Fuzzy Quasi-Regular Spaces

G. Thangaraj

Department of Mathematics Thiruvalluvar University Vellore- 632 115, Tamilnadu, India.

M. Ponnusamy

Research Scholar, Department of Mathematics Thiruvalluvar University Vellore- 632 115, Tamilnadu, India.

Abstract

In thispaper, several characterizations of fuzzy quasi-regular spaces, which are defined by means of fuzzy open sets and fuzzy regular closed sets, are established. It is obtained that each fuzzy set defined in a fuzzy quasiregular space contains a fuzzy regular closed set and each fuzzy G_{δ} -set contains a fuzzy closed set afuzzy quasi-regular space. The conditions under which fuzzy quasi-regular spaces become fuzzy weakly bairespaces and fuzzy bairespaces are obtained. It is obtained that fuzzy quasi-regular spaces are not fuzzyhyperconnected spaces.

Keywords : fuzzy G_{δ} -set, fuzzy F_{σ} -set, fuzzy σ -boundary set, fuzzy residual set, Fuzzy regular space, fuzzybairespace, fuzzy weakly baire space. ______

Date of Submission: 19-02-2024 _____

Date of Acceptance: 29-02-2024

Fuzzy Quasi-Regular Spaces I.

In order to deal with uncertainties, the idea of fuzzy sets, fuzzy set operations was introduced by L.A. Zadeh [19] in 1965. The potential of fuzzy notion was realized by the researchers and has successfully been applied in all branches of Mathematics. In 1968, C.L. Chang[4] introduced the concept of fuzzy topological spaces and his work paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts. In classical topology, John.C. Oxtoby[8] introduced the notion of quasi-regularity and by means of which he produced a productive subclass of the class of Baire spaces which contains all completely metrizable and all Hausdorff locally compact spaces. The condition of quasi-regularity has the flavour of a separation condition [9].

In the recent years, there has been a growing trend among many fuzzy topologists to introduce and study various types of fuzzy topological spaces. Motivated by the works of John. C. Oxtoby[8] and A. R. Todd[10], onquasi-regularity in classical topology, the notion of fuzzy quasi-regularity in fuzzy topological spaces was defined by **G.Thangaraj** and **S.Anjalmose** [1]. The purpose of this paper is to study several properties and applications of fuzzy quasi-regular spaces.

In section **3**, it isobtained that each fuzzy set defined in a fuzzy quasi-regular space contains a fuzzy regular closedset and each fuzzy G_{δ} -set in a fuzzy quasi-regular space contains a fuzzy closed set. Also it is established that each fuzzy closed set is contained in a fuzzy regular open set and each fuzzy F_{σ} -set is contained in a fuzzy regular open set in fuzzy quasi-regular spaces. It is found that each fuzzy residual set containsfuzzy closed set and each fuzzy nowhere denseset is contained in a fuzzy regular open set and each fuzzy first category set is contained in a fuzzy open set in fuzzy quasi-regular spaces. Also it is established that each fuzzy σ -boundary set is contained in a fuzzy open set and each fuzzy $co-\sigma$ -boundary set contains a fuzzy open set and each fuzzy open set contains a fuzzy regular open set and a fuzzy somewhere dense set in fuzzy quasi-regular spaces. It is obtained that class of fuzzy F_{σ} -sets lies between the classes of fuzzy open sets and fuzzy regular closed sets.

In section 4, the inter-relations between fuzzy regular spaces and fuzzy quasi-regular spaces are established. The conditions under which fuzzy quasi-regular spaces become fuzzy weakly Baire spaces and fuzzy Baire spaces are obtained. It is obtained that fuzzy quasi-regular spaces are not fuzzy hyperconnected spaces.

II. Preliminaries

In order to make the exposition self-contained, some basic notions and results used in the sequel, are given. In this work by (X, T) or simply by x, we will denote a fuzzy topological space due to Chang (1968). Let Xbe a non-empty set and Ithe unit interval [0,1]. A fuzzy set λ in X is a mapping from X into I. The fuzzy set 0_X is defined as $0_X(x) = 0$, for all $x \in X$ and the fuzzy set 1_X is defined as $1_X(x) = 1$, for all $x \in X$.

Definition 2.1 [4] : Afuzzy topology is a family T of fuzzy sets in X which satisfies the following conditions:

(a). $0_X \in T$ and $1_X \in T$.

(b). If $a, b \in T$, then $a \land b \in T$.

(c). If $A_i \in T$ for each $i \in J$, then $\forall_i A_i \in T$.

T is called a fuzzy topology for X, and the pair (X, T) is a fuzzy topological space, or fts for short. Every member of T is called a T- openfuzzy set.

Definition 2.2[4]: Let (X, \overline{T}) be a fuzzy topological space and λ be any fuzzy set in (X, T). The interior, the closure and the complement of λ are defined respectively as follows:

(i). $int(\lambda) = V \{ \mu/\mu \le \lambda, \mu \in t \};$

(ii). $\operatorname{cl}(\lambda) = \Lambda \{ \mu / \lambda \leq \mu, 1 - \mu \in t \}.$

(iii). $\lambda'(x) = 1 - \lambda(x)$, for all $x \in X$.

For a family{ $i \in J$ } of fuzzy sets in(X, T), the union $\psi = V_i(\lambda_i)$ and the intersection $\delta = \Lambda_i(\lambda_i)$, are defined respectively as

(iv). $\Psi(x) = \sup_{i} \{ \lambda_i(x) / x \in X \}.$

(v). $\Delta(x) = \inf_{i} \{ \lambda_i(x) / x \in X \}.$

Lemma 2.1[2]: For a fuzzy set λ of a fuzzy topological space X,

(i). $1-int(\lambda) = cl(1-\lambda)$ and (ii). $1-cl(\lambda) = int(1-\lambda)$.

Definition2.3: A fuzzy set λ in a fuzzy topological space (*X*, *T*) is called a

(1). fuzzy regular - open set if
$$\lambda = intcl (\lambda)$$
 and

fuzzy regular-closed set if $\lambda = \text{clint}(\lambda)$ [2].

(2).fuzzy G_{δ} -set if $\lambda = \bigwedge_{i=1}^{\infty} (\lambda_i)$, where $\lambda_i \in T$;

fuzzy F_{σ} -set if $\lambda = \bigvee_{i=1}^{\infty} (\mu_i)$, where $1 - \mu_i \in T$ [3].

Definition 2.4: A fuzzy set λ in a fuzzy topological space (*X*, *T*), is called a

(i).fuzzy dense set if there exists no fuzzy closed set μ in (X,T)Such that $\lambda < \mu < 1$. That is, $cl(\lambda) = 1$, in (X,T) [11].

