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Abstract 

This article presents the numerical approximations for solve singularly perturbed parabolic convection- 

diffusion problems (SPPCDP) with discontinuous initial conditions. The scheme uses backward- Euler 

for temporal derivatives on a uniform mesh and classical upwind finite difference for spatial derivatives 

on a piecewise-uniform (Shishkin) mesh. This scheme provides almost a first-order convergence solution 

in space and time variables. The method employs an upwind finite difference operator on a piecewise-

uniform mesh to approximate the gap between the analytic function and the parabolic issue solution. 

Through comprehensive analysis, we explore the stability and accuracy of the proposed scheme, 

considering its efficacy in addressing challenges posed by singular perturbations and abrupt changes in 

the solution. The results provide valuable insights into the applicability of the approach for convection-

dominated problems with complex initial conditions, contributing to the advancement of numerical 

methods in this domain. Parameter-uniform error estimates, stability results, and bounds for the 

truncation errors are all addressed. Finally, numerical experiments are presented to validate our 

theoretical results. 

Keywords: Singularly perturbed parabolic convection-diffusion problems, Upwind finite difference 

scheme, piecewise-uniform mesh 

Subject Classifications: AMS 65M06, 65M12, 65M15. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 09-09-2023                                                                           Date of Acceptance: 19-02-2024 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. Introduction 

This article will delve into a particular type of problem called SPPCDPs,  which  exhibit  interior 

layers caused by discontinuous initial conditions [1, 16, 22]. These concerns are pertinent across various 

engineering and applied mathematical domains, including convection-dominated flows in fluid dynamics, 

quantum mechanics, elasticity, chemical reactor theory, gas porous electrodes theory, as well as heat and 

mass transfer in chemical and nuclear engineering. Our investigation is rooted in the studies conducted by 

Gracia et al. [12] and [13] in the field of numerical analysis. The paper introduces an analytical function 

that aligns with discontinuous initial conditions and solves a differential equation with constant 

coefficients. The interior layer function’s position evolves over time in the convection-diffusion problem, 

requiring tracking techniques like the Shishkin mesh. An explicit discontinuous function S(x, t) captures 

the discontinuous initial conditions-related singularity, and asymptotic expansions for the solution u(x, t) 

are constructed. Subtracting this singular function yields y(x, t) = u(x, t)− S(x, t), the solution of an 

SPCDP. In [5, 14, 15], studied singularly perturbed reaction-diffusion problems in which discontinuities 

existed in either the boundary or the initial condition. Here, we expand this approach to address a 

convection-diffusion problem with discontinuous initial conditions. This introduces a time-dependent shift 

in the position of the inter- nal layer arising from the initial condition discontinuity. These types of 

problems arise in several branches of engineering and applied mathematics, including convection-

dominated flows in fluid dynamics, quantum mechanics, elasticity, chemical reactor theory, gas porous 

electrodes theory, heat, and mass transfer in chemical and nuclear engineering, etc.[9, 10]. In [15], we 

introduce an alternative numerical algorithm that incorporates a coordinate transformation designed to 

align the mesh with the interior layer location, allowing us to handle this more general case effectively. 

The linearized Navier-Stokes equations at high Reynolds numbers, heat transport problems with large 

Péclet  numbers,  and  magneto-hydrodynamic  duct  problems  at  Hartman  numbers  are  well-known 

examples of singularly perturbed problems (SPPs) [19, 10, 9, 24]. 
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Classical numerical methods, as acknowledged in [19, 20, 24, 10], prove ineffective in 

approximating solutions of SPPs. Moreover, as ε approaches zero, standard finite difference or finite 

element schemes on uniform meshes fall short in handling singularly perturbed differential equations 

(SPDE) with continuous data. As evident from the literature cited above, most researchers aim to 

discover a numerical solution for SPPCDP. However, this paper introduces a novel approach by 

developing and evaluating parameter-uniform numerical techniques, utilizing piecewise-uniform meshes, 

specifically designed for a class of SPPCDP with discontinuous initial conditions. There- fore, developing 

parameter-uniform numerical methods is a well-established principle in the study of numerical solutions 

to SPPs. 

