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Abstract:
Let  be an integer and let  be the set of unitary divisors of , other than . Then the set                  
 is a symmetric subset of the group, the additive abelian group of integers modulo .  The Cayley graph of ) 
associated with the above symmetric subset   is called the unitary divisor Cayley graph and it is denoted by .  
That is, the graph  is the graph whose vertex set is  and the edge set  is the set of all ordered pairs of vertices  
such that either  
,or, .
In this paper, it is established that the graph  is  regular, Hamiltonian and connected. It is also studied that for 
what values of , the graph  is Eulerian or not and bipartite or not.
Keywords: Unitary divisor, Cayley graph, unitary divisor Cayley graph, bipartite graph, Hamilton cycle, 
Eulerian graph.
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I. Introduction
Nathanson [9] was the pioneer in introducing the concepts of number theory into graph theory and thus 

paved way for the study of a new class of graphs called Arithmetic Graphs arising by defining adjacency using 
various arithmetic functions.  The theory of groups provides an interesting and powerful abstract approach to 
the study of symmetries of various graphs.

A new class of graphs namely, Cayley Graphs can be constructed by making use of a group  and a 
symmetric subset  of  (a subset  of  is called a symmetric subset if ). It is the graph , whose vertex set is  and 
edge set . It is well known that [Th. 1.4.5, p 16 of 8]  is an undirected graph without loops, which is  regular 
having   edges. The cycle structure of Cayley graphs and Unitary Cayley graphs were studied by Berrizbeitia 
and Guidicci [2,3] and Detzer and Guidicci [5]. Madhavi [8] studied Arithmetic Cayley graphs associated with 
quadratic residues modulo , a prime, the Euler-Totient function  and the divisor function ,  an integer.

The degree  of a vertex  in a graph  is the number of edges incident with each vertex . If degree of each 
vertex in  is same, say , then  is called regular graph. A graph is a complete graph, if every vertex is adjacent to 
all other vertices of the graph. A walk in a graph  is an alternating sequence of vertices and edges, beginning 
and ending with vertices, in which each edge is incident with the two vertices immediately preceding and 
following it. A walk is closed if  . A closed walk in which all the edges are distinct is called a circuit. An 
Eulerian circuit in a graph  is a circuit containing every edge of  and  is an Eulerian graph if it contains an 
Eulerian circuit.

A cycle in a graph is a sequence of distinct vertices such that  are edges. It is denoted by  and  is called 
its length. A Hamilton cycle in a graph  is a cycle containing every vertex of  and  is called a Hamiltonian graph 
if it contains a Hamilton cycle. A bipartite graph is a graph, whose vertex set can be partitioned into two disjoint 
subsets  and  (that is, ) such that each edge has one end in  and other end in .

For standard terminology and notions in graph theory, we refer Bondy and Murty [4] and Harary [7] 
and for number theoretic notions Apostol [1] and Eckford Cohen [6] .

II. Unitary Divisor Cayley Graph
Let  be an integer. Consider the set  of residue classes modulo . Since                                               , we 

can as well denote . In view of this, the set  is henceforth represented by                                                   , or, 
simply . In the abelian group ,  is the identity element and  is the inverse of  in .

Definition 2.1:  Let  be an integer. A divisor  of  which is such that , is called a unitary divisor of . The number 
of unitary divisors of  is denoted by  and the set of unitary divisors of  is denoted by .

For example, for , the unitary divisors are  and , while for , the unitary divisors are  and .
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In the following table the unitary divisors and their number are given for integers  up to .

Unitary 
divisors of  

Let  be the set of unitary divisors of , other than . The set  need not be a symmetric subset of  the 
group . For example, for , the set  of  unitary divisors of , other than  is . Now for , its inverse in  is , which is not 
a unitary divisor of .

However, the set  is a symmetric subset of the group . Using this symmetric subset of , the unitary 
divisor Cayley graph is defined as follows:

Definition 2.2: Let  be an integer and let . The Unitary Divisor Cayley graph  is the graph, whose vertex set is  
and the edge set .

For  the unitary divisor Cayley graphs are given below:

Theorem 2.3:
(i) If  , where  is odd, then  is odd.
(ii) If  , where  and  is odd, then  is even.
(iii) If   is odd, then  is even.

Proof:  We know that  .
Let , where  is odd.

Now , since  is odd.  So,  is a unitary divisor of  and . Also , since .  Pairing the elements of as  , where  
is a unitary divisor of , except the pair , all other pairs have distinct elements of . So, the number of elements in  
other than  is even, so that  is odd.

Let  , where  and is odd and let be a unitary divisor of .
First we observe that  must be  for some odd number .  For, if  , where , then , since . This shows that  

is not a unitary divisor of  , which is a contradiction.  So, , for some odd number .
We claim that . For, if , then , which gives  , or, . This is again a contradiction to the fact that  is odd. 

So, the elements of  can be paired into , where  , so that  is even.

Let  be odd.
For any unitary divisor  of , .  This is because, if  , then , so that  is even and this is a contradiction to 

the fact that  is odd.
So, the elements of  can be paired into  , where , so that  is even.
Theorem 2.4:  The graph  is  regular.  Moreover the number of edges in  is  .
Proof:  By the Theorem 1.4.5 (pg.16 of [8]), the Cayley graph  associated with a symmetric subset of a group  
is -regular and contains  edges. Since the graph  is the Cayley graph of the group  with respect to the symmetric 
set , it follows that the graph  is  regular, and contains  edges.

