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Abstract: 
Background: Millions of people throughout the world die every year from malaria, an illness spread by the bite 

of an infected female Anopheles mosquito. Busia, a county in Kenya, has been recorded to have the highest 

prevalent cases of 37% in Kenya. However, Busia has often been ignored in the mathematical modelling of 

malaria in Kenya. The SEIR model is widely used in mathematical simulations of malaria transmission. However, 

the paradigm is no longer relevant to malaria cases since asymptomatic Plasmodium parasites persist in the 

systems of persons who have recovered from malaria. In this study, the human subpopulation carrying the 

plasmodium parasites but are not suffering from malaria are included in the mathematical model. Therefore, this 

study presents SIRSp model to study the trend of malaria disease in Busia County, Kenya. The mathematical model 

is analysed in the human population by assuming that the disease's infection rate is constant and is based not 

only on the number of people who are infected but also on the number of people who are susceptible to the disease. 

The reproduction number in human and in mosquitoes are obtained and the equilibrium point shows that the 

disease-free equilibrium point is always stable. This suggests the possibility of eradicating malaria in Busia 

County.  From the numerical simulations, it is found out that the infected humans increase with the force of 

infection. Increase in the rate of recovery from malaria reduces the number of infected humans and the infectious 

mosquito subpopulation but increases the susceptible human subpopulation. 

Methodology: 

The stability of the system is established and it shows that the system is always stable when the subpopulations 

start in the neighbourhood of the disease-free equilibrium point. The numerical solution of the system is sought 

using an adaptive step-size Runge-Kutta-Fehlberg (RKF45) method. The parameter estimation was carried out 

by using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the optimal parameter values are obtained 

as;𝛬ℎ = 1, 𝛾 = 1, 𝛼 = 1, 𝑟 = 0.39195362, 𝛬𝑚 = 1, 𝛽 = 1, 𝜇𝑚 = 0, 𝑝 = 0.72426444, 𝑞 = 0.23809668. 
Optimisation of the parameters is done by comparing the numerical results with the real-world data. The optimal 

parameter values are obtained as;𝛬ℎ = 1, 𝛾 = 1, 𝛼 = 1, 𝑟 = 0.39195362, 𝛬𝑚 = 1, 𝛽 = 1, 𝜇𝑚 = 0.To show the 

fitting of the optimal values against the real-world data, we plotted the graphs. 

Results and Conclusions: In this model the parameters are optimised and predicted the rate of human infection, 

the rate at which mosquitoes get infected and the rate at which human beings recover. The results shows that an 

increase in the rat of recovery of an infected human reduces the infection in the human population The optimised 

model for the infected human subpopulation agrees well with the real-world data as time proceeds. 
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I. Introduction 
Malaria is a widespread infectious disease caused by parasites of protozoan recognized as Plasmodium 

where blood cells are infected by parasite and replicated (Cai et al., 2017). It is spread among humans occasioned 

by a bite of female adult Anopheles mosquito which is infected that exist as a Plasmodium of five species namely: 

falciparum, vivax, ovale, malariae and knowlesi (Lashari et al., 2012). On the same breath, WHO (2019) reports 

that among these species, P. falciparum is the most severe and potentially lethal to humans while Cai et al. (2017) 

affirms that P. falciparum is the cause for high number of deaths, clinical cases and widespread among the tropical 

regions and subtropical regions. Based on Ahmed et al., (2022) mosquito bite infections show some medical 

symptoms such as body temperature rise, pain, fatigue, sweat and shivering which may exist within five hours. Also, 

critics argue that malaria control has ineffective anti-malaria drugs and low efforts to develop effective vaccine 

to counter the resistance evolved in the parasite (Lashari et al., 2012). 
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Based on recent report on World malaria by WHO (2021), 241 million malaria cases were observed in 

2020 as related to 227 million in 2019. The number of estimated demises were 627000 in the year 2020; an 

increment of 69000 over the previous year. The study shows there were 95% malaria cases and 96% deaths in 

Sub-Saharan Africa. Among the deaths, 80% accounted for under 5 years of age children (WHO, 2021). The 

severity of malaria infection depends largely on the person’s immune system of the infected person, fractional 

immunity progresses over a period through recurrent contagion and if the infection is not recurrent, the immunity 

becomes relatively short-lived. Being infected with the parasite does not automatically upshot in the disease. 

Numerous infected individuals in regions prevalent to malaria are asymptomatic: they may dock huge records of 

parasites yet display no superficial symbols and symptoms of the disease. The epidemiology of malaria broadcast 

and its degree of infection vary in different areas due to variability of weather conditions. 

