − 𝑧|, |𝑧 − 𝑥|} for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Define 𝑓, 𝑔, 𝑡: 𝑋 → 𝑋 by 𝑓𝑥 = 𝑡𝑥 = 1, 𝑔𝑥 =
1+𝑥

2
, for all 𝑥 ∈ 𝑋. Since 𝑓 is 

continuous and 𝑓(𝑥)⋃𝑔(𝑥) ⊆ 𝑡(𝑥). Also 𝐺(𝑓𝑥, 𝑓𝑦, 𝑓𝑧) ≤ 𝑎𝐺(𝑥, 𝑦, 𝑧) holds for all 𝑥, 𝑦, 𝑥 ∈ 𝑋. Hence 1 is the 

unique common fixed point of 𝑓, 𝑔, 𝑡. 
 

IV. Conclusion 
In this paper we have proved common fixed point theorem for three self mappings in complete G-metric 

space using compatible condition. 
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