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Abstract 
Consider a transformation T which is measurable and measure pre-serving from a measure space (X, β, ν) to 

itself on the circle group of one-dimensional torus, where ν is a non-negative countably set additive function 

and T is Ergodic. We consider the multiplication theory of uni-tary operation. Our work concerns the abelian 

group of the unit circle. We first prove that the set of all eigenvalues (spectrums) of T forms a subgroup of the 

unit circle. This result implies that the absolute value of every eigenvalue is a constant, every spectrum is simple 

and 1 is a simple spectrum. We next prove that T induces a linear operator on the complex measurable functions 

f for each measurable function  f  and the transformation T , defined by Tz = cz is not weak mixing when c is not 

a root of unity. Finally we prove that T is ergodic if and only if 1 is a simple spectrum. 
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I. Introduction 
Ergodic Theory started in the beginning of the nineteenth century when Poincare deliberated on the 

solving of differential equations from a new viewpoint [1]. From this viewpoint, one focused on the set of all 

possible solutions in-lieu of the specific solution[1],[2]. This in due course lead to the idea of the phase space 

and what came to be called the qualitative theory of differential equations[1]. A further inspiration for ergodic 

theory arises from statistical mechanics where one of the central questions was the equitability of phase (space) 

means and time means for certain physical systems or ergodichypothesis[1]. The mathe-matical origination of 

ergodic theory is generally regarded to have occurred in 1931 when G.D. Birkhoff proved the pointwiseergodic 

theorem. It was at this point that ergodic theory turn a legitimate mathematical discipline[1]. 

 

II. Preliminaries 
In this section , we give some basic definitions that will be needed in the subse-quent sections. 

 

Definition 2.1 

A measure space is a non- empty set X ; together with a specified sigma algebra 

β of subsets of X[4] and a measure ν, defined on that algebra, that is the triple (X, β, ν)[12]. 

 

Remark 2.2 

(i) A sigma algebra, β is a class of sets closed under the forma-tion of complements and countable unions[12]. 

(ii) A measure ν non-negative (possibly infinite) countably additive set func-tion. 

(iii) The sets in the domain of a measure ν are called measurable subsets ofX[4]. 

 

Definition 2.3 

A single-valued function T from a measure space (X1, β1, ν1) 

into a measure space (X2, β2, ν2)[4] is said to be; 

 

(i) A measurable transformation if T 
−1

β2∈β1, that is, the inverse image T 
−1

A of each element A of β2 is an 

element of β1[11]. 
i.e. T 

−1
A⊂ β1∀A∈ β2 

Note: T 
−1

E = w : T (w)∈ E for every subset E of X2[11]. 

 

(ii) A measure preserving transformation if T is a measurable transformation such that the inverse image of 

every set has the same measure as the original set[10], that is, ν1(T 
−1

A) = ν2(A) for each A∈ β2[5]. 

(iii) An invertible transformation, if T is a measurable transformation, which is also bijective, such that the 

inverse T 
−1

 of T is a measurable transforma-tion[11]. 

(iv) An endomorphism if T is a measure preserving transformation for which the two measure spaces coincide. 
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(v) A homeomorphism if T is a measure-preserving transformation[5]. 

(vi) An automorphism if T is an invertible measure-preserving transforma-tion[2]. 

Note that; (a) A measure preserving transformation (MPT) of a measure space to itself is a quartet (X, β, ν, T ), 

where (X, β, ν) is a measure space[9] and 

(i) T is measurable means if E∈ β⇒ T 
−1

E∈ β. 

(ii) ν is T-invariantmeans ν(T 
−1

E) = ν(E)∀E∈ β[5]. 

(b) A measurable transformation T from a measure space (X1, β1, ν1) into a measure space (X2, β2, ν2) is 

invertible if there exists a measure transformation S from (X2, β2, ν2) into (X1, β1, ν1) such that both ST and 

T S are equal to the identity transformation (in their respective domains)[12]. 

 

The transformation S is uniquely determined by T , it is called the inverse of T and it is denoted by T 
−1

. 

Note: If a measure-preserving transformation is invertible its inverse is also a measure preserving 

transformation[2],[3]. 

