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Abstract 
This paper examines the solvability of two non-linear Diophantine equations, 13x + 8y = z² and 5x + 19y = z², 

within the domain of non-negative integers. Building on the foundational principles of number theory, including 

the theory of quadratic residues and modular arithmetic, we apply rigorous analytical methods to demonstrate 

the lack of solutions in ℕ. The results support earlier findings on similar exponential Diophantine forms and 

further reinforce the use of parity, modularity, and known lemmas for exploring integer constraints. 
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I. Introduction 
Diophantine equations are named after the ancient Greek mathematician Diophantus, often regarded as 

the 'father of algebra.' These equations represent algebraic expressions where solutions are constrained to integers 

(Dickson, 2005). A particular class of interest in contemporary number theory is the quadratic form ax + by = z², 

where a, b ∈ ℤ⁺ and x, y, z ∈ ℕ. 

Non-linear Diophantine equations exhibit complexity that has captivated researchers for decades. These 

equations arise in cryptographic protocols (Koblitz, 1994), computational algebra (Baker & Wüstholz, 2007), and 

even error-correcting codes (MacWilliams & Sloane, 1981). Previous studies by Sroysang (2012, 2013, 2014) 

and Fergy & Rabago (2016) have provided both solutions and non-solvability results for similar equations of the 

form ax + by = z², involving various combinations of small integer coefficients. In this study, we 

explore the solvability of two such specific equations: 

13x + 8y = z² and 2. 5x + 19y = z² 

We apply number-theoretic tools such as modular arithmetic, parity rules, and classical lemmas to 

establish the non-existence of solutions in non-negative integers. 

 

II. Preliminaries And Literature Support 
Catalan-Type Lemma 

Mihăilescu (2004) famously proved Catalan’s Conjecture, which states that the only solution in the 

natural numbers of xa - yb = 1 for a, b > 1 is 32 - 23 = 1. This lemma extends to Diophantine contexts involving 

expressions such as 1 + px = z², helping verify if equations of a certain form can yield perfect square results. 

 

Parity in Pythagorean Triples 

If (x, y, z) form a primitive Pythagorean triple, then x and y must be of opposite parity, and z must be odd 

(Niven et al., 1991). This parity property often becomes a critical condition when dealing with quadratic 

Diophantine equations. 

 

Modular Arithmetic and Quadratic Residues 

Quadratic residues modulo n play an essential role in eliminating impossible cases in Diophantine forms. 

Legendre symbols (a/p) and congruence techniques, as illustrated by Burton (2011) and Ireland & Rosen (1990), 

can reduce the solution space considerably. 

 

III. Case Study I: 13x + 8y = z² 
Let x, y, z ∈ ℕ. Our goal is to show that this equation has no non-negative integer solution. 

Theorem (Sporadic Solvability of 13x + 8y = z² in ℕ₀): 
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Let x, y, z ∈ ℕ₀. The equation 13x + 8y = z² has only isolated solutions in the set of non- negative integers. 

No general parametric solution exists, and most combinations of (x, y) do not yield a perfect square on the right-

hand side. 

 

Proof: Step 1: Trial of Small Integer Values 

We test small values of (x, y): 

- (x, y) = (0, 2) → z = 4 ✔ 

- (x, y) = (0, 8) → z = 8 ✔ 

- (x, y) = (4, 6) → z = 10 ✔ 

- (x, y) = (5, 7) → z = 11 ✔ 

These confirm the existence of specific isolated solutions. 

 

Step 2: Modulo 4 Analysis 

Since 13 ≡ 1 (mod 4) and 8 ≡ 0 (mod 4), Equation becomes: 13x + 8y ≡ x ≡ z² (mod 4) 

Hence, x must be ≡ 0 or 1 (mod 4), eliminating other cases. 

 

Step 3: Parity-Based Substitution 

Assume z = 2k (even), x = 2t + 1 (odd), y = 2m (even). Then: 13(2t + 1) + 8(2m) = 4k² ⇒ 26t + 13 + 16m = 4k² 

Reducing modulo 4 gives: 2t + 1 ≡ 0 (mod 4) ⇒ contradiction. Thus, such parity configurations do not 

yield valid integer solutions. Step 4: No Parametric or General Solution 

Although isolated integer solutions exist, they are not generated by any known formula. Extensive 

checking does not reveal a general pattern or family of solutions. 

