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Abstract:   
This research paper is related to the concept of approximation of a function belonging to the Lipschitz class by 

the Euler-matrix triple product summability method of the Fourier series. The Euler-matrix product 

summability method has been used while working in this direction. So, many known results may become 

particular cases of our result. Our result may be useful for future researchers. 
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I. Introduction 
The studies of the degree of approximation of functions belonging to various classes by using different 

means have been made by the researchers like [3],[4],[7],[8],[9],[10],[11],[12],[13],[14],[15] et al. Das[2], et al 

have discussed the degree of approximation of a function by using (E, q)A product summability means of the 

Fourier series. No work seems to have been done to find the degree of approximation of a function belonging to 

the Lipschitz class by using Euler-matrix triple product summability means. 

In this paper, we present a new theorem on the degree of approximation of functions belonging to the 

Lipschitz class by the Euler-matrix triple (E, q)(E, q)A. product summability method. 

 

II. Definitions And Notations 
In this section, we have given the following definitions: 

Definition 2.1. 

A function 𝑓 ∈ Lip𝛼 if 

 
|𝑓(𝑥 + 𝑡) − 𝑓(𝑥 + 𝑡)| = 𝑂(|𝑡|𝛼) 𝑓𝑜𝑟 0 < 𝛼 ≤ 1. 

 

 

Definition 2.2. 

 

L∞-norm of a function 𝑓: 𝑅 → 𝑅 is defined by  ‖𝑓‖∞ 
‖𝑓‖∞ = 𝑠𝑢𝑝{|𝑓(𝑥)|/𝑓: 𝑅 → 𝑅} 

𝐿𝑝- norm is defined by 

‖𝑓‖𝑝 = (∫
2𝜋

0

|𝑓(𝑥)|𝑝)

1
𝑝

, 𝑝 ≥ 1. 

 

The degree of approximation of function 𝑓: 𝑅 → 𝑅 by a trigonometric polynomial 𝑡𝑛 [1] is defined by 

‖tn − f‖∞ = 𝑠𝑢𝑝{|𝑡𝑛 − 𝑓|: 𝑥 ∈ 𝑅} 𝑜𝑟 ‖tn − f‖p = 𝑚𝑖𝑛‖tn − f‖. 

Let 𝑓 be 2𝜋- periodic function and Lebesgue integrable on (−𝜋, 𝜋). The Fourier series of 𝑓(𝑥) is given by 

𝑓(𝑥) =
1

2
𝑎0 + ∑∞

𝑛=1 (𝑎𝑛𝑐𝑜𝑠𝑛𝑥 + 𝑏𝑛𝑠𝑖𝑛𝑛𝑥) (1) 

with 𝑛𝑡ℎ partial sums  𝑠𝑛(𝑓; 𝑥). 
The Matrix 𝐴 = [𝑐𝑚𝑛] is regular if and only if 

(𝑖)   𝑙𝑖𝑚𝑚→∞𝑐𝑚𝑛=0, 

(𝑖𝑖)𝑙𝑖𝑚𝑚→∞ ∑
𝑚

𝑛=0
𝑐𝑚𝑛 = 1; 

(𝑖𝑖𝑖)∃𝑀 > 0, ∑
∞

𝑚=0
|𝑐𝑚𝑛| < 𝑀. ∀𝑚 ≥ 0. 
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The Fourier series (1) is said to be summable to s by a matrix (𝑇) method, if 𝑇𝑚(𝑓; 𝑥) → 𝑠 as 𝑚 → ∞. 
The matrix (𝐴)  method of the Fourier series is given by 

 

𝑡𝑛 = ∑

𝑚

𝑛=0

𝑐𝑚,𝑛𝑠𝑛  

 

 

The (𝐸, 𝑞) means [6] of 𝑠𝑛 is defined by- 

𝑅𝑛 =
1

(1+𝑞)𝑛
∑𝑛

𝑘=0 (
𝑛
𝑘

) 𝑞𝑛−𝑘𝑠𝑘. (2) 