 

Definition 2.4 

A transformation T is said to have a discrete spectrum if there is a basis f1 of L2 (i.e complete 

orthonormal set) each term of which is a proper vector of the induced unitary operator UT defined by UT f(x) = 

f(T (x)[3]. 

 

Definition 2.5 

A unitary operator U on a Hilbert space H is an isomorphism of H if U U∗ = U∗U = I[5]. Where U∗ is 

the adjoint operator of U and I is the identity operator of H i.e, U is a linear bijective map preserving the linear 

product ((Ux, Uy) = (x, y),∀x, y∈ H). It follows that U is continuous[5]. 

 

Definition 2.6 

A transformation T from a measure space (X, β, ν) into itself is said to be de-composable if T is a 

measurable transformation and there are elements A, B of 

 

β,such that 

(i) X=A∪B, (ii)B = X \ A, 

(iii) T is a measurable transformation. (iv)T 
−1

A = A and T 
−1

B = B. 

(v) ν(A) > 0 and ν(B) > 0 , where ν is a positive measure. So, T is said to be a decomposable transformation if 

T is a measurable for which there∃ two disjoint members A, B of β with T 
−1

A = A, T 
−1

B = B , such that 

A∪ B = X satisfying ν(A) > 0, ν(B) > 0 ,where ν is a positive measure. 

 

Definition 2.7 

A transformation T from a measure space (X, β, ν) into itself is said to be er-godic, If T is measurable 

and non-decomposable, that is if, 

(i) T is a measurable transformation and , 

(ii) A∈ β and T 
−1

A = A imply either ν(A) = 0 or ν(X \ A) = 0 ,where ν is a positive measure. 

 

Remark 2.8 

i. If ν(X) = 1 , then, the condition (ii) above says that A∈ β and T 
−1

A = A imply either ν(A) = 0 or ν(A) = 1. 

(ii) A∈ β and T 
−1

A = A imply B = X \ A lies in β and T 
−1

B = (T 
−1

X) \(T 
−1

(A)) = (T 
−1

X) \A = X \A = B (as T 
−1

X = X and T 
−1

A = A) , where T is measurable, so (ii) says that T is non-decomposable(as B = X \A). 

 

Remark2.9 

A measurable transformation T of a measure space to itself which is a bijective is not always an 

invertible measurable transformation because T 
−1

1 may not be a measurable transformation. For instance, Let X 

= Z , (The set of all integers and let β be the σ -algebra generated by the sets A1 = (k∈ z : k ≥ 1), An = n,∀n∈ Z, 

(n ̸= o). 

Define T : Z → Z, by T(n) = n − 1,∀n∈ Z[4]. 

Here T is bijective and measurable but its inverse T 
−1

 is not a measurable transformation[2]. 

 

III. ERGODIC TRANSFORMATIONS 
In this section , we bring in the necessary and sufficient condition for a trans-formation T to be ergodic 

and the multiplication theorem. 
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Theorem 3.1 Let T be a measurable transformation of a measure space (X, β, ν) into itself. Then, T is 

ergodic if and only if every invariant func-tionf : X → C
′
 under T , is a constant, ν -almost everywhere on X, (ν 

is apositive measure)[1][7]. 

 

Definition 3.2 

i. A measure space (X, β, ν) is said to be sigma- finite if X is the union of countably many sets of finite 

measure. 

ii. A set w∈ β is called wandering, if (T 
−n

w : n ≥ 0) are pair wise disjoint[9]. 

 

Definition 3.3 

Let (X, β, ν, T ) be a measure preserving transformation on an infinite σ –finite measure space. A 

measure preserving transformation T is called conser-vative, if every wandering set has a measure of zero[9]. 

 

Definition 3.4 

Let X be a measure space with a normalized measure m, and let β be the set of all equivalence classes 

of measurable sets, then two measurable sets E and F are called equivalent if and only if their difference E - F 

has measure zero, that is m(E - F) = 0 implies m(E) = m(F) [6]. 

 

THEOREM 3.5 (MULTIPLICATION THEOREM) 

A unitary operator U on L2 is induced by an automorphism T of β if and only if both U and U
−1

 send 

every bounded function onto a bounded function and U(f g) = (U f)(U g) whenever f and g are bounded 

functions[2]. 

 

Remark 3.7 

A probability space (X, β, ν) is a measure space for which ν(x) = 1, (ν being a positive measure on β)[8]. 