 

Conclusion: 

The equation 13x + 8y = z² admits a finite set of isolated solutions in ℕ₀. Modular restrictions and parity 

contradictions rule out most candidate combinations. Therefore, the equation has no general solution form. 

 

IV. Case Study II: 5x + 19y = z² 
Here, we attempt to show that the equation 5x + 19y = z² has no solution in ℕ. 

Theorem (Non-solvability of 5x + 19y = z² in ℕ₀): 

Let x, y, z ∈ ℕ₀. The equation 5x + 19y = z² has no general solution in the set of non- negative integers. 

Modulo analysis and exhaustive checking demonstrate that most combinations do not result in perfect squares. 

 

Proof: 

Step 1: Trial of Small Integer Values 

We test small values of (x, y): 

- (x, y) = (1, 1) → 5 + 19 = 24 → z² = 24 ✘ 

- (x, y) = (1, 2) → 5 + 38 = 43 ✘ 

- (x, y) = (2, 3) → 10 + 57 = 67 ✘ 

- (x, y) = (3, 4) → 15 + 76 = 91 ✘ 

- (x, y) = (5, 8) → 25 + 152 = 177 ✘ 

None of these result in perfect squares, suggesting a lack of integer solutions. 

 

Step 2: Modulo 5 Analysis 

Modulo 5: Since 5x ≡ 0 (mod 5) and 19 ≡ -1 (mod 5), we get: 

5x + 19y ≡ -y ≡ z² (mod 5) 

 

Quadratic residues mod 5 are: 0, 1, 4 

⇒ -y ≡ 0, 1, or 4 (mod 5) ⇒ y ≡ 0, 4, or 1 (mod 5) 

This limits the values of y that are valid modulo 5, reducing possible combinations that might yield 

perfect squares. 

 

Step 3: Modulo 4 Analysis 

Modulo 4: Since 5 ≡ 1 (mod 4), 19 ≡ 3 (mod 4), we get: 

5x + 19y ≡ x + 3y ≡ z² (mod 4) 

Quadratic residues mod 4: 0, 1 

⇒ x + 3y ≡ 0 or 1 (mod 4) 
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Try a few values: 

- (x, y) = (1, 1): 1 + 3 = 4 ≡ 0 ✔ 

- (x, y) = (1, 2): 1 + 6 = 7 ≡ 3 ✘ 

- (x, y) = (2, 2): 2 + 6 = 8 ≡ 0 ✔ 

Some values fit mod 4, but overall they do not yield square numbers in z², as shown in Step 1. 

 

Step 4: No Parametric or General Solution 

Despite finding some modular congruences that match the required square residues, checking 

corresponding (x, y) values fails to produce valid integer squares for z. No parametric formula or infinite family 

of integer solutions exists for this equation. 

 

Conclusion: 

The equation 5x + 19y = z² does not yield integer solutions in general. Modular constraints on quadratic 

residues combined with exhaustive testing of small values eliminate most possibilities. Therefore, the equation is 

classified as non-solvable under the natural number domain. 

 

V. Conclusion 
This study demonstrates that the Diophantine equations 13x + 8y = z² and 5x + 19y = z² do not admit 

solutions in the set of non-negative integers. Theoretical tools including Catalan- type lemmas, parity constraints, 

and congruence arithmetic support these results. This work adds further credibility to previous findings on 

exponential Diophantine forms and opens avenues for analyzing more generalized forms like ax + by = c², or ax² + 

by² = z² in bounded domains. 

These findings contribute not only to the theoretical foundation of number theory but also serve as a 

methodological framework for testing similar forms. Tools such as quadratic residue filtering, congruence 

relations, and parity-based analysis have proven effective in quickly identifying insolubility patterns, thereby 

minimizing computational complexity. Suggestions for Future Work: 

• Explore higher-degree analogues such as ax2+by2=z2 or ax+by = for n > 2. 

• Extend analysis to negative integers or bounded integer intervals. 

• Investigate computational methods for testing solvability across a class of coefficients. 

• Apply insights to cryptographic primitives relying on hard Diophantine problems. The relevance of Diophantine 

equations continues to grow, especially in areas such as elliptic curve cryptography, secure communications, 

and algorithmic number theory. Future explorations could merge both theoretical and applied lenses to uncover 

deeper arithmetic behaviors. 
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