The World Health Organization (2019) has incorporated strategies for controlling and eliminating the 

spread of malaria. Mathematically, modelling has been a vital tool for manipulating choice creation procedures 

concerning intrusion plans towards curbing the spread of the disease. Recommending one intervention is 

ineffective to stem the blowout of malaria in a particular population for example, in places where P. vivaxis is the 

prevalent species, the use of insecticide-treated nets (ITN) and indoor residual spraying (IRS) may be less efficient 

at preventing the spread of the disease because mosquitoes often bite early in the evening, consume blood meals, 

and rest outside (WHO, 2019). 

Health sector in Kenya has placed significant efforts in combatting the outbreak of malaria in Kenya and 

with the aim of reducing death from malaria by 75 per cent (Elnour et al., 2023). However, according to Bashir 

et al. (2019), majority of the Busia County population is susceptible to malaria due to poverty and insufficient 

health facilities. Busia County accounts for the largest malaria cases in Kenya. Malaria spread is extremely 

flexible in Busia County due to the varying climatic conditions. Malaria exists in four epidemiological zoning in 

Kenya: seasonal malaria transmission, malaria-free zones malaria endemic locations and malaria epidemic prone 

areas (WHO, 2019). These encounters call for crucial expansion of real and ideal policies for averting and 

regulating the spread of malaria. To overcome malaria in Kenya is therefore tantamount to overcoming it in Busia 

County. This study develops an appropriate SIRSp model to identify the trend and patterns in the outbreak of 

Malaria in Busia County of Kenya. 

 

Ⅱ. Literature Review 
The mathematical modelling of mosquito disease proves to avail appropriate strategies in the 

undercurrents of spread and insights in the control measures (Banerjee and Sanyal, 2023). Based on sir Ross model, 

malaria disease modelling was grounded on malaria life cycle parasite (Amadi and Haario, 2021). The model is 

further modified in other literatures to cover the infection latent period, factors for immunity, heterogeneous 

human and mosquito, susceptible population, exposure of both human and mosquito and human recoveries 

(Lashari et al., 2012; Cai et al., 2017; Cai et al., 2019). 

Globally, malaria control among travellers was modelled through a mathematical model of SEIR by Olaniyi 

et al. (2020) while Ibrahim et al. (2020) enhanced awareness techniques in control of malaria transmission through 

SEIR model. Also, how the malaria parasite transmits from person to person was studied by Baihaqi et al., 2020, 

who suggested the SEIRSp model by introducing a new compartment Sp in human population i.e. the susceptible 

with plasmodium parasite in the human body which relapses once the immunity decreases. Consequently, Djidjou‐

Demasse et al., 2020 developed an SEIR study model of the malaria disease spread and its effects on weather 

parameters. Similarly, Pandey (2020) offered a mathematical model to designate the role played by domestic and 

industrial effluents in malaria dispersal of malaria whereas, Song et al., 2020 familiarized with a mathematical 

model for malaria-dynamics. 

Based on Mojeeb et al., 2017 observed a SEIR model on eradication of mosquito population and 

abolition outburst of malaria. Olaniyi et al., 2020 recommended a classification to validate the absence of a linear 

progression in the spread of malaria which agrees with Mandal et al., 2020 who envisioned a system to 

comprehend the malaria disease propagation. In another discourse, Bakary et al. (2018) suggested a model to 

analyse the impact of frequent biting of mosquitoes and blood transfusions. In another finding, the effects of 

immunization on malaria's underlying currents were studied by Rafia et al., 2018 and were reiterated by Mandal 

(2011), who provided a methodology to assess the fluctuation in the severity of the malaria epidemic by taking 

into account the cyclical impacts and mosquito bite frequency. 

The existence of several classes of population is a factor that the majority of mathematical models for 

disease infection cases twitch from. A population of people with malaria plague is anticipated to follow the SEIR 

model, which is intended for the treatment of malaria (Mandal et al., 2011). The goal of mathematical models of 

malaria sickness, which are industrialized from a variety of angles and include the interaction between humans 

and mosquitoes in the model of malaria, is to eradicate the disease. Even in the worst-case scenario, it is expected 

that efforts to eradicate the disease will result in fewer deaths and illnesses overall than would occur if no action 

were taken (WHO, 2014). Consequently, anti-malarial drug fight occurs when impulsively arising mutants with 
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abridged drug vulnerability are provided with advantage to survive by the use of the anti-malarial. The frugal use 

of new anti-malarial drugs has been suggested to diminish the discerning pressure of parasite (Mackinnon, 2005). 

Alternatively, Mandal et al. (2011) argue that population, rather than individual-level interventions like many 

first-line therapies, such as the distribution of a real vaccine or insecticide-treated bed nets (ITNs), could prevent 

the outbreak of drug resistance. 

The SEIR-SEI mathematical model guided Rwanda's malaria control efforts, providing guidance to 

policymakers as they developed a plan to lower infection rates and rein in the disease (Osman & Adu, 2017; Cai 

et al., 2019). Furthermore, WHO (2019) notes that abolition of any disease is a determined aimed to achieve for 

smallpox and sanctioned disease marks for extermination. 

