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Abstract 
This paper explores the various factors that can cause service interruptions in queueing models and their 

consequences on system performance. We consider a single server queueing model with interruptions. 

These interruptions arise from a finite number of environmental factors. For a subset of these factors, the 

interrup- tion is mild, allowing service to continue at a reduced rate. There is a possibility for self-

correction of these mild interruptions, after which the server resumes service at the normal rate. The 

duration of uninterrupted service with a mild interrup- tion is measured by an interruption clock. When 

this clock triggers, the server is taken out for repair, and the interrupted customer’s service resumes after 

the re- pair is complete. Interruptions caused by the remaining environmental factors are severe, 

immediately requiring the server to be taken out for repair. In these severe cases, considering the 

interruption’s severity, protected service is provided to the interrupted customer for the remaining phases 

of service. We analyze the stabil- ity of the system, calculate the steady-state probability vector using the 

matrix analytic method, and numerically substantiate important performance measures. keywords: 

Interruption, Environmental factor, Self-correction, Protected service, Interruption clock, Ignored 

interruption 
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I. Introduction 
Interruptions are a common Interruptions are an inherent part of various real-world systems, often 

influencing their operational efficiency. In queueing systems, service disruptions can have a profound 

impact on performance, altering queue dynamics and overall system effectiveness. These interruptions, 

characterized as temporary halts in the service process, have been widely studied in queueing theory to 

better understand their implications. Foundational work by White and Christie (1958) [16] established the 

basis for research in this area, leading to extensive studies on queueing models incor- porating service 

interruptions. For a comprehensive overview of such models, we refer readers to the work of A. 

Krishnamoorthy, Pramod P.K., and S.R. Chakravarthy (2012) [10]. In certain scenarios, to mitigate 

customer dissatisfaction, systems may attempt to maintain service continuity during interruptions 

whenever feasible. In practice, servers often continue operating during disruptions, albeit at reduced 

efficiency. 

Prior research typically assumed servers ceased service entirely during lengthy, un- predictable 

breakdowns. The concept of postponing interruptions until the service fin- ishes is discussed by Gaver Jr 

D.P (1962) [5] and by Hans (J.P.C.) Blanc (2012) [7]. Post- ponement of interruption refers to delaying 

the interruption until the current service finishes. Kalidass and Kasturi (2012) [8], and Deepa, Kalidass 

and Vijayalakshmi (2021) [1] considered a breakdown policy called working break down where customers 

receive service at a reduced rate when the system experiences partial failure. In [15] the authors examined 

M/M/1 queues with working breakdowns and delayed repair, in which the system is repaired immediately (with 

probability p) or continues to provide service for customers at a lower rate (with probability 1-p) when a 

breakdown occurs. For more related researches on queueing models with working breakdowns, interested 

readers are referred to Liu and Song(2014)[13], Liou (2015)[3], Chen, Yen, and Wang (2016)[2], and Yang and 

Cho (2019)[17]. In these works related to queue with interruption, more or less the interrupted service is 

resumed or restarted after completion of interruption. 

External shocks, often unpredictable and ranging from mild to destructive, can dis- rupt service 

processes. Identifying and promptly addressing the root causes of these shocks is crucial for maintaining 

service process stability. The paper by A. Krish- namoorthy, Jaya and lakshmi(2015) [11] presents a 

unique case of an M/M/1 queue where interruptions arise from a finite number of environmental factors 

and remain unidentified for a short duration. In [12] the interruption causing environmental fac- tors and 

duration of interruption are the deciding factors of whether to repeat, resume the service after interruption, 

or replace the server. In these cases, there is an equal probability of either server damage or self-correction 
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of the interruption. Automatic systems increasingly incorporate self-correction, as exemplified by the 

recent work by Hafaiedh and Slimane(2022)[6] on designing autonomous systems that can identify and fix 

problems themselves. These autonomic computing systems, inspired by the human body’s self-regulating 

nervous system, strive for a high degree of self-management. In [14], Jaya(2019) explores the concept of 

partially ignored interruptions with the possi- bility of self-correction. Additionally, protected service, 

discussed in [4] and [9] provides a mechanism where service continues after the fixation of interruption, 

albeit with some modifications. Protected services offer a safety net that minimizes the impact of inter- 

ruptions on your operations and customer satisfaction. 