(ii). fuzzy nowhere dense set if there exists no non-zero fuzzy open set μ in (X, T) such that

 $\mu < cl(\lambda)$. That is, $intcl(\lambda) = 0$, in (X, T)[11].

(iii). fuzzy first category set if $\lambda = \bigvee_{i=1}^{\infty} (\lambda_i)$, where $(\lambda_i)'S$ are fuzzy nowhere dense sets in (X, T). Any other fuzzy set in(X, T) is said to be of fuzzy second category[11].

(iv). **fuzzy residual set** if $1 - \lambda$ is a fuzzy first category set in (X, T) [12].

(v). **fuzzy somewhere dense set** if there exists a non-zero fuzzy open set μ in (X, T) such that $\mu < cl(\lambda)$. That is, intcl(λ) $\neq 0$, in (X, T) [18].

(vi). **fuzzy** σ -boundary set if $\lambda = \bigvee_{i=1}^{\infty} (\mu_i)$, where $\mu_i = cl(\lambda_i) \wedge (1-\lambda_i)$ and (λ_i) 's are fuzzy regular open sets in (*X*, *T*) [17].

(vii). fuzzy co- σ -boundaryset if $\gamma = \bigwedge_{i=1}^{\infty} (\gamma_i)$, where $\gamma_i = \operatorname{int} (1-\lambda_i) \lor \lambda_i$ and (λ_i) 's are fuzzy regular open sets in (X, T) [17].

(viii). **fuzzyresolvableset** iffor eachfuzzy closed set μ in(X,T), cl($\mu \wedge \lambda$) \wedge cl ($\mu \wedge (1 - \lambda)$) is a fuzzy nowhere dense in(X,T)[15].

(ix).**fuzzy simply open set** if $bd(\lambda)$ is a fuzzy nowhere dense set in (X, T). That is, λ is a fuzzy simply open set in (X, T) if $[cl(\lambda) \land cl(1-\lambda)]$, is a fuzzy nowhere dense set in (X, T) [14].

Definition2.5: A fuzzy topological space (X, T) is called a

(i). **fuzzy regular space** if for each fuzzy open set λ in (X, T), $\lambda = \bigvee_{\alpha} (\lambda_{\alpha})$, where $cl(\lambda_{\alpha}) \leq \lambda$ and $\lambda_{\alpha} \in T$, for each [5].

(ii). fuzzy Baire space if $(\bigvee_{i=1}^{\infty}(\lambda_i)) = 0$, where $(\lambda_i)'$ Sare fuzzy nowhere dense sets in (X, T) [13].

(iii). fuzzy weakly Bairespace if int $(\bigvee_{i=1}^{\infty}(\mu_i)) = 0$, where $\mu_i = cl(\lambda_i) \wedge (1 - \lambda_i)$ and (λ_i) 's are fuzzy regular open sets in (X, T) [17].

(iv).fuzzy open hereditarily irresolvable space if intcl(λ) $\neq 0$, for any non - zero fuzzy set λ defined on X, then *int* (λ) $\neq 0$, in (X,T) [12].

(v). fuzzy hyperconnected space if every non - null fuzzy open subset of (X, T) is fuzzy dense in(X, T) [7].

Theorem 2.1 [2] : In a fuzzy topological space,

(a).The closure of a fuzzy open set is a fuzzy regular closed set.

(b). The interior of a fuzzy closed set is a fuzzy regular open set.

Theorem 2.2[14] : If λ is a fuzzy simply open set in a fuzzy topological space (X, T), then $\lambda \wedge (1 - \lambda)$ is a fuzzy nowhere dense set in (X, T).

Theorem 2.3 [16] : If λ is a fuzzy residual set in a fuzzytopological space(*X*, *T*), then there exists fuzzyG_{δ}-set μ in(*X*, *T*) such that $\mu \leq \lambda$.

Theorem 2.4 [17] : If λ is a fuzzy σ -boundary set in a fuzzy topological space (*X*, *T*), then λ is a fuzzy F_{σ} -set in (*X*, *T*).

Theorem 2.5 [17] : If γ is a fuzzy co- σ -boundary set in a fuzzytopological space(*X*, *T*), then $1 - \gamma$ is a fuzzy σ -boundary set in (*X*, *T*).

Theorem 2.6 [13] :Let(X, T) bea fuzzy topological space. Then the following are equivalent:

(1). (X, T) is anfuzzy Bairespace.

(2).*int* (λ) = 0, for every fuzzy first category set λ in (*X*, *T*).

(3). cl (μ) =1, for every fuzzy residual set μ in (*X*, *T*).

Theorem 2.7 [17] :Let(X, T) be a fuzzy topological space. Then, the following are equivalent:

(1).(X, T) is a fuzzy weakly Baire space.

(2). *int* $(\lambda) = 0$, for every fuzzy σ -boundary set λ in (X, T).

(3). $cl(\mu) = 1$, for every fuzzy co- σ -boundary set μ in (X, T).

Theorem 2.8 [17] : If a fuzzy topological space (X, T) is a fuzzy weakly Baireand fuzzy open hereditarily irresolvable space, then (X, T) is a fuzzy Baire space.

Theorem 2.9[5] :Let (X, T) be a fuzzy topological space. Then, the following properties are equivalent:

(i). (X, T) is fuzzy hyperconnected,

(ii). 1_X and 0_X are the only fuzzy regular open sets in X.

Theorem 2.10 [15]: If λ is a fuzzy closed set with *int* (λ) = 0, in a fuzzy topological space (X, T), then λ is a fuzzy resolvable set in (X, T).

Theorem 2.11[17] : If (X, T) is a fuzzy weakly Baire space, then *int* $(\lambda) \wedge int (1 - \lambda) = 0$, for any fuzzy set λ defined on X.

III. FuzzyQuasi-Regular spaces

Motivated by the works of John. C. Oxtoby[8] and A.R. Todd [10], onquasi-regularity in classical topology, the notion of fuzzy quasi-regularity in fuzzy topologicalspaces is defined as follows:

Definition 3.1 : A fuzzy topological space (X, T) is called a fuzzy quasi-regular space iffor each fuzzy open set λ in (X, T), there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq \lambda$.

Example3.1:Let $X = \{a, b, c\}$ and I = [0, 1]. The fuzzy sets α , β and γ are defined on X as follows:

 $\alpha: X \to I$ is defined by $\alpha(\alpha) = 0.4$; $\alpha(b) = 0.6$; $\alpha(c) = 0.4$,

 $B: X \to I$ is defined by $\beta(a) = 0.6$; $\beta(b) = 0.4$; $\beta(c) = 0.6$,

 $\gamma: X \to I$ is defined by $\gamma(a) = 0.4$; $\gamma(b) = 0.4$; $\gamma(c) = 0.6$.