Abongi (2016) used the conventional Susceptible-Exposed-Infectious-Recovered (SEIR) human models 

and the Susceptible-Exposed-Infectious (SEI) vector mosquito models in Kenyan malaria models for assessing 

the influence of interferences in perfect controls. Also, WHO (2019) endorsed defensive treatment for the greatest 

at-risk malaria group such as expectant women have not been included in the study in control theory options in 

Kenya. According to DOMC (2010), there is no existing optimal control model for malaria interferences in Busia 

County, Kenya due to the country's diverse transmission zones. There is currently no optimal control model for 

four control variables in Busia County, Kenya that takes into account the IPTp malaria invasion research (WHO, 

2014). This implies that the mathematical modelling of the host-vector model with SIRSp in human population is 

crucial towards reducing the spread of malaria in Busia County, Kenya and appropriate awareness of such scientific 

tools is vital to avert the menace caused by the deadly disease. 

 

Ⅲ. Methodology 
Model Development 

Two populations are in play here; the human population in Busia County and the mosquito population 

in Busia County, where each of the populations has the tendency to influence the presence of malaria in the 

ecosystem. The interaction and migrations between the subpopulations are shown in the model description of 

figure (3.1). The directional arrows indicate migration from a subpopulation to another, the dashed non-directional 

lines indicate interactions without migration (clearly, human population cannot migrate into the mosquito 

subpopulation and vice versa). The human subpopulations are represented in the blue boxes while the mosquito 

subpopulations are represented in the red boxes. 

 

 
Figure 3.1: Model Description 

 

The human population is divided into four subpopulations; the susceptible human subpopulation 𝑆ℎ, the 

infected human subpopulation 𝐼ℎ , the recovered human subpopulation 𝑅ℎ and the susceptible with plasmodium 

parasite human subpopulation Sp . The mosquito is subdivided into the infectious mosquito subpopulation 𝐼𝑚 and 

the susceptible mosquito subpopulation 𝑆𝑚. The susceptible human subpopulation gets infected when there is an 

interaction with an infected mosquito with the force of infection 
𝛼𝐼𝑚𝑆ℎ
𝑁

 

where 𝑁 is the total human population, 𝛼 is the proportion of interaction that led to infection. The 

susceptible mosquitoes become infectious by interacting with the malaria-infected human subpopulation with the 

rate of infection 
𝛽𝐼ℎ𝑆𝑚
𝑀

, 
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where 𝛽 is the proportion of interaction that led to infection and 𝑀 is the population of mosquitoes. The 

rate of influx into the susceptible human subpopulation and susceptible mosquito subpopulation are Λℎ and Λ𝑚 

respectively. An infected human recover from malaria at the rate 𝑟 and it is assumed that a recovered human 

migrates to the susceptible human subpopulation at the rate 𝛾. By writing out the rate of change of each 

subpopulation, the equations governing the malaria trend in the population is the system of equations (3.1) – (3.5). 

 
𝑑𝑆ℎ
𝑑𝑡

= Λℎ + 𝛾𝑅 −
𝛼𝐼𝑚𝑆ℎ
𝑁

 (3.1) 

𝑑𝐼ℎ
𝑑𝑡

=  
𝛼𝐼𝑚𝑆ℎ
𝑁

− 𝑟𝐼ℎ + 𝑞𝑆𝑝 (3.2) 

𝑑𝑆𝑝
𝑑𝑡

=  𝑝𝑅 − 𝑞𝑆𝑝 (3.3) 

𝑑𝑅

𝑑𝑡
= 𝑟𝐼ℎ − 𝛾𝑅 − 𝑝𝑅 (3.4) 

𝑑𝑆𝑚
𝑑𝑡

= Λ𝑚 −
𝛽𝐼ℎ𝑆𝑚
𝑀

 (3.5) 

𝑑𝐼𝑚
𝑑𝑡

=
𝛽𝐼ℎ𝑆𝑚
𝑀

− 𝜇𝑚𝐼𝑚 (3.6) 

 

with the following initial conditions 

{
  
 

  
 
𝑆ℎ(0) = 𝑆ℎ

0 > 0,       

𝐼ℎ(0) = 𝐼ℎ
0 ≥ 0,          

𝑅ℎ(0) = 𝑅ℎ
0 ≥ 0,        

𝑆𝑝(0) = 𝑆𝑝,ℎ(0) ≥ 0,

𝑆𝑚(0) = 𝑆𝑚
0 > 0,       

𝐼𝑚(0) = 𝐼𝑚
0 ≥ 0.       

                                                 (3.7) 

 

The parameters are also restricted to the following conditions 

0 < Λℎ , Λ𝑚 , 𝛾, 𝛼, 𝛽, 𝑟, 𝜇𝑚, 𝑝, 𝑞 < 1,                                                (3.8) 
 

Reproduction Numbers 

The reproduction numbers are calculated by investigating the rate of change of the infectious class 

according to equations (3.2) and (3.6). Considering when a single infectious mosquito is brought into the 

susceptible human subpopulation, indicating that 𝐼𝑚 = 1 and 𝑆ℎ = 𝑁, therefore equation (3.2) becomes 
𝑑𝐼ℎ
𝑑𝑡

= 𝛼 − 𝑟 = 𝑟 (
𝛼

𝑟
− 1). 