Consider the example of a router transmitting a data packet. The transmission can be interrupted 

due to various environmental factors like, Low signal strength: Service continues at a reduced rate 

(retransmission with error correction), Channel congestion: Service continues at a reduced rate (waiting 

for a less congested slot), Hardware failure: The router is immediately taken offline for repair. The 

interrupted packet transmission might be restarted with priority (protected service) after repair. Software 

crash: Similar to hardware failure, immediate repair with potential service resumption after fixing the 

software issue. here are some specific advantages to con- sidering a queueing model where a server 

experiencing a partial breakdown can still provide service at a reduced capacity: 

• Reduced Customer Wait Times: Compared to a complete server breakdown, customers might experience 

some service even during the partial breakdown. This can help keep the queue moving and potentially 

reduce overall waiting times. 

• Maintaining System Functionality: Even with degraded performance, the server can continue to handle 

some requests. This is crucial for systems where even limited service is better than complete downtime, 

such as emergency hotlines or critical infrastructure. During a partial breakdown, even with slower 

service, the queue keeps moving compared to a complete shutdown. 

• improved System Efficiency: Self-correction minimizes downtime caused by in- terruptions. This 

allows the server to resume full or near-full capacity service quicker, leading to a faster reduction in 

queue length and waiting times. 

• Reduced Customer Dissatisfaction: Shorter wait times due to faster recovery from interruptions 

translate to a better customer experience. This is crucial for maintaining customer satisfaction, 

especially in situations where even minor delays can be frustrating. 

Every queuing model aims to achieve a balance between hassle-free service, minimal cost, and 

high customer satisfaction. In this model, we consider a single-server queue- ing system with Poisson 

arrivals and Erlang-distributed service times. Interruptions can occur during service, and we will explore 

how the system handles them. Each interruption duration follows an exponential distribution. There are n 

environmental factors that can trigger these interruptions. However, if the interruption originates from one 

of the first m factors, it’s considered mild. In such cases, service continues at a reduced rate, and the 

interruption is essentially ignored. We introduce an ”inter- ruption clock” that starts ticking upon any 

interruption. This clock’s duration is also exponentially distributed. During this time, there’s a chance for 

the interruption to self-correct, allowing service to resume at the normal rate from the halted phase. If self- 

correction occurs, the service rate returns to normal, the interruption clock stops and service continues for 

the customer. When the interruption clock reaches its limit, the server undergoes repair. The interrupted 

customer’s service resumes after the repair is complete. If a customer’s service is interrupted but finishes 

before the clock triggers repair, the next customer in line begins service on the (potentially still 

operational) interrupted server. Interruptions caused by the remaining n − m factors are considered severe. 

The server immediately goes for repair, bypassing the clock. Protected ser- vice—an uninterrupted 

service—is provided for the remaining duration of the affected customer’s service due to the critical nature 

of these interruptions. 

The rest of the paper is organized as follows. Section 2 provides a detailed description of the 

queueing model. The mathematical formulation of the queueing model is pre- sented in Section 3. Section 

4 analyzes the behaviour of the service process within the model. Key performance measures for the 

model are discussed in Section 5. Section 6 presents numerical examples to illustrate the model’s 

behaviour. 
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Fig 1: Model description 

 