Then, $T = \{0, \alpha, \beta, \gamma, \alpha \lor \beta, \alpha \lor \gamma, \alpha \land \beta, 1\}$ is a fuzzy topology on X. By computation, one can find that $cl(\alpha) = 1 - \beta$; *int* $(1 - \alpha) = \beta$;

 $cl(\alpha) = 1 \quad \beta \text{ ; int } (1 \quad \alpha) = \beta \text{ ; }$ $cl(\beta) = 1 - \alpha \text{ ; int } (1 - \beta) = \alpha \text{ ; }$ $cl(\gamma) = 1 - \alpha \text{ ; int } (1 - \gamma) = \alpha \text{ ; }$ $cl(\alpha \lor \beta) = 1 - [\alpha \land \beta] \text{ ; int } (1 - [\alpha \lor \beta]) = \alpha \land \beta \text{ ; }$ $cl(\alpha \lor \gamma) = 1 - [\alpha \land \beta] \text{ ; int } (1 - [\alpha \lor \gamma]) = \alpha \land \beta \text{ ; }$

 $cl(\alpha \land \beta) = 1 - (\alpha \lor \beta) . int (1 - [\alpha \land \beta]) = \alpha \lor \beta.$

The fuzzy regular closed sets in (X,T) are $1 - \alpha$, $1 - \beta$, $1 - (\alpha \lor \beta)$ and $1 - (\alpha \land \beta)$ and $1 - \beta \le \alpha; 1 - \alpha \le \beta; 1 - (\alpha \lor \beta) \le \gamma; 1 - (\alpha \land \beta) \le \alpha \lor \beta; 1 - \beta \le \alpha \lor \gamma$ and $1 - (\alpha \lor \beta) \le \alpha \land \beta$. Thus, for each fuzzy open set $\lambda (= \alpha, \beta, \gamma, \alpha \lor \beta, \alpha \lor \gamma, \alpha \land \beta)$, there exists a fuzzy regular closed set μ

 $(1 - \alpha, 1 - \beta, 1 - (\alpha \lor \beta), 1 - (\alpha \land \beta))$ in(X, T) such that $\mu \le \lambda$. Hence (X, T) is a fuzzy quasi-regular space. **Example 3.2 :**Let $X = \{a, b, c\}$ and I = [0, 1]. The fuzzy sets α, β and γ are defined on X as follows: $\alpha : X \to I$ is defined by $\alpha(\alpha) = 0.5$; $\alpha(b) = 0.4$; $\alpha(c) = 0.4$,

 $a: X \rightarrow I$ is defined by a(a) = 0.5; a(b) = 0.4; a(c) = 0.4, $B: X \rightarrow I$ is defined by $\beta(a) = 0.6$; $\beta(b) = 0.4$; $\beta(c) = 0.6$,

 $\gamma: X \to I$ is defined by $\gamma(a) = 0.4$; $\gamma(b) = 0.5$; $\gamma(c) = 0.4$.

Then, $T = \{0, \alpha, \beta, \gamma, \alpha \lor \gamma, \beta \lor \gamma, \alpha \land \gamma, 1\}$ is a fuzzy topology on X. By computation, one can find that

$$cl(\alpha) = 1 - (\alpha \lor \gamma) ; int (1 - \alpha) = \alpha \lor \gamma ;$$

$$cl(\beta) = 1 - \gamma ; int (1 - \beta) = \gamma ;$$

$$cl(\gamma) = 1 - [\beta \lor \gamma] ; int (1 - \gamma) = \beta \lor \gamma ;$$

$$cl(\alpha \lor \gamma) = 1 - [\alpha \lor \gamma] ; int (1 - [\alpha \lor \gamma]) = \alpha \lor \gamma ;$$

$$cl(\beta \lor \gamma) = 1 - \gamma ; int (1 - [\beta \lor \gamma]) = \gamma ;$$

$$cl(\alpha \land \gamma) = 1 - (\beta \lor \gamma) . int (1 - [\alpha \land \gamma]) = \beta \lor \gamma .$$

The fuzzy regular closed sets in (X,T) are $1 - (\alpha \lor \gamma)$, $1 - (\beta \lor \gamma)$.

Now for the fuzzy open set α , $(1 - \gamma) \leq \alpha$; $1 - (\alpha \lor \gamma) \leq \alpha$ and $1 - (\beta \lor \gamma) \leq \alpha$.

Thus, for the fuzzy open set α in (X, T), there is no fuzzy regular closed set $\mu (1 - \gamma, 1 - (\alpha \lor \gamma), 1 - (\beta \lor \gamma))$ in (X, T) such that $\mu \le \lambda$. Hence (X, T) is not a fuzzy quasi-regular space.

Proposition 3.1 : If there exists a fuzzy open set γ such that $cl(\gamma) \leq \lambda$, for each fuzzy open set λ in a fuzzy topological space (X, T), then (X, T) is a fuzzy quasi-regular space.

Proof :Let λ be a fuzzy open set in (X, T). Suppose that $cl(\gamma) \leq \lambda$, where γ is a fuzzy open set in (X, T). By Theorem 2.1, $cl(\gamma)$ is a fuzzy regular closed set in (X, T). Let $\mu = cl(\gamma)$. Hence, for the fuzzy open set λ in (X, T), the existence of a fuzzy regular closed set μ in (X, T) such that $\mu \leq \lambda$ implies that (X, T) is a fuzzy quasi-regular space.

Proposition 3.2: If δ is a fuzzy closed set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy regular open set α in (X, T) such that $\delta \leq \alpha$.

Proof :Let δ be a fuzzy closed set in (X, T). Then, $1 - \delta$ is a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, there exists a fuzzy regular closed set μ in (X, T) such that $\mu \le 1 - \delta$. Then, $\delta \le 1 - \mu$. Let $\alpha = 1 - \mu$. Hence, for the fuzzy closed set δ , there exists a fuzzy regular open set α in (X, T) such that $\delta \le \alpha$.

Proposition 3.3 : If λ is a fuzzy G_{δ} -set in a fuzzy quasi-regular space (*X*, *T*), then there exists a fuzzy closed set θ in (*X*, *T*) such that $\theta \leq \lambda$.