By setting 𝑅ℎ,0 =
𝛼

𝑟
 as the reproduction number for the malaria infection in the human population, then 

𝑑𝐼ℎ
𝑑𝑡

= 𝑟(𝑅ℎ,0 − 1).                                                 (3.9) 

This shows that the infection in the human population dies out if  𝑅ℎ,0 < 1 but remains endemic if 𝑅ℎ,0 > 1. 
Similarly, when one malaria-infected human is brought into the population, where no mosquito is infectious, 

indicating that 𝐼ℎ = 1 and 𝑆𝑚 = 𝑀, then equation (3.6) becomes 
𝑑𝐼𝑚
𝑑𝑡

= 𝛽 − 𝜇𝑚 = 𝜇𝑚 (
𝛽

𝜇𝑚
− 1).                                     (3.10) 

By setting 𝑅𝑚,0 =
𝛽

𝜇𝑚
 as the reproduction numbers for the mosquitoes to get infectious, then 

𝑑𝐼𝑚
𝑑𝑡

= 𝜇𝑚(𝑅𝑚,0 − 1).                                                          (3.11) 

Hence, if  𝑅ℎ,0 < 1, then the mosquitoes do not become infectious. 

 

Numerical Solution 

The adaptive step-size method is used to solve the model equations (3.1) – (3.6). The method involves 

the adjustment of the step-size during numerical integration by taking note of the behaviour of the solution during 

each iteration. The Runge-Kutta-Fehlberg (RKF45) method is adopted in this study (see Amoo et al. (2022) and 

Montijano et al. (2024) for details). RKF45 smoothly combines Runge-Kutta of order 4 with order 5 by reducing 

the local truncation error. The problem under consideration can be written as 
𝑑

𝑑𝑡
𝑿 = 𝑭(𝑿),   𝑿0 = 𝑿(𝑡0),                                                              (3.12) 

where 𝑿 = (𝑆ℎ , 𝐼ℎ , 𝑅ℎ, 𝑆𝑚, 𝐼𝑚)
𝑇. The RKF45 algorithm for the numerically solving the problem under 

consideration is as follows; 
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STEP 1: Initialise the step-size ℎ0, time 𝑡0 and the value of the variables 𝑿0. 
STEP 2: Solve the problem with both Runge-Kutta of order 4 and of order 5. The RKF45 scheme is as follows; 

𝑲1 = ℎ𝑭(𝑡𝑛, 𝑿𝑛), 

𝑲2 = ℎ𝑭(𝑡𝑛 +
ℎ

4
, 𝑿𝑛 +

1

4
𝑲1) , 

𝑲3 = ℎ𝑭(𝑡𝑛 +
3ℎ

8
, 𝑿𝑛 +

3

32
𝑲1 +

9

32
𝑲2) , 

𝑲4 = ℎ𝑭(𝑡𝑛 +
12ℎ

13
, 𝑿𝑛 +

1932

2197
𝑲1 −

7200

2197
𝑲2 +

7296

2197
𝑲3) , 

𝑲5 = ℎ𝑭(𝑡𝑛 + ℎ, 𝑿𝑛 +
439

216
𝑲1 − 8𝑲2 +

3680

513
𝑲3 −

845

4104
𝑲3) , 

𝑲4 = ℎ𝑭(𝑡𝑛 +
ℎ

2
, 𝑿𝑛 −

8

27
𝑲1 + 2𝑲2 −

3544

2565
𝑲3 +

1859

4104
𝑲4 −

11

40
𝑲5) , 

𝑿𝑛+1
𝟓 = 𝑿𝑛

𝟓 +
25

216
𝑲1 +

1408

2565
𝑲3 +

2197

4104
𝑲4 −

1

5
𝑲5. 

𝑿𝑛+1
𝟓(∗)

= 𝑿𝑛
𝟓 +

16

135
𝑲1 +

6656

12825
𝑲3 +

28561

56430
𝑲4 −

9

50
𝑲5 +

2

55
𝑲𝟔. 

STEP 3: Estimate the local error 

𝐸 = |𝑿𝑛+1
𝟓 − 𝑿𝑛+1

𝟓(∗)|                                                         (3.13) 

STEP 4: If 𝐸 < tolerance, then 𝑋𝑛+1
5  is accepted as the solution at that time step and step-size for the next iteration 

is adjusted as 

ℎ𝑛+1 = ℎ𝑛 (
tolerance

𝐸
)

1
5

.                                       (3.14) 

Else, reject the solution and reduce ℎ𝑛 and repeat STEP 2 

STEP 5: Repeat Steps 1 – 4 until the final time is reached. 