Several researchers, such as Clavero et al. [5, 4, 21], Kopteva [14], and Shishkin [5, 26], have 

developed algorithms for SPPCDP with uniform second-order convergence in both variables. The problem 

involves initial conditions with discontinuities, resulting in interior and boundary layers. For parabolic 

problems, the initial layer’s location evolves over time in convection-diffusion scenarios but remains fixed 

in reaction-diffusion cases. The interior layer moves along a characteristic curve related to the reduced 

problem in the considered model. Gracia and O’Riordan [13, 14, 15] have investigated the interior layer’s 

movement in convection-diffusion SPPs, while Shishkin [1, 25] studied parabolic SPPs with piecewise 

smooth initial data using finite difference grids. Gracia and O’Riordan [15, 11, 23] established a 

parameter-uniform numerical method for problems with incompatible boundary and initial data. 

Numerous authors have utilized this technique to enhance convergence order, albeit at increased 

computational complexity [17]. O’Riordan et al. [7] combined implicit Euler with the classical upwind 

finite difference operator on a piecewise uniform mesh in one dimension, achieving first-order parameter-

uniform convergence in both space and time variables. 

Academic publications show a technique achieving higher-order convergence compared to classical 

numerical schemes for singularly perturbed convection-diffusion problems using Shishkin meshes, extensively 

explored by Gracia and Clavero as evidenced by citations like [12, 24, 25, 26].  Shishkin et al. [25] 

developed parameter-uniform numerical methods for singularly perturbed parabolic problems with 

discontinuous initial condition terms, using fitted operator techniques instead of upwind finite difference 

operators. 

The focus of this study is on the development and analysis of an upwind finite difference 

scheme tailored specifically for such singularly perturbed parabolic convection-diffusion problems. The 

challenges addressed in this research are rooted in the complexity of real-world scenarios where initial 

conditions exhibit abrupt changes, a common occurrence in practical applications. The utilization of a 

piecewise-uniform grid provides a practical framework for discretizing spatial domains, offering 

adaptability to capture localized variations [3, 1]. 

By delving into the numerical intricacies of convection-dominated problems with discontinuous 

initial conditions, this research aims to contribute to the advancement of computational methods 

applicable to real-world situations. The outcomes of this study are expected to have direct implications for 

industries and research areas where accurate predictions and simulations are crucial for informed decision-

making and enhanced understanding of complex physical processes [6]. 

In this paper, we look  at  a  group  of  SPPCDPs  that  generate  solutions  with  internal  layers as 

a result of discontinuous initial conditions. Existing literature proposes various methods to address these 

issues. To gain a comprehensive understanding of these techniques, we recommend consulting  the  book  

by  Farrell  et  al.’s  [9,  10]  and  Röös  et  al.’s  work  [24].    M.  Pickett  and  G. Shishkin [26] employed 

parameter-uniform finite differences to solve singularly perturbed parabolic diffusion-convection-reaction 

problems.  For a more in-depth exploration of numerical treatments of SPPs, reference the  works cited  in 

[19,  20],  including works by  Clavero,  Miller,  and Shishkin [4, 2, 5], Farrell, Hegarty, Miller, 

O’Riordan, and Shishkin, Roos, Stynes, and Tobiska [10, 19, 20]. The article divides numerical methods 

for SPPs into two categories: fitted operator methods using exponentially fitted finite difference schemes on 

uniform meshes (Doolan et al. [18]), and fitted mesh methods using classical finite difference schemes on 

non-uniform grids (Farrell, Hegarty, Miller, O’Riordan, and Shishkin [19, 20], Roos, Stynes, and 

Tobiska [24]). 