Theorem 2.5:  The graph is connected.
Proof:  Clearly .
Let  and  be any two vertices in the graph . Then .
For definiteness, let  and let .
Consider the vertices .
Since , it follows that  is an edge for . This shows that
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is a path connecting the vertices  and . So the graph  is connected.
Theorem 2.6:  The graph  is Hamiltonian.
Proof:  Clearly , so that .
Now for any , , we have , so that  is an edge of the graph .
Also  . Thus

is a closed path connecting all the vertices of   exactly once, so that  is a Hamilton cycle of length  in . 
Thus  is Hamiltonian.

Definition 2.7:  The cycle  is called the outer Hamilton Cycle of the graph .

III. Properties Of The Unitary Divisor Cayley Graph
Theorem 3.1:  If  is a power of a prime, then the graph  is the outer Hamilton Cycle .
Proof:  Suppose that  is a power of a prime, say .
Any divisor of  other than  is of the form , where .
Clearly , . So .
Hence , where .

So , which shows that  is not a unitary divisor. It follows that ‘’ is the only unitary divisor of  other 
than .

Thus  . So, each vertex is of degree , and thus the graph   is 2 – regular.  Hence the only edges in  are  
for  and the graph  is the outer Hamilton Cycle .

Example 3.2:   The outer Hamilton cycle  of the graph  is as follows:

Theorem 3.3:  The graph  is a complete graph for .
Proof:  If  then the symmetric set  and the graph  is the trivial graph containing only one vertex.

If   then the symmetric set  and the graph  is the  graph with vertex set  and the edge set . This is 
evidently a complete graph.

If  , then the vertex set of   is  and . The edge set of  is , which is a complete graph.

If  , then the vertex set of   is  and . So the graph  is a complete graph, which is given below.

Theorem 3.4:  If , where  is odd, then the unitary Cayley graph  is not Eulerian.
Proof:  Suppose , where  is odd. Then by the Theorem 2.3 (i),  is odd.

By the Theorem 2.4, the graph  is - regular. So each vertex in the graph  is of odd degree.
Thus by the Theorem 4.1 (pp.51&52 of [4]),  the graph  is not Eulerian.
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Theorem 3.5:
i. If is a power of a prime, then the graph  is Eulerian.
ii. If , where  and is odd, then the graph  is Eulerian.
iii. If  is odd, then the graph  is Eulerian.

Proof:  By the Theorem 2.4, the graph  is - regular.
i. Suppose that  is a power of a prime.  Then  is the only unitary divisor of  other than , so that  .  So each 

vertex is of degree  and it is even.  Hence the graph   is Eulerian [4].
ii. Let , where  and  is odd, then by part ii of the Theorem 2.3,  is even.  That is, the degree of each vertex in   is 

even,  so that, the graph   Eulerian [4].
iii. By part iii of the Theorem 2.3,  is even for  is odd.  That is, the degree of each vertex in   is even, so that, the 

graph   is Eulerian[4].
Theorem 3.6:  If  is a power of  , then the graph   is a bipartite graph.
Proof:  First we shall show that  has no odd cycles. To see this, let  be a cycle in . Then  are edges in , so that  
for and . Since  and  is a prime, ‘’ is the only unitary divisor of  other than .

So, . This shows that  is equal to , or,  and similarly  is equal to , or, . Since  is a power of , it is even so 
that  is odd. So, and  must be odd for .  That is, one of  and  is even and the other is odd for  and the same is true 
for  and  .

Thus, if  is even then  is odd,  is even and so on.  Further  is odd.  Similarly, if  is odd then  is even,  is 
odd and so on.  Further  is even.

This shows that half of   are even and the other half are odd, so that their number is even.  That is, the 
cycle  is an even cycle and   has no odd cycles.
Hence by the Theorem 1.2 (pp.14&15 of [4]), the graph  is bipartite.

Example 3.7: The bipartite Graph  with its bipartition , where  and  is as follows:

Theorem 3.8:
i. If  is odd, then the graph  is not a bipartite graph.
ii. If , where  is odd, then the graph  is not a bipartite graph.
iii. If , where  are integers and  is odd, then the graph   is not a bipartite graph.

Proof:  For , . So  is a (Hamilton) cycle of length .
i. Suppose  is odd. Then the cycle  is an odd cycle, so that  is not bipartite by the Theorem 1.2 (pp.14&15 of 

[4]).
ii. Suppose , where  is odd.  Then , since is odd. So , so that 

 .
Consider the set of vertices  .

Since ,  and  are the edges in the graph . That is,  is a  – cycle, which is an odd cycle in . Hence  is not 
bipartite by the Theorem 1.2 (pp.14&15 of [4]).
iii. Suppose , where  are integers and  is odd.  is a unitary divisor of , since  , as  is odd.

Consider the set of vertices . Now , for , so that  and  are edges.
Further , a unitary divisor and hence is in .

So  is a cycle of length , which is odd. Hence  the graph  contains an odd cycle, so that it is not bipartite 
again by the Theorem 1.2 (pp.14&15 of [4]).

Example 3.9: The graph  given below is not a bipartite graph, since it has the outer Hamilton cycle  of length , 
which is odd.
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IV. Conclusion:
The domination parameters and the metric properties of this graph are under study.
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this paper.
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