Proof: Let λ be a fuzzy G_{δ} -set in (X, T). Then $\lambda = \bigwedge_{i=1}^{\infty} (\lambda_i)$, where $\lambda_i \in T$. Since (X, T) is a fuzzy quasiregular space, for the fuzzy open set λ_i , there exists a fuzzy regular closed set μ_i in (X, T) such that $\mu_i \leq \lambda_i$. This implies that $\bigwedge_{i=1}^{\infty} (\mu_i) \leq \bigwedge_{i=1}^{\infty} (\lambda_i)$ and then $\bigwedge_{i=1}^{\infty} (\mu_i) \leq \lambda$, in (X, T). Since fuzzy regular closed setsare fuzzy closed sets in a fuzzy topological space, $\bigwedge_{i=1}^{\infty} (\mu_i)$ is a fuzzy closed set in (X, T). Let $\theta = \bigwedge_{i=1}^{\infty} (\mu_i)$. Thus, θ is a fuzzy closed set in (X, T) such that $\theta \leq \lambda$.

Corollary3.1 : If μ is a fuzzy F_{σ} -set in a fuzzy quasi-regular space (*X*, *T*), then there exists a fuzzy openset γ in (*X*, *T*) such that $\mu \leq \gamma$.

Proof: Let μ be a fuzzy F_{σ} -set in (X, T). Then, $1 - \mu$ is a fuzzy G_{δ} -set in (X, T) and by Proposition 3.3, there exists a fuzzy closed set θ in (X, T) such that $\theta \le 1 - \mu$. This implies that $\mu \le 1 - \theta$, in (X, T). Let $\gamma = 1 - \theta$. Thus, γ is a fuzzy open set in (X, T) such that $\mu \le \gamma$.

Proposition3.4: If λ is a fuzzy set defined on X in a fuzzy quasi-regular space (X, T), then there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq \lambda$.

Proof: Let λ be a fuzzyset defined on Xin (X, T). Then, *int* (λ) isafuzzy open set in (X, T). Since (X, T)is afuzzy quasi-regular space, there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq int (\lambda)$. Now *int* $(\lambda) \leq \lambda$, implies that $\mu \leq \lambda$, in (X, T).

Corollary3.2: If λ is a fuzzy set defined on X in a fuzzy quasi-regular space (X, T), then there exists a fuzzy regular open set $\delta in(X, T)$ such that $cl(\lambda) \leq \delta$.

Proof: For a fuzzy set λ , $cl(\lambda)$ is a fuzzy closed set in (X, T) and $1 - cl(\lambda)$ is a fuzzy open set in (X, T). By Proposition 3.4, there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq 1 - cl(\lambda)$. Then, $cl(\lambda) \leq 1 - \mu$, in (X, T). Let $\delta = 1 - \mu$. Thus, δ is a regular open set in (X, T) such that $cl(\lambda) \leq \delta$.

Proposition3.5: If λ is a fuzzy somewhere dense set in a fuzzy quasi-regular space (X, T), then there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq int cl(\lambda)$.

Proof: Let λ be a fuzzy somewhere dense set in (X, T). Then, *int* $cl(\lambda) \neq 0$, in (X, T). Now *int* $cl(\lambda)$ is a open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq int cl(\lambda)$.

Proposition 3.6 : If λ is a fuzzy nowhere dense set in a fuzzy quasi-regular space (*X*, *T*), then there exists a fuzzy regular open set δ in (*X*, *T*) such that $\lambda \leq \delta$.

Proof: Let λ be a fuzzy nowhere dense set in (X, T). Then, *int* $cl(\lambda) = 0$, in(X, T). Now $cl(\lambda)$ is a fuzzy closed set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.2, there exists a fuzzy regular open set δ in (X, T) such that $cl(\lambda) \leq \delta$. Now $\lambda \leq cl(\lambda)$, implies that $\lambda \leq \delta$, in (X, T).

Proposition3.7: If η is a fuzzy first category set in a fuzzy quasi-regular space (*X*, *T*), then there exists a fuzzy openset δ in (*X*, *T*) such that $\eta \leq \delta$.

Proof: Let be a fuzzy first category set in (X, T). Then, $\eta = \bigvee_{i=1}^{\infty} (\lambda_i)$, where (λ_i) 's are fuzzy nowhere dense sets in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.6, there exists a fuzzy regular open set δ_i in (X, T) such that $\lambda_i \leq \delta_i$. Then $\bigvee_{i=1}^{\infty} (\lambda_i) \leq \bigvee_{i=1}^{\infty} (\delta_i)$. This implies that $\eta \leq \bigvee_{i=1}^{\infty} (\delta_i)$. Since fuzzy regular open sets are fuzzy open sets in a fuzzy topological space, $\bigvee_{i=1}^{\infty} (\delta_i)$ is a fuzzy open set in (X, T). Let $\delta = \bigvee_{i=1}^{\infty} (\delta_i)$. Hence, for the fuzzy first category set η , there exists a fuzzy open set $\delta_i(X, T)$ such that $\eta \leq \delta$.

Proposition 3.8: If θ is a fuzzy residual set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy closed set β in (*X*, *T*) such that $\beta \leq \theta$.

Proof:Let θ be a fuzzy residual set in (X, T). Then, $1 - \theta$ is a fuzzy first category set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.7, there exists a fuzzy open set δ in (X, T) such that $1 - \theta \le \delta$. This implies that $1 - \delta \le \theta$. Let $\beta = 1 - \delta$. Then, β is a fuzzy closed set in (X, T) such that $\beta \le \theta$.

Proposition 3.9 : If λ is a fuzzy simply open set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy regular open set δ in (*X*, *T*) such that $\lambda \wedge (1 - \lambda) \leq \delta$.

Proof :Let λ be a fuzzy simply open set in(*X*, *T*). Then, by Theorem 2.2, $\lambda \wedge (1 - \lambda)$ is a fuzzy nowhere dense set in (*X*, *T*).Since (*X*, *T*) is a fuzzy quasi-regular space, by Proposition 3.6,there exists a fuzzy regular open set δ in (*X*, *T*) such that $\lambda \wedge (1 - \lambda) \leq \delta$.

Proposition 3.10 : If λ is a fuzzy residual set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy G_{δ} -set μ and a fuzzy closed set θ in (X, T) such that $\theta \leq \mu \leq \lambda$.

Proof :Let λ be a fuzzy residual set in (X, T). Then, by Theorem 2.3, there exists a fuzzy G_{δ} -set μ in (X, T) such that $\mu \leq \lambda$. Since (X, T) is a fuzzy quasi-regular space, for the fuzzy G_{δ} -set μ by Proposition 3.3, there exists a fuzzy closed set θ in (X, T) such that $\theta \leq \mu$. Then, it follows that $\theta \leq \mu \leq \lambda$.