With this motivation, our goal is to solve SPCDP with discontinuous initial conditions using first-

order finite difference schemes over piecewise-uniform mesh and to improve the accuracy of numerical 

solutions for one-dimensional SPPCDP with discontinuous initial conditions (2.1). We want to enhance 

the order of accuracy for SPPs [17] basic upwind finite difference techniques. The asymptotic expansion 

technique will be used to provide exact constraints for the continuous solution and its derivatives. We will 

also look at how this strategy can improve the order of accuracy for basic upwind finite difference 

schemes in the SPP class with discontinuous initial conditions. This method proves highly beneficial in 

approximating both temporal and spatial derivatives. We can enhance the convergence of the implicit 
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upwind finite difference method. 

The rest of the article is organized as follows: Section  2 defines a continuous problem using a 

transformation to fix the interior layer’s position in time, providing solution decomposition, derivatives, 

and discontinuous initial conditions-defined singular function.  Section 3 introduces a numerical 

scheme in the transformed domain based on a classical implicit upwind scheme and establishes a 

parameter-uniform error bound. Section 4 we present numerical examples to validate the theoretical 

results. The paper concludes with the conclusions. 

Notations In this paper, C is a constant independent of both the singular perturbation parameter ε 

and all discretization parameters. The jump of a function ϕ at a discontinuity point d˜ is defined as: 

[ϕ](d̃ )= ϕ(d̃
+

) −ϕ(  ˜  . 

We denote the maximum norm over any region ||.||D̄ , which is defined by ||u||D̄  = maxx∈D̄ |u(x, t)|, (x, t) ∈ 

D for any function u. 

II. Statement of the solution  

In this paper, we consider the following SPPCDP with the discontinuous initial conditions defined on domain 

D: 

{

             (        (       (     (    ∈   

 (      (            [ ](             

 (      (                 

                                        (     

 
where D = Ω × (0, T], Ω = (0, 1), t ∈  (0, T], T > 0, and 0 < ε ≪ 1 is a singular perturbation parameter and 

the coefficients a(x, t), b(x, t) are smooth and satisfy a(x, t) > α > 0, b(x, t) ≥ β ≥ 0 on Ω. 

We assume that the functions   , f, ϕ satisfy the below conditions: 

   ∈     (   for some γ > 0, and  (  (   = (  (    ,  0 ≤ i ≤ 4. 

Moreover, [ϕ] denotes the jump in the function ϕ across the point of discontinuity x =   , that is, [ϕ](   ) = 

ϕ(d̃
+

) −ϕ(     . 

 In general, due to the presence of a discontinuity in the convection coefficient a(x), the solution u(x, t) of 

the problem (2.1) possesses an interior layer in the neighborhood of the point x =   . We observe that the 

initial function ϕ(x) is discontinuous at x =    and the location of this point does not depend on the singular 

perturbation parameter ε. The initial condition ϕ is smooth, but it contains the interior layer in the vicinity 

of the layer x =   . We assume that the initial data ϕ and f are sufficiently smooth functions on the domain 

 ̅ [18, 30] and that satisfy sufficient compatibility conditions at the corner points (0, 0) and (1, 0). We also 

assume that the required compatibility conditions at the transition point (   , 0) follow a similar pattern. 

Assuming sufficient smoothness and compatibility conditions on ϕ and f, the parabolic problem (2.1) 

typically has a unique solution u(x, t). This solution displays a regular boundary layer of width O(ε) at x = 

1. Additionally, in the range a(t) > α > 0, 0 ≤ t ≤ T,    ∈     (  , we presume that b and   constitute 

suitably regular layer components. Moreover, we assume adequate compatibility at the points (0, 0) and (1, 

0) to ensure u ∈     (  .  Given a > 0, the function   (t) exhibits monotonically increasing behavior. We 

assume that the convection term a(x, t) is dependent on both the time and space and so the location of the 

interior layer does not remain at the same position throughout the process. Thus, we need to track the 

movement of the layer.  