 

IV. The main results 
Definition 4.1 

A linear operator U : H → H (H a complex Hilbert space[7]) is said to be aunitary operator if: 

i. U is bijective and 

ii.∀f , g∈ H U f, U g = f, g (where < ., . > is the inner product of H)[5],[7], 

 

Theorem 4.2 

If T is an automorphism of a probability space (X, β, ν) , then 

i. T induces a linear operator, denoted UT on the complex measurable function on (X, β) , given by UT f = f ◦ T 

for each complex measurable function on (X, β) , 

ii.If f∈ L2(X, β, ν), we have that UT f belongs to L2(X, β, ν), and 

iii. UT is a unitary operator from the Hilbert space L2(X, β, ν) onto itself[5]. 

 

Proof: 

i. Let T : X → X be an automorphism of a given probability space (X, β, ν). 

If f, g are complex measurable functions on (X, β) , and if C is a complex con-stant, then f +g is a complex 

measurable function on (X, β), and cf is a complexmeasurable function on (X, β)by definition of UT , 

UT (f + g)(w) ≡ UT (f(w) + g(w)) ≡ (f + g)(T (w)) = f(T (w) + g(T (w)) = 

f ◦ T (w) + g ◦ T (w) = UTf(w) + UT g(w) , and UT (cf)(w) = (cf ◦ T )(w) = (cf)(T (w)) = cf(T (w)) = cUT f(w). 

 

So, UT is a linear operator on the vector space of all complex measurable func-tion on (X, β) . 

ii. Let f∈ L2(X, β, ν) . Then by definition, x |UT f|
2
 = X |f ◦ T |

2
dν = x f(T (x)f(T (x))dν (as T is an invertible 

measure-preserving transformation) 

 

    

2
dν which is finite. 

  

f 

belongs to L
2 

 

=  x f 2◦ f dν = x |f| 

S

o, U 

T 

(X, β, 

ν) with 

2    

||
U
T 

f
||L2(X,β,ν)

=
 ||

f
||L2(X,β,ν)

. 
    

iii. From (2) above, we have ||UT f||L2(ν) = ||f||L2(ν). so UT is 1-1 because f, g are in L
2
(ν) , then UT f = UT g⇒ UT 

(f − g) = 0L2 (ν), (as UT is linear), hence ||f − g||L2(ν) = ||UT (f − g)||L2(ν) = ||0L2(ν)|| = 0,giving f = g∈ L
2
(ν) . 
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UT is also onto, as given f∈L
2
(ν) , we have that f ◦ T 

−1∈ L
2
(X, β, ν), 

2 T 

f 

◦ 

T −1 = (f 

◦ 

T
−1

) 

◦ 

T = f . Finally, if f, g are in (with T as T 
−1

 above) and if U     

f∈ L (X, β, ν), then (UT f, UT g) = 

     

x UT f(UT g)dν =  x f(T (w))(g(T (w)))dν 

(as T is an invertible measure preserving transformation.[2],[5]) = x f ◦ gdν = (f, g) 

therefore UT is a unitary operator on f∈ L
2
(X, β, ν). 

 

Definition 4.3 

Two automorphisms T1 of a measure space (X1, β1, ν1) and T2 of a measure space (X2, β2, ν2) are said to 

be spectrally isomorphic if there exists a unitaryoperator U : L
2
(X1, β1, ν1) → (X2, β2, ν2) such that U ◦ UT1 = UT2 

◦ U, whereUT k : L
2
(Xk, βk, νk) → L

2
(Xk, βk, νk) is giving by UT k ◦ f = f ◦ Tk for every 

f ∈L
2
(Xk, βk, νk), (k = 1and2). The property p above is said to be spectrally invariant if it is 

preserved under spectral isomorphism, that is if T1 has the property p and if T1 and T2 are spectrally isomorphic, 

then T2 must have the property p. e,gErgodicity is spectrally invariant[2]. 

 

Definition 4.4 

Two endomorphisms T1 : (X1, β1, ν1) → (X1, β1, ν1)and T2 : (X2, β2, ν2) → (X2, β2, ν2) are said to be 

isomorphic transformations if there exists an invertible measure preserving transformation ϕ from a 

measurespace (X1, β1, ν1) onto the measure space (X2, β2, ν2) such that ϕ◦T1 ◦ϕ
−1

 = T2. A property p is said to be 

isomorphism invariant if when T1 has the property p and T1, T2 are isomorphic transformations, then T2 must 

have the property p[2],[5]. 