 

Equilibrium points and stability 

Consider the critical point of the equation (3.1) – (3.6) where all equations are equated to zero so that 

Λℎ + 𝛾𝑅 −
𝛼𝐼𝑚𝑆ℎ
𝑁

= 0 (3.15) 

𝛼𝐼𝑚𝑆ℎ
𝑁

− 𝑟𝐼ℎ + 𝑞𝑆𝑝 = 0 (3.16) 

𝑝𝑅 − 𝑞𝑆𝑝 = 0 (3.17) 

𝑟𝐼ℎ − 𝛾𝑅 − 𝑝𝑅 = 0 (3.18) 

Λ𝑚 −
𝛽𝐼ℎ𝑆𝑚
𝑀

= 0 (3.19) 

𝛽𝐼ℎ𝑆𝑚
𝑀

− 𝜇𝑚𝐼𝑚 = 0 (3.20) 

 

Disease-free equilibrium 

Firstly, the disease-free equilibrium point can be found by setting 𝐼ℎ = 0 in all equations. To start with 

equation (3.19), we have 

Λ𝑚 −
𝛽 × 0 × 𝑆𝑚

𝑀
= 0   ⇒     Λ𝑚 = 0. 

Next consider equation (3.18) 

(𝑟 × 0) − (𝛾 + 𝑝)𝑅 = 0 ⇒   −(𝛾 + 𝑝)𝑅 = 0 ⇒ 𝑅 = 0. 
Set 𝑅 = 0 and 𝐼ℎ = 0 in equation (3.17) and (3.20) and we have 

(𝑝 × 0) − 𝑞𝑆𝑝 = 0 ⇒   −𝑞𝑆𝑝 = 0  ⇒   𝑆𝑝 = 0. 
𝛽 × 0 × 𝑆𝑚

𝑀
− 𝜇𝑚𝐼𝑚 = 0 ⇒    −𝜇𝑚𝐼𝑚 = 0  ⇒    𝐼𝑚 = 0. 

Equation (3.16) is automatically satisfied since 𝐼𝑚 = 𝐼ℎ = 𝑆𝑝 = 0. Substituting all the other variables into 

equation (3.15) gives 

Λℎ + (𝛾 × 0) −
𝛼 × 0 × 𝑆ℎ

𝑁
= 0  ⇒    Λℎ = 0. 

Hence, the disease-free equilibrium is therefore 

(𝑆ℎ
𝐷𝐹𝐸 , 𝐼ℎ

𝐷𝐹𝐸 , 𝑆𝑝
𝐷𝐹𝐸 , 𝑅𝐷𝐹𝐸 , 𝑆𝑚

𝐷𝐹𝐸 , 𝐼𝑚
𝐷𝐹𝐸) = (𝜉, 0,0,0, 𝜎, 0)                           (3.21) 

where Λ𝑚 = Λℎ = 0 and 𝜉, 𝜎 are arbitrary values. 
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Other equilibrium points 

However, other equilibrium points exist. We start by making 𝑅 the subject from equation (3.18), we have 

𝑅 =
𝑟

𝛾 + 𝑝
𝐼ℎ .                                                                        (3.22) 

From (3.19) and (3.20), we have 

𝑆𝑚 =
𝑀Λ𝑚
𝛽𝐼ℎ

                                                            (3.23) 

                                                                                𝑆𝑚 =
𝑀𝜇𝑚𝐼𝑚
𝛽𝐼ℎ

,                                                       (3.24) 

respectively. Hence, equating (3.23) and (3.24) implies 
𝑀Λ𝑚
𝛽𝐼ℎ

=
𝑀𝜇𝑚𝐼𝑚
𝛽𝐼ℎ

      ⇒      𝐼𝑚 =
Λ𝑚
𝜇𝑚

.                                               (3.25) 

It is easy to see from equation (3.17) that 

𝑆𝑝 =
𝑝

𝑞
𝑅 =

𝑝𝑟

𝑞(𝛾 + 𝑝)
𝐼ℎ .                                                       (3.26) 

Looking at equation (3.16), 

𝑆ℎ =
𝑁(𝑟𝐼ℎ − 𝑞𝑆𝑝)

𝛼𝐼𝑚
 

     =
𝑁𝜇𝑚
𝛼Λ𝑚

(𝑟𝐼ℎ − 𝑞𝑆𝑝), 

     =
𝑁𝜇𝑚
𝛼Λ𝑚

(𝑟𝐼ℎ −
𝑝𝑟

(𝛾 + 𝑝)
𝐼ℎ) , 

     =
𝑁𝜇𝑚𝑟

𝛼Λ𝑚
(1 −

𝑝

(𝛾 + 𝑝)
) 𝐼ℎ . 