 

The discontinuity in the initial condition generates an interior layer emanating from the point (   , 0). By 

identifying the leading term 
 

 
[ ]  

   in an asymptotic expansion of the solution, we can define the 

following continuous function 
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Applications of transformation to fix interior layer 

One possible choice for the transformation X : (x, t) → (v, t) is the piecewise linear map given by 

 (     {

  

  (  
            (  

  
    

    (  
(         (    

                                        (     

which means that a(   (t), t) = a(   , t). 
Applying this mapping for numerical solutions transforms (2.1) into the problem of finding y. Consequently, 

the transformed equation takes the form: 

{
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Decomposition of the solution 

To develop sharp bounds in the error analysis, we decompose the solution y(x, t) of (2.5) into the sum of 

smooth layer component p(x, t), singular layer component q(x, t) and the interior layer component z(x, t) as 

follows: 

 (      (      (     
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   (   
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   (           ∈     (  . 

The smooth component p(x, t) is represented using an asymptotic expansion: 

 (     ∑    
     (     (    ∈  ̅. 

 

III. Numerical methods 

This section uses backward-Euler and central differences on a piecewise-uniform Shishkin mesh to approximate 

(2.3). We then discretize the SPPCDP with discontinuous initial conditions (2.1) using backward-Euler for time 

and upwind finite differences for space, achieving ε-uniform convergence.  

 

Construction of piecewise-uniform Shishkin mesh 

Assuming that N and M = O(N) are both positive integers, we consider the domain D¯ = Ω¯ × [0, T] = [0, 1] × 

[0, T]. Additionally, let N ≥ 4 be a positive even integer. We construct a piecewise uniform Shishkin mesh to 

handle the boundary layer at x = 1 in the SPPCDP with DIC (2.1).  We establish the uniform temporal mesh as 

follows: 

 ̂ 
  {                                    }, 

where M is the number of mesh elements in the time direction, and step sizes k. 

where M is the number of mesh elements in the time direction, and step sizes k. Let’s denote the spatial mesh 

widths as            and  ̂          for i = 1, . . . , N − 1. We divide the transformed spatial domain Ω 

= [0, 1] into the following four sub-intervals as follows: 

   [        ]  [       
  ]  [          ̂]  [    ̂   ]. 

For the spatial mesh with N grids, the transition points   ,   and   ̂ are defined by 
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The mesh interval point N of spatial grids are distributed into four intervals in the ratio    ⁄    ⁄    ⁄    ⁄   

and each of them is spaced uniformly. The spatial and temporal domains are denoted by  ̂ 
  and  ̂ 

  

respectively. Thus, the discretized computational domain  ̅    is defined as  ̅    =  ̂ 
  ×  ̂ 

  , ∂     
 ̅         . 

Numerical scheme in the transformed domain and classical implicit upwind finite difference scheme 

 For any discrete function   
   (      , we define the first-order forward   

  , backward   
  , central   

  

difference operators, the backward finite difference operator   
  in time which is given in appendix section. 

 

We discretize the transformed problem (2.5) and use the backward-Euler method for the time derivative and 

upwind finite difference scheme to approximate spatial derivatives. The discrete problem can be defined by the 
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following: Find Y such that 

 

{
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Theorem 3.3. 

For large enough N and M = O(N). If Y is the solution of the discrete problem (3.2) and y is the solution of 

(2.5), then the global approximation of  ̅ on  ̅    and bilinear interpolation and the error associated with the 

discrete solution        at time level    is given by satisfies 

| (        ̅    (      |   (             (      ∈                  
Proof. The detailed proof is given in [8, 28 

 

IV. Numerical Examples, Results and Discussion 

In this section, we validate theoretical results by applying a classical upwind finite difference scheme to a 

test problem. We conduct numerical tests to affirm theoretical findings, employing model problems from 

equations (2.1) and utilizing the numerical scheme outlined in equations (3.2). This section 

showcases three examples. Given that exact solutions are unknown, we evaluate the maximum point-wise 

error utilizing the double mesh principle [15, 13]. 