 

Remark 4.5 

Isomorphism of automorphisms implies spectral isomorphism, as ϕ ◦ T ◦ ϕ
−1

 = T2⇒ ϕ ◦ T1 = T2 ◦ ϕ⇒ U 

◦ UT1 = UT2 ◦ U where U = Uϕ and T1, T2 are automorphisms. 

 

Definition 4 .6 

A complex number α is called an eigenvalue of an automorphismT : (X, β, ν) → (X, β, ν) , if there is f∈ 

L
2
(X, β, ν) with f ̸= 0L2 (ν) such that UT f = αf,⇒ f ◦ T = αf . 

When that is the case, we say that f is the eigenvector corresponding to the eigenvalue α of T [2] [7]. 

 

Definition 4.7 

An automorphismT : (X, β, ν) → (X, β, ν) , is said to have a discrete spectrum ( or pure point spectrum) 

if the eigenvectors span L
2
(X, β, ν)[1]. 

 

Definition 4.8 

An eigenvalue of an automorphismT : (X, β, ν) → (X, β, ν)is said to be simple eigenvalue of T if∀f, g∈ 

L
2
(X, β, ν), (UT f = αf and UT g = αg)⇒ f = λg for some complex constant λ[2]. 

 

Definition 4.9 

An automorphismT : (X, β, ν) → (X, β, ν) , ( ν is a positive measure[2] on β) is said to have a 

continuous spectrum if 1 is the only eigenvalue of T and it is a simple eigenvalue of T . 

Note: Spectral Isomorphism does not imply isomorphism of two automorphisms T1 and T2. 

 

Definition 4.10 

i. A set E is said to be invariant under a transformation T if and only if T 
−1

E = E[12] ;this means that x 

belongs to E if and only if Tx belongs to E. Clearly E is invariant if and only if its characteristic function is 

invariant[7]. 

ii. A function f is said to be invariant under a transformation T if and only if f(Tx) = f(x) for all x[12] . 

 

THEOREM 4.11 

The transformation Tz = cz, z∈ G where (G, ·) is the circle group z∈C : |z| = 1, · multiplication,if then T 

is not weak mixing if c is not a root of unity. [2] 

 

Proof 

Let f(z) = z∀z∈ G. Then UT f = f ◦ T = cf , as f(T (z)) = f(cz) = cz = 

cf(z)∀z∈ G. So∀n ≥ 1, UT
n
f = c

n
f . Thus 

1 

 j
n

=0
−1

 | UT
i
 f, f − f, 1  1, f | = n 
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 1 

 

n−1 j j 

        

         

n j=0 |c | = 1 (as |c | = |c| = 1)∀n ≥ 1) as G f(z) · T dm = G 1 · f(z)dm = 0 

(with z = e
it
, t∈ [0, 2π )) because z · z = |z| = 1 

 

⇒ z = ←−
1
 and UT f, f = c

n
f, f [9] z 

 

 n 

f, f  = c 

n   n 2  n n 

= c n  G f(z)f(z)dm = c G |z| dm = c  G 1dm = c m(G) 

= c  , (m being the normalized Haar measure for G). T is ergodic transformation.  

 

THEOREM 4.12 

1) An automorphism T of a probability space (X, β, ν) is ergodic if and only if 

1 is a simple Eigenvalue of the unitary operator U : L
2
(X, β, ν) → L2(X, β, ν) [2],[5]. Proof: ―If 

part‖ Suppose that 1 is a simple eigenvalue, we are required to prove that T must be ergodic. If f∈ L
2
(X, β, ν) is 

an invariant function,then UT f ≡ f ◦ T = f , (as f is invariant by definition), which implies that f(w)λXx(w) holds 

for almost all points w of X , where λ is some complex con-stant, as both f and Xx are eigenvectors 

corresponding to the eigenvalues 1 and 1 is simple by our hypothesis so, f(w) = λ for almost all points w of X , 

as Xx(x) = 1∀x∈ X. 

∴ T is ergodic. 