Hence, 

𝑆ℎ =
𝑁𝜇𝑚𝑟𝛾

𝛼Λ𝑚(𝛾 + 𝑝)
𝐼ℎ .                                                           (3.27) 

Finally consider (3.15), we have 

Λℎ + 𝛾 (
𝑟

𝛾
𝐼ℎ) −

𝛼

𝑁
(
Λ𝑚
𝜇𝑚
) (

𝑟𝑁𝜇𝑚𝛾

𝛼Λ𝑚(𝛾 + 𝑝)
𝐼ℎ) = 0 

Λℎ + 𝑟𝐼ℎ −
𝑟𝛾

(𝛾 + 𝑝)
𝐼ℎ = 0. 

Λℎ + (1 −
𝛾

(𝛾 + 𝑝)
) 𝑟𝐼ℎ = 0. 

Λℎ +
𝑝𝑟

(𝛾 + 𝑝)
𝐼ℎ = 0. 

and therefore 

𝐼ℎ = −
(𝛾 + 𝑝)Λℎ

𝑝𝑟
.                                                        (3.28) 

Since all parameters are greater than zero, then the 𝐼ℎ < 0. This is not physically possible and hence we 

say there are no other equilibrium point other than the disease-free equilibrium point. 

 

Stability 

The Jacobian of the system (3.1) – (3.6) is obtained by assembling the derivatives of the right-hand side 

of the equations with respect to all the variables 𝑆ℎ , 𝐼ℎ , 𝑆𝑝, 𝑅, 𝑆𝑚 and 𝐼𝑚. The resulting matrix called the 

Jacobian is as follows; 

(

 
 
 
 
 
 
 
 
−
𝛼𝐼𝑚
𝑁

0 0 𝛾 0 −
𝛼𝑆ℎ
𝑁

𝛼𝐼𝑚
𝑁

−𝑟 𝑞 0 0
𝛼𝑆ℎ
𝑁

0 0 −𝑞 𝑝 0 0
0 𝑟 0 −𝛾 − 𝑝 0 0

0 −
𝛽𝑆𝑚
𝑀

0 0 −
𝛽𝐼ℎ
𝑀

0

0
𝛽𝑆𝑚
𝑀

0 0
𝛽𝐼ℎ
𝑀

−𝜇𝑚 )

 
 
 
 
 
 
 
 

. 

The eigenvalues of the system can be found by solving the characteristic equation 
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|

|

|
−
𝛼𝐼𝑚
𝑁

− 𝜆 0 0 𝛾 0 −
𝛼𝑆ℎ
𝑁

𝛼𝐼𝑚
𝑁

−𝑟 − 𝜆 𝑞 0 0
𝛼𝑆ℎ
𝑁

0 0 −𝑞 − 𝜆 0 0 0
0 𝑟 0 −𝛾 − 𝑝 − 𝜆 0 0

0 −
𝛽𝑆𝑚
𝑀

0 0 −
𝛽𝐼ℎ
𝑀

− 𝜆 0

0
𝛽𝑆𝑚
𝑀

0 0
𝛽𝐼ℎ
𝑀

−𝜇𝑚 − 𝜆

|

|

|

= 0. 

Evaluating the characteristic equation at the DFE by substituting 

(𝑆ℎ
𝐷𝐹𝐸, 𝐼ℎ

𝐷𝐹𝐸 , 𝑆𝑝
𝐷𝐹𝐸 , 𝑅𝐷𝐹𝐸 , 𝑆𝑚

𝐷𝐹𝐸 , 𝐼𝑚
𝐷𝐹𝐸) = (𝜉, 0,0,0, 𝜎, 0), 

gives; 

|

|

|
−𝜆 0 0 𝛾 0 −

𝛼𝜉

𝑁

0 −𝑟 − 𝜆 𝑞 0 0
𝛼𝜉

𝑁
0 0 −𝑞 − 𝜆 0 0 0
0 𝑟 0 −𝛾 − 𝑝 − 𝜆 0 0

0 −
𝛽𝜎

𝑀
0 0 −𝜆 0

0
𝛽𝜎

𝑀
0 0 0 −𝜇𝑚 − 𝜆

|

|

|

= 0. 

Evaluating the determinant along the first column gives 

−𝜆

|

|

|
−𝑟 − 𝜆 𝑞 0 0

𝛼𝜉

𝑁
0 −𝑞 − 𝜆 0 0 0
𝑟 0 −𝛾 − 𝑝 − 𝜆 0 0

−
𝛽𝜎

𝑀
0 0 −𝜆 0

𝛽𝜎

𝑀
0 0 0 −𝜇𝑚 − 𝜆

|

|

|

= 0. 

Further evaluating the determinant along the third column gives 

−𝜆(−𝛾 − 𝑝 − 𝜆)

|

|
−𝑟 − 𝜆 𝑞 0

𝛼𝜉

𝑁
0 −𝑞 − 𝜆 0 0

−
𝛽𝜎

𝑀
0 −𝜆 0

𝛽𝜎

𝑀
0 0 −𝜇𝑚 − 𝜆

|

|

= 0. 