Let  ̅    denote the bilinear interpolation of the discrete solution Y N,M on the piecewise-uniform Shishkin 

mesh  ̅    . Then, the maximum point-wise of the double mesh principle of global difference is given by 

  
    ‖ ̅   (        ̅     (      ‖. 

Also, the ε-uniform maximum point-wise error E
N,M

 and the corresponding ε-uniform  order of 

convergence P
N,M

 is given by              
                  (

  
   

  
     ). 

For each value of N satisfying N, 2N  RN  = [32, 64, 128, 256, 512, 1024, 2048], we calculate the ε-

uniform maximum pointwise double-mesh differences E
N,M

 . In our experiments, we examine the 

parameter set ε = 2
0
, . . . , 2

−18
 . We calculate solutions Y 

N,M
 and Y 

2N,2M
  using (3.2) on piecewise-uniform 

Shishkin meshes ĒN,M  and Ē 2N,2M  with N  = M  = 64. For  all  three  test  examples,  we  provide  

plots  of  Ȳ  N,M   and  Ū  N,M   =  Ȳ  N,M  + S̄   for  ε  =  2
−12

 and N = M = 64. 

The interior layers do not interact with the boundary layer in the first two examples and in the third 

example, the interior layer does interact with the boundary layers. 

 

Classical upwind finite difference scheme 

We summarize the outcomes of our numerical experiments involving discontinuous initial data in this 

case. 

The performed MATLAB computation is based on the following: 

1. Numerical scheme. Classical upwind scheme in space and backward-Euler scheme in time. 

2. Mesh Structure: Shishkin mesh. 

In this example, the final time has been selected to be sufficiently large, so that the interior layer  interacts 

with the boundary layer. 

In the first and second examples, the interior layer does not interact with the boundary layer. But, in the 

third example, the interior layer interacts with the boundary layer. Figure 1, 2, and 3 shows computed 

approximations for Y and the numerical solution U with the scheme (3.2) and presents a surface plot of 

the numerical solution with N = M = 64 and ε = 2
−12

. Unlike Example 1, where [ϕ
′ 

](0.3) 0, here the 

influence of the initial condition on the convergence order is apparent. The order is reduced to 0.5, 

aligning with the error bound from Theorem 3.3. Tables display uniform double mesh global differences, 

demonstrating almost first-order convergence when approximating component d˜. The results presented in 

the tables provide support for the theoretical error estimates outlined in Theorem 3.3. 

 

To solve the SPPCDP in Examples 4.1, 4.2, and 4.3, we employ the upwind finite difference method 

for spatial derivatives and the implicit-Euler strategy for temporal derivatives on two meshes (E
N,M

 

and E
2N,2M

 ). Here, the data provided that by using upwind finite difference scheme table 1, 2, and 3 

presents the maximum error and order of convergence, then we obtain almost first-order convergence 
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rate. 

 

 

 
 

In the first and second examples, the interior layer does not interact with the boundary layer. But, in 

the third example, the interior layer interacts with the boundary layer. Figure 1, 2, and 3 shows computed 

approximations for Y and the numerical solution U with the scheme (3.2) and presents a surface plot of the 

numerical solution with N = M = 64 and ε =    . Unlike Example 1, where [ϕ ′ ](0.3) 0, here the influence of 

the initial condition on the convergence order is apparent. The order is reduced to 0.5, aligning with the error 

bound from Theorem 3.3. Tables display uniform double mesh global differences, demonstrating almost first-

order convergence when approximating component  ˜. The results presented in the tables provide support for 

the theoretical error estimates outlined in Theorem 3.3. 