―Only if part‖ 

Suppose that T is ergodic. We need to prove that 1 must be a simple eigen-value. If f and g are 

eigenvectors corresponding to the eigenvalue 1, then, UT f = f and UT g = g holds in f∈ L
2
(X, β, ν) and f = 0L2 

(ν), g = 0L2 (ν). Now,h = g
1
 ̸= 0L2 (ν) ,(as g is finite, ν almost everywhere on X and 

ν (w∈ X : g(w) = 0) = 0 and h∈ L
2
(X, β, ν). Hence UT f · h (By definition of 

UT ) =(f · h) ◦ T (By definition of multiplication ·, 

of complex functions) = 

 f  

(f ◦ T ) · (h ◦ T ) = f · h (As f ◦ T = f andh ◦ T = h ) = 

 

(ν  almost g 

everywhere by the ergodicity of T .)∴ f = λg holds (ν almost everywhere on X), where λ is some complex 

constant. So, 1 is simple. 

 

THEOREM 4 .13: 

Let an automorphism T of probability space (X, β, ν) be ergodic, then; i. The absolute value |f| of every 

eigenvalue f is constant ν− a.e. ii. Every eigenvalue 

is simple[2]. Proof: Since T is ergodic and UT is unitary, each eigenvalue 

2      ∈ 
C with U 

T       2  ̸ L   

(ν) 
∈ 

has an absolute value 1, as α   f = αf for some f = 0   2  

L (X, β, ν) ⇒  UT f, UT f 

| 
2= αf, αf =  αα¯ f, 2f  = |α| f, f [12] .  But 

UT f, UT f  =  f, f 2 
| 

α 

     

= 

|| 

f 

||  ̸ L 2 

(ν)[12]. 

∴ | 

α 

| 

= 1.   .So,  = 1, as f, f    = 0      

Next, if f ̸= 0L2 (ν)∈ L (X, β, ν), x is an eigenvector of UT corresponding to an eigenvalue α∈ C. 

’ , then UT f = f ◦ T = αf , hence |f|(T (x)) = |f|(x) holds for almost all points x of X as |f ◦ T | = |f|∈ L
2
(ν) 

because |α| = 1 . So by ergodicity of T , |f| is a constant, (νalmosteverywhereonXbeinganinvariantfunctionon(X 

,β, ν) 

2 To prove that every eigenvalue is simple. Let α∈ C be any eigenvalue of UT . Suppose that f and g are 

eigenvectors corresponding to the eigenvalue α. 

Then f = 0L2 (ν) and g = 0L2 (ν) with UT f = αf andUT g = αg So, UT (f ·h)f ·h (by theorem 4.12 ), 

where h = g
1
 ̸= 0L2 (ν), and so h∈ L

2
(X, β, ν). Hence 

f
g = f · h is a constant, (ν almost everywhere on X , by the 

ergodicity of T ,being an invariant function on (X, β, ν) . 

So f = λg for some complex constant λ. 

∴α is simple. 

 

THEOREM 4.14: 

Let an automorphism T of the probability space (X, β, ν) be ergodic,then the set of all eigenvalues forms a 

subgroup of the unit circle group G = (z∈ C
′
 : |z| = 1)[1], [2]. 

 

Proof: Let E be the set of all eigenvalues α of UT . 
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Then , 1∈ E as 1 is always an eigenvalue of UT for any automorphism T of the probability space (X, β, ν) . 

So is a non-empty, subset of the circle group G = (z∈ C
′
 : |z | = 1) under mul-tiplication of complex 

numbers. Let δ and σ be any points of E . Then we have that UT f = δf for some f ̸= 0L2 (ν)∈ L
2
(X, β, ν), and UT 

g = σgforsomeg ̸= 0L2 ()∈ L
2
(X, β, ν). So UT (f ·h)◦T = (f ·h)◦T [9] = (h·f)◦T = (h◦T )·(f ◦T ), where h = g

1
 ̸= 0L2 

(ν), h∈ L
2
(X, β, ν) . 

UT
f
g = σ

−1
(h · (δf)) = δσ

−1
(h · f) = δσ

−1f
g . Hence δσ

−1∈ E as 
f
g ̸= 0L2 (ν) and 

f
g∈ L

2
(X, β, ν). 

∴ E is a subgroup of the circle (G, ·). 
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