Corollary 3.3 : If η is a fuzzy first category set in a fuzzy quasi-regular space(*X*,*T*), then there exists a fuzzyopen set α and a fuzzyG_{σ}-set β in (*X*, *T*) such that $\eta \leq \beta \leq \alpha$.

Proof :Let η be a fuzzy first category set in (X, T). Then, $1 - \eta$ is a fuzzy residual set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.10, there exists a fuzzy G_{δ} -set μ and a fuzzy closed set θ in (X, T) such that $\theta \le \mu \le 1 - \eta$. This implies that $1 - \theta \ge 1 - \mu \ge 1 - [1 - \eta]$. Let $\alpha = 1 - \theta$ and $\beta = 1 - \mu$. Then, α is a fuzzy open set and β is a fuzzy F_{σ} -set in (X, T) and $\eta \le \beta \le \alpha$, in (X, T).

Proposition 3.11 : If μ is a fuzzy σ -boundary set in a fuzzy quasi-regular space(*X*,*T*), then there exists a fuzzy open set γ in (*X*,*T*) such that $\mu \leq \gamma$.

Proof: Let μ be a fuzzy σ -boundary set in (X, T). Then, by Theorem 2.4, μ is a fuzzy F_{σ} -set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Corollary 3.1, there exists a fuzzy open set γ in (X, T) such that $\mu \leq \gamma$.

Proposition 3.12 : If μ is a fuzzy σ -boundary set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy regular closed set η in (*X*, *T*) such that $cl(\mu) \leq \eta$.

Proof :Let μ be a fuzzy σ -boundary set in (X, T). Then, by Proposition 3.11, there exists a fuzzy open set γ in (X, T) such that $\mu \leq \gamma$. This implies that $cl(\mu) \leq cl(\gamma)$. By Theorem 2.1, $cl(\gamma)$ is a fuzzy regular closed set in (X, T). Let $\eta = cl(\gamma)$. Thus, for the fuzzy σ -boundary set μ , there exists a fuzzy regular closed set η in (X, T) such that $cl(\mu) \leq \eta$.

Corollary3.4 : If μ is a fuzzy σ -boundary set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy closed set η in (*X*, *T*) such that $\mu \leq \eta$.

Corollary3.5: If μ is a fuzzy σ -boundary set in a fuzzy quasi-regular space(*X*, *T*), then there exist fuzzy regular closed sets α and η in (*X*, *T*) such that $\alpha \le \mu \le \eta$.

Proof: Letµbe a fuzzy σ -boundary set in (X, T). Then, by Proposition 3.12, there exists a fuzzy regular closed set η in (X, T) such that $cl(\mu) \leq \eta$. Now $\mu \leq cl(\mu)$, in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.4, for the fuzzy set µon X, there exists a fuzzy regular closed set α in (X, T) such that $\alpha \leq \mu$.

Thus, for the fuzzy σ -boundary set μ , there exist fuzzy regular closed sets α and η in (*X*, *T*) such that $\alpha \leq \mu \leq \eta$.

Proposition3.13 : If θ is a fuzzy co- σ -boundary set in a fuzzy quasi-regular space(*X*,*T*), then there exists a fuzzy regular open set δ in (*X*,*T*) such that $\delta \leq int(\theta)$.

Proof :Let θ be a fuzzy co- σ - boundary set in (X, T). Then, by Theorem 2.5, $1 - \theta$ is a fuzzy σ -boundary set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.12,there exists a fuzzy regular closed set η in (X, T) such that $cl(1 - \theta) \leq \eta$. By Lemma 2.1, $cl(1 - \theta) = 1 - int(\theta)$, in (X, T). Then, $1 - int(\theta) \leq \eta$ and $1 - \eta \leq int(\theta)$. Let $\delta = 1 - \eta$. Hence δ is a fuzzy regular open set in (X, T) such that $\delta \leq int(\theta)$. **Corollary 3.6 :**If θ is a fuzzy co- σ -boundary set in a fuzzy quasi-regular space(X, T), then there exists a fuzzy open set δ in (X, T) such that $\delta \leq \theta$.

Proposition3.14 : If λ is a fuzzy open set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy regular open set δ in (*X*, *T*) such that $\delta \leq \lambda$.

Proof: Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set λ in (X, T), there exists a fuzzy regular closed set μ in (X, T) such that $\mu \leq \lambda$. Then, $int(\mu) \leq int(\lambda) = \lambda$. Since fuzzy regular closed sets are fuzzy closed sets in a fuzzy topological space, μ is a fuzzy closed set in (X, T). By Theorem2.1, $int(\mu)$ is a fuzzy regular open set in (X, T). Let $\delta = int(\mu)$. Thus, for the fuzzy open set $\lambda in(X, T)$, there exists a fuzzy regular open set δ in (X, T) such that $\delta \leq \lambda$.

Corollary 3.7 : If λ is a fuzzy open set in a fuzzy quasi-regular space(*X*, *T*), then there exists a fuzzy regular open set δ in (*X*, *T*) and a fuzzy regular closed set α in (*X*, *T*) such that $\alpha \leq \delta \leq \lambda$.

Proof :Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set λ in (X, T), by Proposition3.14, there exists a fuzzy regular open set δ in (X, T) such that $\delta \leq \lambda$. By Proposition **3.4**, for the fuzzy set δ on X, there exists a fuzzy regular closed set α in (X, T) such that $\alpha \leq \delta \leq \lambda$.

Proposition 3.15: If λ is a fuzzy open set in a fuzzy quasi-regular space(*X*,*T*), then there exists a fuzzy somewhere dense set δ in (*X*,*T*) such that $\delta \leq \lambda$.

Proof :Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set λ in (X, T), by Proposition 3.14, there exists a fuzzy regular open set δ in (X, T) such that $\delta \leq \lambda$. Now *int* $cl(\delta) = \delta$, implies that *int* $cl(\delta) \neq 0$ and thus δ is a fuzzy somewhere dense set in (X, T).

Proposition 3.16 :If λ is a fuzzy open set in a fuzzy quasi-regular space(*X*,*T*), then there exists a fuzzy somewhere dense set δ and a fuzzy regular closed set α in (*X*,*T*) such that $\alpha \leq \delta \leq \lambda$.

Proof: Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set λ in (X, T), by Proposition 3.15, there exists a fuzzy somewhere dense set δ in (X, T) such that $\delta \leq \lambda$. ByProposition 3.4, for the fuzzy set δ on X, there exists a fuzzy regular closed set α in (X, T) such that $\alpha \leq \delta \leq \lambda$.