 

V. Conclusions 

This article examines the use of first-order upwind finite difference schemes to solve 

SPPCDPs with discontinuous initial conditions (2.1). First, we use the piecewise-uniform Shishkin mesh to 

discretize the domain, and then we use implicit Euler for time discretization on a uniform mesh and an 

upwind finite difference method for spatial discretization. The results show almost first-order convergence 

for the upwind finite difference schemes. The technique achieves ε-uniform convergence with first-order 

accuracy with a modest logarithmic computational component. Tables 1, 2, and  3 offer precise 

estimates of maximum pointwise errors and convergence rates for Examples 4.1, 4.2, and 4.3, 

indicating almost first-order convergence. The numerical experiments on three test problems validate the 

theoretical findings. 
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 𝜺 
Number of Mesh Intervals (N = M ) 

32 64 128 256 512 1024 

Table 1: Maximum point-wise errors and the corresponding order of convergence for the function y 
in Example 4.1, computed using the upwind scheme. 

 

 2
−2

 1.230e-02 

1.088 

5.783e-03 

1.048 

2.798e-03 

1.024 

1.376e-03 

1.012 

6.821e-04 

1.006 3.396e-04 

2
−3

 1.673e-02 1.079e-02 5.191e-03 2.547e-03 1.262e-03 6.280e-04 
0.633 1.055 1.027 1.013 1.007  

2
−4

 2.008e-02 7.991e-03 4.652e-03 2.642e-03 1.484e-03 8.235e-04 
0.776 0.781 0.816 0.832 0.850  

2
−6

 4.800e-03 2.698e-03 1.557e-03 8.862e-04 4.976e-04 2.763e-04 
0.831 0.792 0.813 0.833 0.848  

2
−8

 2.468e-03 1.323e-03 7.255e-04 3.993e-04 2.204e-04 1.221e-04 
0.900 0.866 0.862 0.857 0.851  

2
−10

 2.875e-03 1.679e-03 9.370e-04 5.184e-04 2.860e-04 1.572e-04 
0.776 0.841 0.854 0.858 0.864  

2
−12

 2.968e-03 1.707e-03 9.543e-04 5.288e-04 2.927e-04 1.612e-04 
0.798 0.839 0.852 0.853 0.861  

2
−14

 2.992e-03 1.714e-03 9.586e-04 5.313e-04 2.943e-04 1.623e-04 
0.804 0.839 0.851 0.852 0.859  

…. … … …. …. …. … 

2
−18

 1.368e-03 4.806e-03 2.838e-04 1.632e-04 9.278e-04 5.255e-04 
0.736 0.760 0.798 0.815 0.820  

E
N,M

 2.008e-02 1.079e-02 5.191e-03 2.642e-03 1.484e-03 8.235e-04 

P
N,M 0.896 1.055 0.974 0.832 0.849  

 

 
Figure 1: Surface plot of numerical approximation to y and u with ε = 2

−12
 and N = M = 64 

for Example 4.1. 
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Number of Mesh Intervals (N = M ) 
32 64 128 256 512 1024 

 
Figure 2: Surface plot of numerical approximation to y and u with ε = 2

−12
 and N = M = 64 

for Example 4.2. 

 

 
Figure 3: Surface plot of numerical approximation to y and u with ε = 2

−12
 and N = M = 64 

for Example 4.3. 

 

Table 2: Maximum point-wise errors and the corresponding order of convergence for the function y 
in Example 4.2, computed using the upwind scheme. 