II. Model Description 
We consider a single-server infinite waiting space queueing system. Customers arrive according 

to a Poisson process with arrival rate λ. The customers are served in FIFO service order. Service times 

follow an Erlang distribution with shape parameter K and scale parameter µ. During service, interruptions 

can occur due to n environmental factors.These factors are ranked from 1 to n based on the severity of the 

interruption they cause. Interruption stream follow a Poisson process with parameter β. Factor i, (1 ≤ 

i ≤ n) triggers an interruption with probability pi. If the interruptions originate from one of the first m 

factors (m < n), it is considered mild. Then the actual service phase does not change and the service 

continues at a reduced rate µi(i = 1, 2, . . . , m). An interruption clock start ticking at the onset of 

interruption. This clock is exponentially distributed with parameter δi, (i = 1, 2, . . . , m). During this 

interrupted service period, there is a chance for self-correction, which is exponentially distributed 

with parameter γi, i = 1, 2, . . . , m. If self-correction occurs, the service rate returns to µ. If the customer 

finishes their service before a pre-defined repair window opens (triggered by a random clock), the 

system moves on to the next customer(assuming it is still operational). Once the repair window 

opens, the server is automatically flagged for repair. Interruptions caused by the remaining n − m factors are 

considered severe.The server immediately undergoes repair.The repair time depends on the specific environ- 

mental factor that caused the interruption. Each factor has its own associated repair time distribution, 

denoted by the parameter ηi, i = 1, 2, . . . , n. Once the repair is com- plete, the interrupted service is 

resumed from the halted phase. Service protection, ensuring no further interruptions to the remaining 

service, is provided to the customer whose service was disrupted by the ith factor, where i = m + 1, . . . , 

n, starting from the moment service resumes following repair. 

 

III. Mathematical Description 
The behavior of the queueing system described above can be analyzed using a Markov chain. Let X 

= {X(t), t ≥ 0} = {(N (t), S(t), I1(t), I2(t)), t ≥ 0} where N (t) is the number of customers in the system, 

S(t) is the status of the server, I1(t) is the envi- ronmental factor causing interruption and I2(t) is the 

phase of service: 

 

 
 

The state space of the process is 

{(0, 0) ∪ (r, 1, i) ∪ (r, 2, j, i) ∪ (r, 3, l, i) ∪ (r, 4, i); r = 1, . . . , ∞; i = 1, . . . , K; j = 1, . . . , m; l = 1, . 

. . , n}. 

The transitions in the Markov Chain and the correspopnding rates are discribed below: 

λ −λ µ 

(0, 0) −→ (1, 1, 1), (0, 0) −−→ (0, 0), (1, 1, K) −→ (0, 0), 

µj µ 
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(1, 2, j, K) −→ (0, 2), j = 1, . . . , m, (1, 4, K) −→ (0, 0) 

The below given transitions are for r = 2, . . . , ∞; 

µ 

(r, 1, i) −→ (r, 1, i + 1), for i = 1, . . . , K − 1 

µ 

(r, 1, K) −→ (r − 1, 1, 1), 

βpj 

(r, 1, i) −−→ (r, 2, j, i) for i = 1, . . . , K, = 1, . . . , m 

βpj 

(r, 1, i) −−→ (r, 3, j, i) for i = 1, . . . , K, j = m + 1, . . . , n 

µj 

(r, 2, j, i) −→ (r, 2, j, i + 1) for i = 1, . . . , K − 1, j = 1, . . . , m 

µj 

(r, 2, j, K) −→ (r − 1, 2, j, 1) for j = 1, . . . , m 

δj γj 

(r, 2, j, i) −→ (r, 1, i) , (r, 2, j, i) −→ (r, 3, j, i) for i = 1, . . . , K, j = 1, . . . , m 

ηj 

(r, 3, j, i) −→ (r, 1, i) for i = 1, . . . , K, j = 1, . . . , m 

ηj 

(r, 3, j, i) −→ (r, 4, i) for i = 1, . . . , K, j = m + 1, . . . , n 

µ 

(r, 4, i) −→ (r, 4, i + 1) for i = 1, . . . , K − 1 

µ 

(r, 4, K) −→ (r − 1, 1, 1) 