Proposition3.17 : If μ is a fuzzy F_{σ} -set in a fuzzy quasi-regular space (*X*, *T*), then there exists a fuzzy open set γ and a fuzzy regular closed set α in (*X*, *T*) such that $\alpha \leq \mu \leq \gamma$.

Proof :Let μ be a fuzzy F_{σ} -set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Corollary3.1,there exists a fuzzy open set γ in (X, T) such that $\mu \leq \gamma$. By Proposition**3.4**, for the fuzzy set μ on X, there exists a fuzzy regular closed set α in (X, T) such that $\alpha \leq \mu \leq \gamma$.

Corollary3.8: If $int(\mu) = 0$, for a fuzzy F_{σ} -set μ in a fuzzy quasi-regular space (X, T), then 0_X is the fuzzy regular closed set in (X, T) such that $0_X \leq \mu$.

Proof :Let μ be a fuzzy F_{σ} -set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Proposition 3.17, there exists a fuzzy open set γ and a fuzzy regular closed set α in (X, T) such that $\alpha \leq \mu \leq \gamma$. If $int(\mu) = 0$, then $int(\alpha) = 0$ and this will imply [from $cl int(\alpha) = \alpha$] that $cl(0) = \alpha$ and then $\alpha = 0$, in (X, T) and 0_X is the fuzzy regular closed set in (X, T) such that $0_X \leq \mu$.

IV. Fuzzy quasi-regular spaces and other fuzzy Topologicalspaces

Proposition 4.1 : If a fuzzy topological space (X, T) is a fuzzy regular space, then (X, T) is a fuzzy quasi-regular space.

Proof:Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy regular space, for the fuzzy open set λ in(X, T), $\lambda = \bigvee_{\alpha} (\lambda_{\alpha})$, where $cl(\lambda_{\alpha}) \leq \lambda$ and $\lambda_{\alpha} \in T$.By Theorem 2.1, $cl(\lambda_{\alpha})$ is a fuzzy regular closed set in(X, T). Thus, for the fuzzy open set λ in (X, T), there exists a fuzzy regular closed set $cl(\lambda_{\alpha})$ in (X, T) such that $cl(\lambda_{\alpha}) \leq \lambda$, implies that (X, T) is a fuzzy quasi-regular space.

Remark :Theconverse of the above Proposition need not be true. That is, a fuzzy quasi-regular space need not be a fuzzy regular space. For, consider the following example :

Example 4.1 :Let $X = \{a, b, c\}$ and I = [0, 1]. The fuzzy sets α , β and γ are defined on X as follows :

 $\alpha : X \rightarrow I$ is defined by $\alpha(a) = 0.4$; $\alpha(b) = 0.6$; $\alpha(c) = 0.4$, $B : X \rightarrow I$ is defined by $\beta(a) = 0.6$; $\beta(b) = 0.4$; $\beta(c) = 0.6$, $\gamma : X \rightarrow I$ is defined by $\gamma(a) = 0.4$; $\gamma(b) = 0.5$; $\gamma(c) = 0.5$.

Then, $T = \{0, \alpha, \beta, \gamma, \alpha \lor \beta, \alpha \lor \gamma, \beta \lor \gamma, \alpha \land \beta, \alpha \land \gamma, \beta \land \gamma, 1\}$ is a fuzzy topology on X. By computation, one can find that $cl(\alpha) = 1 - \beta$; int $(1 - \alpha) = \beta$; $\operatorname{cl}(\beta) = 1 - \alpha$; int $(1 - \beta) = \alpha$; $\operatorname{cl}(\gamma) = 1 - \gamma;$ int $(1 - \gamma) = \gamma;$ $cl(\alpha \lor \beta) = 1 - [\alpha \land \beta];$ int $(1 - [\alpha \lor \beta]) = \alpha \land \beta;$ $\operatorname{cl}(\alpha \lor \gamma) = 1 - [\beta \land \gamma];$ int $(1 - [\alpha \lor \gamma]) = \beta \land \gamma;$ $\operatorname{cl}(\beta \lor \gamma) = 1 - (\alpha \land \gamma); \text{ int } (1 - [\beta \lor \gamma]) = \alpha \land \gamma;$ $\operatorname{cl}(\alpha \land \beta) = 1 - [\alpha \lor \beta];$ int $(1 - [\alpha \land \beta]) = \alpha \lor \beta$; $\operatorname{cl}(\alpha \wedge \gamma) = 1 - [\beta \vee \gamma];$ int $(1 - [\alpha \land \gamma]) = \beta \lor \gamma;$ $\operatorname{cl}(\beta \wedge \gamma) = 1 - (\alpha \vee \gamma).$ int $(1 - [\beta \land \gamma]) = \alpha \lor \gamma$. By computation one can find that the fuzzy regularclosed sets in (X,T) are $1-\alpha$, $1-\beta$, $1-\gamma$, $1-\gamma$

By computation one can find that the fuzzy regulationsed setsin (X, T) are $1 - \alpha$, $1 - \beta$, $1 - \gamma$, $1 - [\alpha \lor \beta]$, $1 - [\beta \lor \gamma]$, $1 - [\alpha \land \beta]$, $1 - [\beta \land \gamma]$ and $1 - (\alpha \land \gamma)$. Also $1 - \beta \le \alpha$; $1 - \alpha \le \beta$; $1 - [\beta \lor \gamma] \le \gamma$; $1 - [\alpha \land \beta] \le \alpha \lor \beta$; $1 - \beta \le \alpha \lor \gamma$; $1 - [\alpha \land \gamma] \le \beta \lor \gamma$; $1 - [\alpha \lor \beta] \le \alpha \land \beta$; $1 - [\beta \lor \gamma] \le \alpha \land \gamma$ and $1 - [\alpha \lor \beta] \le \beta \land \gamma$. Hence (X, T) is a fuzzy quasi-regular space. Now, for the fuzzy open set α in (X, T), $\alpha = (\alpha \land \beta) \lor (\alpha \land \gamma) \lor (\alpha)$. Where $cl(\alpha \land \beta) = 1 - [\alpha \lor \beta] \le \alpha$; $cl(\alpha \land \gamma) = 1 - [\beta \lor \gamma] \le \alpha$ and $cl(\alpha) = 1 - \beta \le \alpha$. For the fuzzy open set γ in (X, T), $cl(\alpha \land \beta) = 1 - [\alpha \lor \beta] \le \gamma$.