The (𝐸, 𝑞) Transformation of Matrix A of 𝑠𝑛 defined by 

𝜂𝑛 =
1

(1+𝑞)𝑛
∑𝑛

𝑘=0 (
𝑛
𝑘

) 𝑞𝑛−𝑘𝑡𝑘 =
1

(1+𝑞)𝑛
∑𝑛

𝑘=0 𝑞𝑛−𝑘{∑𝑘
𝑣=0 𝑐𝑘,𝑣𝑡𝑣} (3) 

The (𝐸, 𝑞)(𝐸, 𝑞) transform of a matrix 𝐴 of 𝑠𝑛 is defined by 

𝜒𝑛 =
1

(1+𝑞)𝑛
∑𝑛

𝑘=0 (
𝑛
𝑘

)
𝑞𝑛−𝑘

(1+𝑞)𝑘
∑𝑘

𝑣=0 (
𝑘
𝑣

) 𝑞𝑘−𝑣𝑡𝑣 (4) 

 

𝜒𝑛 =
1

(1+𝑞)𝑛
∑𝑛

𝑘=0 (
𝑛
𝑘

)
𝑞𝑛−𝑘

(1+𝑞)𝑘
∑𝑘

𝑣=0 (
𝑘
𝑣

) 𝑞𝑘−𝑣{∑𝑣
𝑢=0 𝑐𝑣,𝑢𝑡𝑢} (5) 

If 𝜒𝑛 → 𝑠 as 𝑛 → ∞, then the series ∑∞
𝑛=0 𝑢𝑛 is said to be (𝐸, 𝑞)(𝐸, 𝑞)𝐴-summable to sum s. 

We use the following notations: 
(𝑖)𝜙(𝑥, 𝑡) = 𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡) − 2𝑓(𝑥). 

(𝑖𝑖) 𝐾𝑛(𝑡) =
1

2𝜋(1 + 𝑞)𝑛
|∑

𝑛

𝑘=0
(

𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0
(

𝑘
𝑣

) 𝑞𝑘−𝑣 {∑
𝑣

𝑢=0
𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

𝑡)

𝑠𝑖𝑛
𝑡
2

}| 

 

Further, the method (𝐸, 𝑞)(𝐸, 𝑞)𝐴 is assumed to be regular. 

 

III. Known Theorem 
Dealing with the degree of approximation of the Fourier series by-product means, (𝐸, 𝑞)𝐴 in 2013, 

Padhy [4] proved The following theorem: 

 

Theorem 

Let𝐴 = (𝑎𝑚𝑛)∞×∞ be a regular matrix. if 𝑓 is a 2𝜋- Periodic function of class 𝐿𝑖𝑝𝛼, then the degree of 

approximation by product (𝐸, 𝑞)𝐴- summability mean of Fourier series (1) is given by 

||𝜏𝑛 − 𝑓||∞ = 𝑂 (
1

(𝑛 + 1)𝛼
) , 0 < 𝛼 < 1. 

 

IV. Main Theorem 
The objective of this paper is to prove the following theorem. 

 

Theorem 

Let 𝐴 = (𝑎𝑚𝑛)∞×∞ be a regular matrix. if 𝑓 is a 2𝜋- Periodic function of class 𝐿𝑖𝑝𝛼 Then the degree 

of approximation by product (𝐸, 𝑞)(𝐸, 𝑞)𝐴- summability means of the Fourier series (1) is given by 

‖𝑥𝑛 − 𝑓‖ = 𝑂 (
1

(𝑛 + 1)𝛼
) , 0 < 𝛼 < 1. 