 

 2
−2

 3.590e-03 

-0.348 

4.569e-03 

0.603 

3.007e-03 

0.278 

2.481e-03 

0.550 

1.694e-03 

0.367 1.314e-03 

2
−4

 7.415e-03 3.990e-03 2.255e-03 1.247e-03 7.917e-04 6.614e-04 
0.894 0.823 0.854 0.656 0.259  

2
−6

 1.125e-02 7.051e-03 4.061e-03 2.202e-03 1.154e-03 5.894e-04 
0.674 0.796 0.883 0.933 0.969  

2
−8

 1.425e-02 9.726e-03 6.373e-03 3.921e-03 2.277e-03 1.248e-03 
0.551 0.610 0.701 0.784 0.8671  

2
−10

 1.519e-02 1.088e-02 7.564e-03 5.138e-03 3.344e-03 2.063e-03 
0.482 0.524 0.558 0.620 0.697  

2
−12

 1.543e-02 1.121e-02 7.945e-03 5.636e-03 3.911e-03 2.651e-03 
0.461 0.497 0.495 0.527 0.561  

2
−14

 1.550e-02 1.130e-02 8.048e-03 5.777e-03 4.102e-03 2.893e-03 
0.456 0.490 0.478 0.494 0.504  

…. …. …. … … …. …. 

2
−18

 1.421e-02 4.806e-02 2.838e-03 1.632e-03 9.278e-03 5.255e-03 
0.736 0.760 0.798 0.815 0.820  

 𝜺 
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Number of Mesh Intervals (N = M ) 
32 64 128 256 512 1024 

E
N,M

 1.550e-02 1.130e-02 8.048e-03 5.777e-03 4.102e-03 2.893e-03 

P
N,M 0.455 0.489 0.478 0.494 0.503  

 

Table 3: Maximum point-wise errors and the corresponding order of convergence for the function y 
in Example 4.3, computed using the upwind scheme. 

 

 2
−2

 4.847e-02 

0.963 

2.486e-02 

0.981 

1.259e-02 

0.990 

6.342e-03 

0.995 

3.182e-03 

0.997 1.594e-03 

2
−3

 7.498e-02 5.263e-02 2.677e-02 1.350e-02 6.782e-03 3.399e-03 
0.511 0.975 0.988 0.993 0.996  

2
−4

 7.313e-02 4.724e-02 2.811e-02 1.670e-02 9.579e-03 5.411e-03 
0.630 0.749 0.751 0.802 0.824  

2
−6

 6.547e-02 3.302e-02 2.205e-02 1.392e-02 1.154e-03 3.363e-03 
0.987 0.582 0.663 0.708 0.782  

2
−8

 7.872e-02 4.619e-02 2.731e-02 1.621e-02 9.305e-03 5.274e-03 
0.769 0.758 0.753 0.801 0.819  

2
−10

 6.44e-02 3.230e-03 2.141e-04 1.35e-04 3.540e-04 1.572e-04 
0.786 0.790 0.793 0.797 0.799  

2
−12

 7.996e-02 4.778e-02 2.797e-02 1.616e-02 9.278e-03 5.256e-03 
0.743 0.772 0.791 0.801 0.820  

2
−14

 8.020e-02 4.796e-02 2.821e-02 1.619e-02 9.278e-03 5.256e-03 
0.742 0.765 0.801 0.804 0.820  

… … …. … …. … … 

2
−18

 8.008e-02 4.806e-02 2.838e-02 1.632e-02 9.278e-03 5.255e-03 
0.736 0.760 0.798 0.815 0.820  

E
N,M

 8.020e-02 5.263e-02 2.838e-02 1.670e-02 9.579e-03 5.411e-03 

P
N,M 0.607 0.891 0.765 0.801 0.824  

 

 

This work can be extended to explore the extension of the numerical method to higher-order 

accuracy. Consider using higher-order finite difference schemes or other numerical techniques, such as 

spectral methods or finite element methods, to improve the overall accuracy of the solution.  Conduct a 

detailed analysis of the stability and convergence properties of the method. Provide theoretical insights 

into the behavior of the numerical solution, especially in the presence of singular perturbations and 

discontinuities.  Apply the developed numerical method to real-world problems in science and 

engineering. Consider problems with physical relevance, such as environmental transport phenomena or 

heat conduction in materials with abrupt changes. 
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