 $[\rho \lor \gamma] \subseteq \alpha$ and $c(\alpha) = 1 \quad \rho \subseteq \alpha$. Or the fuzzy open settin (X,T), $c(\alpha \land \rho) = 1 \quad [\alpha \lor \rho] \subseteq \gamma$ and $cl(\alpha \land \gamma) = 1 - [\beta \lor \gamma] \leq \gamma$. But $\gamma \neq (\alpha \land \beta) \lor (\alpha \land \gamma)$, in (X,T). Hence (X,T) is not a fuzzy regular space.

The following Propositions give conditions under which fuzzy quasi-regular spaces become fuzzy Baire spaces.

Proposition 4.2: If *int* $(\beta) = 0$, for each fuzzy F_{σ} -set β in a fuzzy quasi-regular space(*X*, *T*), then (*X*, *T*) is a fuzzy Baire space.

Proof :Let λ be a fuzzy first category set in (X, T).Since(X, T) is a fuzzy quasi-regular space, by Corollary3.3, there exists a fuzzy open set α and a fuzzy F_{σ} -set β in(X, T)such that $\lambda \leq \beta \leq \alpha$. Then, $int(\lambda) \leq int(\beta)$, in (X, T).By hypothesis, $int(\beta) = 0$ and this implies that $int(\lambda) = 0$, in (X, T). Then, byTheorem2.6,(X, T) isa fuzzyBaire space.

Proposition4.3: If each fuzzy G_{δ} -set is a fuzzy dense set in a fuzzy quasi-regular space (X, T), then(X, T) is a fuzzyBairespace.

Proof :Let λ be a fuzzy first category set in (X, T).Since (X, T) is a fuzzy quasi-regular space, by Corollary 3.3, there exists a fuzzy open set α and a fuzzy F_{σ} -set β in (X, T) such that $\lambda \leq \beta \leq \alpha$. Then, *int* $(\lambda) \leq int (\beta)$, in (X, T). Now β is a fuzzy F_{σ} -setin (X, T), implies that $1 - \beta$ is a fuzzy G_{δ} -set in (X, T). By hypothesis, *cl* $(1 - \beta) = 1$, in (X, T). ByLemma 2.1, $1 - int (\beta) = 1$ and *int* $(\beta) = 0$. This implies that *int* $(\lambda) = 0$, in (X, T). Then, by Theorem2.6, (X, T) is a fuzzyBairespace.

The following Propositions give conditions under which fuzzyquasi-regular spaces become fuzzy weaklyBairespaces.

Proposition 4.4 : If each fuzzy closed set is a fuzzy nowhere dense set in a fuzzy quasi-regular space(X, T), then (X, T) is a fuzzy weaklyBairespace.

Proof :Let λ be a fuzzy σ -boundary set in (X, T). Since (X, T) is a fuzzy quasi-regular space, by Corollary 3.4, then there exists a fuzzy closed set η in (X, T) such that $\lambda \leq \eta$. Then, $int(\lambda) \leq int(\eta)$. By hypothesis, the fuzzy closed set η is a fuzzy nowhere densesetin (X, T) and then $int cl(\eta) = 0$. Now $int(\eta) \leq int cl(\eta)$, implies that $int(\eta) = 0$, in (X, T). This implies that $int(\lambda) = 0$. Thus, for a fuzzy σ -boundary set λ , $int(\lambda) = 0$, in (X, T). Then, by Theorem 2.7, (X, T) is a fuzzy weakly Bairespace.

Corollary4.1: If *int* $(\lambda) = 0$, for each fuzzy closed set λ in a fuzzy quasi-regular space (X, T), then (X, T) isa fuzzyweaklyBaire space.

Proposition 4.5: If each fuzzy closed set is a fuzzy nowhere dense set in a fuzzy quasi-regular and fuzzy open hereditarily irresolvable space (X, T), then (X, T) is a fuzzy Bairespace.

Proof : The proof follows from Proposition 4.4 and Theorem 2.8.

Proposition4.6 : If a fuzzy topological space(X, T) is a fuzzy hyperconnected, fuzzy open hereditarily irresolvable and fuzzy quasi-regular space, then (X, T) is a fuzzy weaklyBairespace.

Proof :LetAbe a fuzzy closedset in (X,T). Then, $1 - \lambda$ is a fuzzy open set in (X,T). Since (X,T) is a fuzzyhyperconnected space, $1 - \lambda$ is a fuzzy dense set in (X,T) and $cl(1-\lambda) = 1$ and by Lemma 2.1, $1 - int(\lambda) = 1$ and thus $int(\lambda) = 0$, in (X,T). Since λ is fuzzy closedset in (X,T), $int cl(\lambda) = 0$, in (X,T) and thus λ is a fuzzy nowhere dense set in (X,T). Thus, the fuzzy closedset λ is a fuzzy nowhere dense set in the fuzzy quasi-regular space (X,T). Hence, by Proposition 4.4, (X,T) is a fuzzy weaklyBairespace.

Remark :The converse of the above proposition need not be true. That is, a fuzzy weaklyBairespace need not be a fuzzy quasi-regular space and a fuzzy hyperconnected space. For, consider the following example: Example 4.2:Let $u_1 = u_2$ and u_3 before a fuzzy fuzzy of f = [0, 1] defined as follows:

Example 4.2:Let μ_1, μ_2 and μ_3 befuzzy sets of I = [0,1] defined as follows:

$$\mu_{1}(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2}; \\ 2x - 1, & \frac{1}{2} \le x \le 1. \end{cases}$$
$$\mu_{2}(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{4}; \\ -4x + 2, & \frac{1}{4} \le x \le \frac{1}{2}; \\ 0, & \frac{1}{2} \le x \le 1. \end{cases}$$
$$\mu_{3}(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{4}; \\ \frac{1}{3}(4x - 1), & \frac{1}{4} \le x \le 1. \end{cases}$$

Clearly $T = \{0, \mu_1, \mu_2, \mu_1 \lor \mu_2, 1\}$ is a fuzzy topology on I.By computation it follows that $(\mu_1) = 1 - \mu_2, cl(\mu_2) = 1 - \mu_1, cl(\mu_1 \lor \mu_2) = 1; int(1 - \mu_1) = \mu_2, int(1 - \mu_2) = \mu_1, int(1 - [\mu_1 \lor \mu_2) = 0, cl(\mu_3) = 1 - \mu_2; int(\mu_3) = \mu_1; cl(1 - \mu_3) = 1 - \mu_1; int(1 - \mu_3) = \mu_2.$ Now int $cl(\mu_1) = int(1 - \mu_2) = \mu_1; int cl(\mu_2) = int(1 - \mu_1) = \mu_2; int cl(\mu_1 \lor \mu_2) = 1; nt cl(\mu_3) = int(1 - \mu_2) = \mu_1; int cl(1 - \mu_3) = \mu_2.$ Then, μ_1 and μ_2 are fuzzy regular open sets and thus $1 - \mu_1$ and $1 - \mu_2$ are fuzzy regular closed sets in(I, T). Now $\delta_1 = cl(\mu_1) \land (1 - \mu_1) = (1 - \mu_2) \land (1 - \mu_1),$