 

V. Lemmas: 
For the proof of our theorem, we have required the following lemmas: 

 

Lemma 

𝑘𝑛(𝑡) = 𝑂(𝑟) for 0 ≤ 𝑡 ≤ (𝑛 + 1)−1. 
Proof. For 0 ≤ 𝑡 ≤ (𝑛 + 1)−1, we have 

|𝐾𝑛(𝑡)| =
1

2𝜋(1 + 𝑞)𝑛
|[∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

}]| 
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First, we solve: 

| ∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛 (
𝑡
2

)
| ≤ ∑

𝑣

𝑢=0

𝑐𝑣,𝑢

(𝑢 +
1
2

)

(
𝑡
𝜋

)
 

=
𝜋

2
{∑

𝑣

𝑢=0

𝑐𝑣,𝑢(2𝑢 + 1)} 

=
𝜋

2
{∑

𝑣

𝑢=0

𝑐𝑣,𝑢 + 2 ∑

𝑣

𝑢=0

𝑢𝑐𝑣,𝑢} 

=
𝜋

2
{1 + 2(𝑐𝑣,1 + 2𝑐𝑣,2 + 3𝑐𝑣,3+. . . +𝑣𝑐𝑣,𝑣)} 

≤
𝜋

2
{1 + 2(𝑐𝑣,1 + 𝑣𝑐𝑣,2 + 𝑣𝑐𝑣,3+. . . +𝑣𝑐𝑣,𝑣)} 

=
𝜋

2
{1 + 2𝑣(𝑐𝑣,1 + 𝑐𝑣,2 + 𝑐𝑣,3+. . . +𝑐𝑣,𝑣)} 

=
𝜋

2
{1 + 2𝑣(𝑐𝑣,0 + 𝑐𝑣,1 + 𝑐𝑣,2+. . . +𝑐𝑣,𝑣) − 2𝑣𝑐𝑣,0} 

≤
𝜋

2
{1 + 2𝑣(1 − 𝑐𝑣,0)} 

≤
𝜋

2
(1 + 2𝑣) 

= 𝑂(𝑣 + 1) 

Now, we use the above result in 𝐾𝑛(𝑡) 

|𝐾𝑛(𝑡)| ≤
1

4𝜋(1 + 𝑞)𝑛
|[∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

𝑞𝑘−𝑣{2𝑣 + 1}]| 

≤
1

4𝜋(1 + 𝑞)𝑛
| [∑

𝑛

𝑘=0

(
𝑛
𝑘

) 𝑞𝑛−𝑘(2𝑘 + 1)] | 

≤
1

4
(2𝑛 + 1) 

= 𝑂(𝑛) 

Lemma 

𝐾𝑛(𝑡) = 𝑂 (
1

𝑡
) for (𝑛 + 1)−1 ≤ 𝑡 ≤ 𝜋. 

Proof. For t ∈ [
1

𝑛+1
, 𝜋], sin(

𝑡

2
) ≥

𝑡

𝜋
. 

|𝐾𝑛(𝑡)| =
1

2𝜋(1 + 𝑞)𝑛
|[∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

(
𝑘
𝑣

) 𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

}]| 

≤
1

2𝜋(1 + 𝑞)𝑛
|∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

(
𝑘
𝑣

) 𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝜋𝑎𝑘𝑢

𝑡
}| 

≤
𝑀

2(1 + 𝑞)𝑛𝑡
|∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

𝑞𝑘−𝑣|    by regularity condition 

= 𝑂 (
1

𝑡
) 

 

Proof of The Main Theorem 

Proof. Using the Riemann-Lebesgue theorem and considering the 𝑛𝑡ℎ partial sum of the Fourier series 

of 𝑓(𝑥) as 𝑠𝑛(𝑓; 𝑥) and following Titchmarsh [5] , We have 

𝑠𝑛(𝑓; 𝑥) − 𝑓(𝑥) =
1

2𝜋
∫

𝜋

0

𝜙(𝑡)
𝑠𝑖𝑛 (𝑛 +

1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

𝑑𝑡. 

 

Further, under the A-Transform of𝑠𝑛(𝑓; 𝑥), we have 
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𝑡𝑛 − 𝑓(𝑥) =
1

2𝜋
∫

𝜋

0

𝜙(𝑡) ∑

𝑚

𝑛=0

𝑐𝑚𝑛

𝑠𝑖𝑛 (𝑛 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

𝑑𝑡. 