(r, l, i) −→
λ  

(r + 1, l, i) for l = 1, 4., i = 1, . . . , K, 

(r, l, j, i) −→
λ  

(r + 1, l, j, i) for l = 2, 3., i = 1, . . . , K, j = 1, . . . , m 

−λ−µ−β 

(r, 1, i) −−−−−−→ (r, 1, i), for i = 1, . . . , K 

−λ−µj−γj−δj 

(r, 2, j, i) −−−−−−−−−→ (r, 2, j, i) for i = 1, . . . , K, j = 1, . . . , m 

−λ−ηj 

(r, 3, j, i) −−−−→ (r, 3, j, i) for i = 1, . . . , K, j = 1, . . . , n 

−λ−µ 

(r, 4, i) −−−−→ (r, 4, i), for i = 1, . . . , K 

 

The infinitesimal generator matrix of the process is given by 

 
B2 is a column matrix of order (2 + m + n)K × 1. A0, A1 and A2 are square matrices of order 

(2 + m + n)K 

 

IV. Analysis Of Service Process 
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E(S) 

 
 

The absorbing state is represented by S0 = B2 which is a column matrix. 

• The response time of the service process, E(S) = −αS−1e. 

• Hence the expected service rate µs =  1  . 

• Theorem:The queueing system is stable when λ < µs. 

 

V. Stationary Distribution 
The stationary distribution, under the condition of stability, λ < µs of the model, has 

Matrix Geometric solution. Let χ=(x0, x1, x2, ...) be the steady state probability vector of the Markov 

chain {Z(t), t ≥ 0}. Each xi, i > 0 are vectors with (2 + m + n)K elements. We assume that x2 = x1.R, 

and xi = x1.Ri−1, i ≥ 2, where R is the minimal non- negative solution to the matrix quadratic equation 

R2A2 + RA1 + A0=0. 

From χQ=0 we get 

x0B0 + x1B2 = 0. 

x0B1 + x1(A1 + RA2) = 0. 

Solving the above two equations we get x0 and x1 subject to the normalizing condition x0e + 

x1(I − R)−1e=1. The stationary distribution, under the condition of stability, λ < µs of the model, 

has Matrix Geometric solution. Let χ=(x0, x1, x2, ...) be the steady state probability vector of the 

Markov chain {Z(t), t ≥ 0}. Each xi, i > 0 are vectors with (2 + m + n)K elements. We assume that x2 

= x1.R, and xi = x1.Ri−1, i ≥ 2, where R is the minimal non- negative solution to the matrix quadratic 

equation R2A2 + RA1 + A0=0. 

From χQ=0 we get 

x0B0 + x1B2 = 0. 

x0B1 + x1(A1 + RA2) = 0. 

Solving the above two equations we get x0 and x1 subject to the normalizing condition 

x0e + x1(I − R)−1e=1. 

 

Expected number of interruptions during the service of any cus- tomer 

Let N′(t) be the number of interruptions due to first m environmental factors during the service of 

a particular customer at time t. S(t) be the status of the server at time t. 
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VI. Performance Measures 
The next step involves analyzing the steady-state probability vector to uncover crucial performance 

measures for the system. The important measures are as follows. 

 

Expected waiting time 

We consider the customer who joined as the mth customer in the queue. During the time of 

arrival of mth customer one customer in the system may be in service or the server may be under repair 

and other customers are waiting in the queue. So the waiting time of the tagged customer is the time 

until absorption of the Markov chain W = {(M (t), S(t), I1(t), I2(t)), t ≥ 0} where M (t) is the rank of the 

tagged customer, S(t), I1(t) and I2(t) are as defined in earlier sections. The waiting time of the tagged 

customer follows phase type distribution with representation (ω, T ) where 

 

 
 

Other important performance measures 
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VII. Numerical Illustrations 
In this section assuming arbitrary values for the parameters, subject to stability, we obtained 

the numerical values for important performance measures. Let n = 4, m = 2, µ = 7, µ1 = 5, µ2 = 4; 

η1 = 4, η2 = 3, η3 = 2, η4 = 1, β = .5; γ1 = 1, γ2 = 2; δ1 = 1, δ2 = .5; p1 = p2 = p3 = p4 = 0.25. 

The conclusion drawn are purely based on the values of input parameters. 