 $\delta_2 = \operatorname{cl}(\mu_2) \wedge (1-\mu_2) = (1-\mu_2) \wedge (1-\mu_1)$. Then, $\delta = \delta_1 \vee \delta_2$, is a fuzzy σ -boundary set in(*I*, *T*) and *int* (δ) = *int*[$(1 - \mu_2) \wedge (1 - \mu_1)$] = *int* [$1 - (\mu_1 \vee \mu_2)$] = $1 - \operatorname{cl}(\mu_1 \vee \mu_2)$ = 1 - 1 = 0. Hence(*I*, *T*) is a fuzzy weaklyBaire space.

Now, for the fuzzy open sets μ_1 , μ_2 and $\mu_1 \lor \mu_2$, $1-\mu_1 \not\leq \mu_1$; $1-\mu_2 \not\leq \mu_1$; $1-\mu_1 \not\leq \mu_2$; $1-\mu_2 \not\leq \mu_2$; $1-\mu_2 \not\leq \mu_1 \lor \mu_2$. This implies that (I,T) is not a fuzzy quasi-regular space. Also, for the fuzzy open set μ_1 , cl $(\mu_1) = 1-\mu_2 \neq 1$ implies that (I,T) is not a fuzzy hyperconnected space.

Proposition 4.7 : If λ is a fuzzy closed set with $int(\lambda) = 0$, in a fuzzy fuzzy quasi-regular space (X, T), then λ is a fuzzy resolvableset in the fuzzy weakly Bairespace(X, T). **Proof :** The proof follows from Corollary 4.1 and Theorem2.10.

Proposition 4.8: If λ is a fuzzy set defined on Xin a fuzzy quasi-regular space (X, T) in which each fuzzy closed

set is a fuzzy nowhere dense set, then $int(\lambda) \wedge int(1-\lambda) = 0$, in (X,T). **Proof**:Let λ be a fuzzy set defined on X in (X,T).By hypothesis, each fuzzy closed set is a fuzzy nowhere dense set in the fuzzy quasi-regular space(X,T) and then by Proposition 4.4,(X,T) is a fuzzy weaklyBairespace. ByTheorem2.11, for the fuzzy set λ in (X,T), $int(\lambda) \wedge int(1-\lambda) = 0$, in(X,T).

Proposition 4.9 : If a fuzzy topological space (X,T) is a fuzzy quasi-regular space, then (X,T) is not a fuzzy hyperconnected space.

Proof:Let λ be a fuzzy open set in (X, T). Since (X, T) is a fuzzy quasi-regular space, for the fuzzy open set λ in (X, T), by Proposition 3.14, there exists a fuzzyregular open set δ in (X, T) such that $\delta \leq \lambda$. Then, by Theorem 2.12,(X, T) is not a fuzzy hyperconnected space.

References

- [1]. S.Anjalmose And G.Thangaraj, Fuzzy Quasi-Regular Space, Communicated To Thai Journal Of Mathematics, Thailand.
- [2]. K.K. Azad, On Fuzzy Semi Continuity, Fuzzy Almost Continuity And Fuzzy Weakly Continuity, J. Math. Anal. Appl, 82 (1981), 14–32.
- [3]. G.Balasubramanian, Maximal Fuzzy Topologies, Kybernetika, 31(5) (1995), 459 464.
- [4]. C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24, (1968), 182 190.
- [5]. B. Hutton AndI. L. Reilly, Separation Axioms In Fuzzy Topological Spaces, Dept. Of Math., University Of Auckland, Report No. 55, March 1974.
- [6]. C. Jayasree, B. Baby And P. Arnab, Some Results On Fuzzy Hyper-Connected Spaces, Songkla. J. Sci. Tech., Vo.39, No. 5 (2017), 619-624
- [7]. Miguel Caldas, GovindappaNavalagi, AndRatneshSaraf, On Fuzzy Weakly Semi-Open Functions, Proyecciones, Vol. 21,No.1 (2002), 51 – 63.
- [8]. J. C. Oxtoby, Cartesian Products Of Baire Spaces, Fund. Math. 49 (1960/61), 157 166.
- J. C. Oxtoby, Spaces That Admit A Category Measure, Journal Für Die Reine Und AngewandteMathematik, 205 (1960 / 61), 156 –170.
- [10]. A. R. Todd, Quasiregular, Pseudocomplete, AndBaire Spaces, Pacific J. Math., Vol. 95, No. 1 (1981), 233 250.
- [11]. G.Thangaraj And G. Balasubramanian, On Somewhat Fuzzy Continuous Functions, J. Fuzzy Math, Vo. 11, No.2 (2003), 725-736.
- [12]. G.Thangaraj And G.Balasubramanian, On Fuzzy Resolvable And Fuzzy Irresolvable Spaces, Fuzzy Sets Rough Sets And Multivalued Operations And Appl., Vol.1, No.2 (2009), 173-180.
- [13]. G. Thangaraj and S. Anjalmose, On Fuzzy Baire Spaces, J. Fuzzy Math., 21(3), (2013), 667-676.
- [14]. G. Thangaraj and K. Dinakaran, On Fuzzy Simply Continuous Functions, J.Fuzzy Math., Vol. 25, No. 1 (2017), 99 124.
- [15]. G. Thangaraj and B. Mathivathani, P. Sathya, On Fuzzy Resolvable Sets and Fuzzy Resolvable Functions, Adv. Fuzzy Math., Vol. 12, No. 6 (2017), 1171 – 1181
- [16]. G. Thangaraj and R. Palani, Somewhat Fuzzy Continuity and Fuzzy Baire Spaces, Annl. Fuzzy Math. Inform., 12(1) (2016), 75-82.
- [17]. G. Thangaraj and R. Palani, On Fuzzy Weakly Baire Spaces, Bull. Inter. Math. Virtual Institute, Vol. 7 (2017), 479 489.
- [18]. G. Thangaraj and S. Senthil, On Somewhere Fuzzy Continuous Functions, Annl. Fuzzy Math. Inform., 15(2) (2018), 181 198.
- [19]. L. A. Zadeh, Fuzzy Sets, Inform. and Control, Vol. 8, (1965), 338 353.