Even further evaluation of the determinant along the third column gives 

𝜆2(−𝛾 − 𝑝 − 𝜆)
|
|
−𝑟 − 𝜆 𝑞

𝛼𝜉

𝑁
0 −𝑞 − 𝜆 0
𝛽𝜎

𝑀
0 −𝜇𝑚 − 𝜆

|
|
= 0. 

Finally, evaluate the determinant along the second row, 

𝜆2(−𝛾 − 𝑝 − 𝜆)(−𝑞 − 𝜆) |
−𝑟 − 𝜆

𝛼𝜉

𝑁
𝛽𝜎

𝑀
−𝜇𝑚 − 𝜆

| = 0. 

Which finally becomes 

𝜆2(−𝛾 − 𝑝 − 𝜆) ((𝜆 + 𝜇𝑚)(𝑟 + 𝜆) +
𝛽𝛼𝜎𝜉

𝑀𝑁
) = 0. 

⇒ 𝜆 = 0,   0,   − 𝛾 − 𝑝    and    𝜆2 + (𝑟 + 𝜇𝑚)𝜆 + 𝑟𝜇𝑚 +
𝛽𝛼𝜎𝜉

𝑀𝑁
= 0                                    (3.29) 
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Since 𝛼, 𝛽,𝑀,𝑁, 𝜎, 𝜉, 𝑝, 𝑞 > 0, then the root of 𝜆2 + (𝑟 + 𝜇𝑚)𝜆 + 𝑟𝜇𝑚 +
𝛽𝛼𝜎𝜉

𝑀𝑁
= 0 are all negative. 

Therefore, the DFE is always stable. 

 

Parameter optimisation 

Estimation of the most appropriate values for the parameters is important in the modelling of malaria 

due to the nature of the disease. Malaria is a non-communicable disease that requires two separate immiscible 

populations; hence, the next step is to estimate values for the parameters. The variable that can be easily obtained 

is the number of infected Kenyans and as such we optimise the parameters using the infected human population. 

In this case, the observed number of infected human population over a period of time is recorded in the vector 

𝒙𝟎(𝑡𝑘) while the model equations (3.1) – (3.6) is solved over the same time interval and the numerical result for 

the infected human population is stored in the vector 𝒙(𝑡𝑘, Θ) where Θ = (Λℎ , Λ𝑚 , 𝛾, 𝛼, 𝛽, 𝑟, 𝜇𝑚) is the parameter 

vector which are to be optimised. The objective function is now written as 

minimise   Θ = ∑|𝒙(𝑡𝑘, Θ) − 𝒙0(𝑡𝑘)|
2

𝑁

𝑘=1

.                                    (3.30) 

 

The parameters, as stated in equation (3.8), are bounded in the interval [0,1] and hence we set the bounds 

to the parameters as follows; 

0 < Λℎ < 1 
0 < Λ𝑚 < 1, 
0 < 𝛾 < 1, 
0 < 𝛼 < 1, 
0 < 𝛽 < 1, 
0 < 𝑟 < 1, 
0 < 𝜇𝑚 < 1. 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is used to minimise the objective function. 

BFGS is a quasi-Newton method that iteratively approximates the inverse Hessian matrix in the search for the 

optimal solution (Xue et al., 2022; Luo et al., 2022). The update rule is set by the equation 

𝐵𝑘+1 = 𝐵𝑘 +
(Δ𝑥𝑘)(Δ𝑥𝑘)

𝑇

(Δ𝑥𝑘)
𝑇(Δ𝑠𝑘)

−
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

 

where 𝐵𝑘 is the inverse Hessian matrix approximation, Δ𝑥𝑘 is the gradients change and Δ𝑠𝑘  is the change 

in the search parameter values and the search direction is 

𝑑𝑘 = −𝐵𝑘∇𝑓(𝑥𝑘). 
The “minimize” function in Python SciPy contains the BFGS method and as such is used in this study 

to find the optimal values for the optimal parameters. The optimal values of the parameters are kept fixed while 

solving the model equations (3.1) – (3.6) and varying one parameter at a time to investigate the behaviour of the 

population under various conditions. 

 

Ⅳ. Results 
Simulation 

The optimised parameters are substituted into the model equations as 

Λℎ = 1, 𝛾 = 1, 𝛼 = 1, 𝑟 = 0.39195362, Λ𝑚 = 1, 𝛽 = 1, 𝜇𝑚 = 0. 
To understand the response of each subpopulation to variation in the parameters, we say fix other 

parameters and vary one parameter. 

 

Rate of human infection (𝜶) 

The susceptible human subpopulation gets infected when there is an interaction with an infected 

mosquito. The force of infection for the susceptible human subpopulation defined as 
𝛼𝐼𝑚𝑆ℎ
𝑁

, 

is controlled by the value of 𝛼. Hence, variation in the rate of human infection is measured by the value 

of 𝛼. Figures (4.3) – (4.5) show the behaviour of the human subpopulations as the human infection rate increases. 