 

Effect of λ on various performance measures 

Table 1: Effect of λ on various performance measures 
λ E(C) P (I) 

1 0.9230 0.5012 

1.5 1.9157 0.3134 

2 3.5376 0.1910 

2.5 6.1867 0.1166 

3 10.5083 0.0716 

3.5 17.1259 0.0443 

4 24.7322 0.0276 

 

As the arrival rate λ increases the expected number of customers in the system E(C) increases, 

but probability for idleness of the server P (I) decreases which are on expected lines (refer Table 1). 

 

Effect of µ on various performance measures 

Assuming λ = 2 and varying µ we get the following values for different performance measures. 

 

Table 2: Effect of µ on various performance measures 
µ E(S) E(C) P (I) P (R) Eint Eselfcorr 

3 2.2897 29.2040 0.0175 0.1422 0.3322 0.0983 

4 1.7508 15.5352 0.0471 0.1437 0.3364 0.0978 

5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938 

6 1.1917 5.0105 0.1384 0.1338 0.3147 0.0885 

7 1.0279 3.5376 0.1910 0.1267 0.2986 0.0827 

8 0.9037 2.6963 0.2437 0.1192 0.2814 0.0769 

9 0.8063 2.16207 0.2946 0.1117 0.2641 0.0713 

 

As the initial service rate µ increases the expected service time E(s), the expected number of 

customers in the system E(C), probability for repair P (R), expected rate of interruption Eint and 

expected rate of self correction Eselfcorr decrease but probability for idleness of the server P (I) increase 

which are on expected lines. µ increases means number of service completion in unit time increases. So rate of 

self correction, rate of interruption and probability for repair in unit time reduces (see Table 2). 

 

Effect of β on various performance measures 

Table 3: Effect of β on various performance measures 
β E(S) E(C) P (I) P (R) Eint Eselfcorr 

.5 1.4180 8.0176 0.0891 0.1398 0.3281 0.0938 

1 1.5863 11.0407 0.0688 0.2230 0.5230 0.1502 

2 1.8247 16.4010 0.0476 0.31577 0.7394 0.2140 

3 1.9818 20.3997 0.0373 0.3648 0.8539 0.2484 

4 2.0906 23.1333 0.0314 0.3946 0.9231 0.2695 

5 2.1691 24.9636 0.0277 0.4141 0.9685 0.2834 
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From Table 3 we note that as the interruption rate β increases effective service time E(S), the 

expected number of customers in the system E(S), probability for repair P (R), expected rate of 

interruption Eint and expected rate of self correction Eselfcorr increases but probability for idleness of 

the server P (I) decrease which are on expected lines. 

 

Effect of γ on various performance measures 

Assuming γ1 = γ2 = γ and varying over its value we get the following table for different 

performance measures. As the interruption clock realization rate γ increases effective service time E(S), the 

expected number of customers in the system E(C), probability for repair P (R), expected rate of 

interruption Eint increase but probability for idleness 

 

Table 4: Effect of γ on various performance measures 
γ E(S) E(C) P (I) P (R) Eint Eselfcorr Eprotection 

0.5 1.4069 7.7491 0.0915 0.1303 0.3254 0.1184 0.1627 

1 1.4136 7.9371 0.0898 0.1367 0.3283 0.1030 0.1642 

1.5 1.4192 8.0705 0.0887 0.1413 0.3302 0.0919 0.165 

2 1.4240 8.1718 0.0878 0.1448 0.3315 0.0832 0.1657 

2.5 1.4282 8.2523 0.0871 0.1475 0.3324 0.0763 0.1662 

3 1.4318 8.3184 0.0865 0.1498 0.3331 0.0705 0.1665 

3.5 1.4349 8.3739 0.0860 0.1517 0.33367 0.0656 0.1668 

 

of the server P (I) and expected rate of self correction Eselfcorr decrease which are on expected 

lines. Rate of protection decrease with increase in γ. As the realization rate of interruption clock increase 

the server immediately goes for repair reducing the chance for self correction (see Table 4).  
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