Geometric Patterns \& Contour Plots (Series 1)

Rajiv Kumar
Department of Mathematics, D. J. College, Baraut; UP India

Abstract

In this article, I studied the contour plot of some functions. Here I used Wolfram alpha for computing contour plots for these functions. Finally, I have posed some nice Geometric patterns or designs for interior or exterior wall decorations.

Key Words Contour Plot, Geometric Pattern

I. Introduction

Geometry is the field of mathematics that studies the figures and underlying spaces. Contour plot is a plot of equipotential curves. As per desired the region between contours can be shaded and colored to indicate their magnitude. It is a plane section of the $3-\mathrm{D}$ graph of the two variable functions $f(x, y)$. That is, it is a plane structure. Sometimes, it is known as a topographic map [1], [2], [3], and [4]. In this proposed work we have created some nice designs and patterns by using cropping, gluing, and some other geometrical features of plane figures.

Contour Plot of $\sin \left(7 x^{3} y+1\right) \cos \left(7 y^{3} \mathbf{x}+3\right)$ Figure- 1 represented the contour plot of the function defined as in $\left(7 x^{3} y+1\right) \cos \left(7 \mathrm{y}^{3} \mathrm{x}+3\right), \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 1

Design via Contour Plot of $\sin \left(7 x^{3} y+1\right) \cos \left(7 y^{3} x+3\right)$ - Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 1.1 (Multi color pattern)

Figure- 1.2 (Black gray color pattern)

Figure- 1.3 (2-Multi color pattern)
Contour Plot of $\boldsymbol{\operatorname { s i n }}\left(\mathbf{1 7} \boldsymbol{x}^{3} y+1\right) \boldsymbol{\operatorname { c o s }}\left(\mathbf{1 7} \mathbf{y}^{\mathbf{3}} \mathbf{x}+\mathbf{3}\right)$ Figure 2 represented the contour plot of the function defined as $\sin \left(17 x^{3} y+1\right) \cos \left(17 \mathrm{y}^{3} \mathrm{x}+3\right), \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 2

Design via Contour Plot of $\sin \left(17 x^{3} y+1\right) \cos \left(17 y^{3} x+3\right)$ - Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 2.1 (Green Yellow color pattern)

Figure- 2.2 (Black gray color pattern)

Figure- 2.3 (Multi color pattern)

Contour Plot of $\ln \left|\sin \left(7 \boldsymbol{x}^{3} \boldsymbol{y}+\mathbf{1}\right) \boldsymbol{\operatorname { c o s }}\left(7 \mathbf{y}^{\mathbf{3}} \mathbf{x}+3\right)\right|$ Figure- 3 represented the contour plot of the function defined as $\mathrm{n}\left|\sin \left(7 x^{3} y+1\right) \cos \left(7 \mathrm{y}^{3} \mathrm{x}+3\right)\right|, \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 3
Design via Contour Plot of $\ln \left|\sin \left(7 x^{3} y+1\right) \cos \left(7 y^{3} x+3\right)\right|-$ Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 3.1 (Multi color pattern)

Figure- 3.2 (Multi color pattern)

Figure- 3.3 (Multi color pattern)
Contour Plot of $\ln \left|\sin \left(17 \boldsymbol{x}^{\mathbf{3}} \boldsymbol{y}+\mathbf{1}\right) \boldsymbol{\operatorname { c o s }}\left(\mathbf{1 7} \mathbf{y}^{\mathbf{3}} \mathbf{x}+\mathbf{3}\right)\right|$ Figure- 4 represented the contour plot of the function defined as $\mathrm{n}\left|\sin \left(17 x^{3} y+1\right) \cos \left(17 \mathrm{y}^{3} \mathrm{x}+3\right)\right|, \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 4
Design via Contour Plot of $\ln \left|\sin \left(17 \boldsymbol{x}^{3} y+1\right) \cos \left(17 y^{3} x+3\right)\right|-$ Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 4.1 (multi color pattern)

Figure- 4.2 (Black purple, green color pattern)

Figure- 4.3 (Black gray color pattern)
Contour Plot of $\sin \left(707 \boldsymbol{x}^{3} y+1\right) \cos \left(707 \mathbf{y}^{\mathbf{3}} \mathbf{x}+\mathbf{1}\right)$ Figure- 5 represented the contour plot of the function defined as in $\left(707 x^{3} y+1\right) \cos \left(707 \mathrm{y}^{3} \mathrm{x}+1\right), \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 5

Design via Contour Plot ofsin $\left(707 x^{3} y+1\right) \cos \left(707 y^{3} x+1\right)$ - Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 5.1

Figure- 5.2

Figure- 5.3

Contour Plot of $1 /\left(\sin \left(x^{3} y+1\right) \cos \left(\mathbf{y}^{3} \mathbf{x}+1\right)\right)$ Figure- 6 represented the contour plot of the function defined as $1 /\left(\sin \left(x^{3} y+1\right) \cos \left(\mathrm{y}^{3} \mathrm{x}+1\right)\right), \mathrm{x}, \mathrm{y} \in \mathrm{R}$; computed by the help of Wolfram Alpha.

Figure- 6
Design via Contour Plot of $1 /\left(\sin \left(\boldsymbol{x}^{3} y+1\right) \cos \left(\mathbf{y}^{\mathbf{3}} \mathbf{x}+1\right)\right)$ - Here we proposed some beautiful pattern / designs via contour plot by using cropping, gluing, some artistic modelling features.

Figure- 6.1 (Multi color pattern)

Figure- 6.2 (Black gray, white pattern)

Figure- 6.3 (2- multi color pattern)

References

[1]. Courant, \& Et Al, 1996. What Is Mathematics? An Elementary Approach To Ideas And Methods. New York: Oxford University Press. P. 344.
[2]. Hughes-Hallett, \& Et. Al., 2013. Calculus : Single And Multivariable (6 Ed.). John Wiley. ISBN 978-0470-88861-2.
[3]. Tracy, John C.,1907. Plane Surveying; A Textbook And Pocket Manual. New York: J. Wiley \& Sons, P. 337.
[4]. Https://Www.Wolframalpha.Com/Input?I2d=True\&I=Contour+Plot.