Figure (4.3) shows that the number of infected humans rises as the force of infection goes up. By increasing 𝛼, 

the proportion of interaction between infected mosquitoes and susceptible human also increases. Hence, more 

susceptible human gets infected and consequently leading to a rise in the infected human subpopulation, in 

agreement with the figure (4.3). The increase in the number of malaria-infected humans also raises the number of 

humans who migrate to the recovered class. Figure (4.4) shows the increase in the recovered subpopulation as 𝛼 

grows larger. Figure (4.5) shows a rise in the plasmodium-carrying human. As infected humans continue to rise, 
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there will be an accumulation of treated humans free of the symptoms, but still carry the plasmodium and as a 

result can get sick once their immunity deteriorates a little. However, the susceptible human subpopulation 

continues to drop as many humans are migrating into the infected class (see figure (4.6) 

 

 
Figure Error! No text of specified style in document..1: Infected Humans as 𝜶 increases 

 

 
Figure Error! No text of specified style in document..2: Recovered human as 𝜶 increases 

 

 
Figure Error! No text of specified style in document..3: Plasmodium carrier as 𝜶 increases 

 

Rate at which mosquitoes acquire the disease 

Anopheles mosquitoes bite on a malaria-infected human to become infectious. The force at which the 

mosquitoes become infectious due to the interaction with malaria-infected human is defined as 
𝛽𝐼ℎ𝑆𝑚
𝑀

, 
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and it is controlled by the value of 𝛽 (the proportion of interaction that leading to infection). As the 

values of 𝛽 is raised, the number of malaria-carrying mosquitoes is increased. This is well illustrated by the graph 

in figure (4.7). Increase in the number of mosquitoes that can infect human with malaria increase will definitely 

increase the number humans who get bitten by the mosquitoes and as a result increase the number humans who 

get infected with malaria. This is also illustrated by the graph of figure (4.8). The consequence of this will 

eventually be a reduction in the susceptible human subpopulation. Figure (4.9) shows the reduction in the 

susceptible human subpopulation as 𝛽 goes up. 

 

 
Figure Error! No text of specified style in document..4: Infected mosquitoes with 𝜷 

 

 
Figure Error! No text of specified style in document..5: Infected human with 𝜷 

 

 
Figure Error! No text of specified style in document..6: Susceptible human with 𝜷 
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Rate of Recovery 

Humans recover from malaria either by the ability of their immune system to fight it off or by the 

administration of anti-malarial drugs. The rate at which any human recovers (by any approach) is denoted as 𝑟. 
By increasing the rate of recovery from the malaria the number of infected humans reduces. Evidenced by the 

graph in figure (4.10), as malaria-infected humans recover faster, the number of infected humans reduce 

significantly. It can be observed that the rate of reduction in the infected human subpopulation also reduces as 𝑟 

increases (check the distance between the consecutive graphs in figure (4.10). Due to the reduction in the infected 

human subpopulation, the exposure of mosquitoes to infected humans will reduce significantly and thereby 

ensuring that the infectious mosquito subpopulation reduces as 𝑟 increases. This is typified in figure (4.11) where 

highest number of infectious mosquitoes occur at the lowest recovery rate 𝑟. Figure (4.12) shows the increase in 

the susceptible human subpopulation. This can be traced to the fact that a high percentage of recovered humans 

migrate to the susceptible class. Hence, an increase in the recovery rate 𝑟 leads to migration of more humans into 

the susceptible human subpopulation. 

 

 
Figure Error! No text of specified style in document..7: Infected humans with r. 

 

 
Figure Error! No text of specified style in document..8: Infected Mosquitoes with 𝒓. 
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Figure Error! No text of specified style in document..9: Susceptible humans with 𝒓. 

 

 
Figure Error! No text of specified style in document..10: Susceptible human as 𝜶 increases 

 

Ⅴ. Discussion 
By studying the numerical solution, the analysis showed that the number of infected humans rises while 

the susceptible human subpopulation reduces as the force of infection goes up. As the values of 𝛽 is raised, the 

number of infectious mosquitoes increases, the number infected humans increases and the susceptible human 

subpopulation drops. Increase in the rate of recovery from malaria reduces the number of infected humans, the 

infectious mosquito subpopulation reduces and the susceptible human subpopulation increases. 

 

Ⅵ. Conclusion 
The model is very crucial in preventing the spread of malaria in Busia County, Kenya by finding the 

optimal values for the optimal parameters. The optimal values of the parameters were kept fixed and solved the 

model equations by varying one parameter at a time so as to investigate the behaviour of the population under 

various conditions. To understand the behaviour of each subpopulation by varying one parameter while the others 

are fixed. 
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