Then, considering 𝜏𝑛 as the (𝐸. 𝑞)A-Transform of 𝑠𝑛(𝑓; 𝑥), we obtain 

𝜏𝑛 − 𝑓(𝑥) =
1

2𝜋
∫

𝜋

0

𝜙(𝑡) ∑

𝑛

𝑘=0

(
𝑛
𝑘

) 𝑞𝑛−𝑘 {∑

𝑘

𝑣=0

𝑐𝑘,𝑣

𝑠𝑖𝑛 (𝑣 +
1
2

)

𝑠𝑖𝑛
𝑡
2

} 

Directing the (𝐸, 𝑞)(𝐸, 𝑞)𝐴 transform of 𝑠𝑛(𝑓; 𝑥) by 𝜒𝑛 , we have 

|𝜒𝑛 − 𝑓(𝑥)| =
1

2𝜋(1 + 𝑞)𝑛
∫

𝜋

0

𝜙(𝑡) ∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

(
𝑘
𝑣

) 𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

} 𝑑𝑡. 

= ∫
𝜋

0

𝜙(𝑡)𝐾𝑛(𝑡)𝑑𝑡 

= {∫

1
𝑛+1

0

+ ∫
𝜋

1
𝑛+1

} 𝜙(𝑡)𝐾𝑛(𝑡)𝑑𝑡 

= 𝐼1 + 𝐼2,    1𝑐𝑚say 

Now 

|𝐼1| =
1

2𝜋(1 + 𝑞)𝑛
∫

1
𝑛+1

0

𝜙(𝑡) ∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

(
𝑘
𝑣

) 𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

} 𝑑𝑡. 

≤ 𝑂(𝑛) ∫

1
𝑛+1

0

|𝜙(𝑡)|𝑑𝑡    using Lemma 5.1 

= 𝑂(𝑛) ∫

1
𝑛+1

0

|𝑡𝛼|𝑑𝑡. 

= 𝑂(𝑛) [
𝑡𝛼+1

𝛼 + 1
]

0

1
𝑛+1

 

= 𝑂(𝑛) [
1

(𝛼 + 1)(𝑛 + 1)𝛼+1
]. 

= 𝑂 [
1

(𝑛 + 1)𝛼+1
]. 

Next 

|𝐼2| =
1

2𝜋(1 + 𝑞)𝑛
∫

𝜋

1
𝑛+1

𝜙(𝑡) ∑

𝑛

𝑘=0

(
𝑛
𝑘

)
𝑞𝑛−𝑘

(1 + 𝑞)𝑘
∑

𝑘

𝑣=0

(
𝑘
𝑣

) 𝑞𝑘−𝑣 {∑

𝑣

𝑢=0

𝑐𝑣,𝑢

𝑠𝑖𝑛 (𝑢 +
1
2

) 𝑡

𝑠𝑖𝑛
𝑡
2

} 𝑑𝑡. 

≤ ∫
𝜋

1
𝑛+1

|𝜙(𝑡)||𝐾𝑛(𝑡)|𝑑𝑡 

= ∫
𝜋

1
𝑛+1

|𝜙(𝑡)|𝑂 (
1

𝑡
) 𝑑𝑡    using Lemma 5.2 

≤ ∫
𝜋

1
𝑛+1

𝑡𝛼−1𝑑𝑡 

= 𝑂 (
1

(𝑛 + 1)𝛼
) 

Then, from the above results, we have 

|𝜒𝑛 − 𝑓(𝑥)| = 𝑂 (
1

(𝑛 + 1)𝛼
) ,   for 0 < 𝛼 < 1 

‖𝜒𝑛 − 𝑓(𝑥)‖ = 𝑠𝑢𝑝−𝜋<𝑥<𝜋|𝜒𝑛 − 𝑓(𝑥)| 

= 𝑂 (
1

(𝑛 + 1)𝛼
) ,    for   0 < 𝛼 < 1 

Hence, the proof of the main theorem. 
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VI. Conclusion 
The result established here is a more general form than some earlier existing results in the sense that 

one (𝐸, 𝑞) = 1 our proposed mean is reduced to (𝐸, 𝑞)𝐴 Mean. 
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