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Abstract

The paper deala with the existence of positive solutions to the following
system of fractional boundary value problem,

D%(t) + by (D) (f,z,y) =0, 0<t <1,
D*y(t) + bat)ha(t,z,y) =0, 0<t <1, ac(2,3)

with boundary conditions,

z(0) =0, 2'(0) =0, 2'(1) — &12'(£1) = 0,
y(0) =0, ¥(0) =0, y'(1) — d29/(&2) = 0,

where D represents the o — th order R-L type differential operator.
We obtained the existence of at least three positive solutions for nonlinear
fractional boundary value problem by using Avery-Peterson fixed point
theorem.
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. INTRODUCTION

Fractional calculus is an extension of ordinary calculus since it defines derivatives and integrals for any
arbitrary real order. Fractional calculus is important for many phenomena in the real world as well as for pure
mathematics. Fractional calculus has drawn a lot of attention as a result of its numerous applications in a variety
of fields, including physics, chemistry, biophysics, control theory, capacitor theory, signal processing, population
dynamics, mechanics, and electromagnetics, among many others. Fractional differential equations are more
efficient at reflecting the dynamics of such a wide range of systems, according to recent study. [2,3,7-11,16,17]
has more details.

The focus of this paper is to deal with the positive solutions to a nonlinear
fractional boundary value problem,

Dez(t) + bi(t)hq(t, 2(t),y(t)) =0, 0<t <1, 1
Deay(t) + ba(t)ha(t, z(t),y(t)) =0, 0<t<1, 2<a<3 {
with boundary conditions,
z(0) =0, 2/(0) =0, ='(1) — §;2'(&1) =0, )
¥(0) =0, y'(0) =0, ¥'(1) — &1/ (&) =0, )
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where D represents the a-th order R-L type differential operator. There
are two arbitrary constants & < (0,1) and §; € [D._..En—l_g). The functions
b; € C((0,1):]0,00)),h; : [0,1] x [0,00) = [0,00), i = 1,2 where by (t), hy(t,0,0)
or ba(t), ha(t,0,0) does not vanish identically on (0,1).

There are still many undiscovered areas in the theory of boundary-value prob-
lems for nonlinear fractional differential equations, which makes it suitable for
future study. The motivation of our work are [5], [10] and [15].

In [5], E. R. Kaufmann and E. Mboumi used the Krasnosel'skii and Liggette-
William fixed point theorem to obtain the at least one or at least three positive
solutions of the nonlinear fractional boundary value problem,

De(z) +a(t)f(z(t) =0, 0<t<]l, l<a<2
z(0) =0, 2'(1) =0,

In [10] Nemat Nyamoradi used the Leggett-William fixed point theorem to study
the existence of positive solution to the fractional boundary value problem,

DQT{t) + al(t)fl{t!:c(ﬂ!y{t)} = 0: 0<t< 1:
Day(t) + as(t) folt,z(t),y(t)) =0, 0<t<1, 2<a<3

with boundary conditions,
2(0) = 0, /(0) = 0, 2/(1) — s’ (m) =0,
y(0) =0, ¥'(0) =0, ¥'(1) — p2v/'(m2) =0,
where D® represents the a — th order R-L type differential operator.

In [15], Saadi and Benbachir considered the following boundary value problem

Dex(t) +a(t)f(z(t) =0, 0<t<l,2<a<3
z(0)=0, 2'(0) =0, z'(1) — px'(n) = A

In order to establish various conclusions on the existence, nonexistence, and
uniqueness of positive solutions, they employved the Guo-Krasnosel'skii fixed

point theorem and Schauder’s fixed point theorem.

Motivated by the works mentioned above, our purpose in this paper is to
show the existence of positive solutions to the problem (1)-(2) by using Avery-
Peterson fixed point theorem as a main tool. Also see [13,14,18].

The remainder of the paper is divided into three parts. Introduction is
in Section 1. We review some fundamental definitions, concepts and lemmas
regarding fractional boundary value problem in Section 2, as well as we defined
a well-known fixed point theorem. In Section 3, we establish the main result and
provide necessary condition to ensure the presence of at least three solutions to

(1)-(2)-

1. Preliminaries

Definition 2.1[6]. Let n be a positive integer, and a be areal number satisfying
n—1 <a < n .The a-th R-L fractional integral of the function h € L'(R™),
denoted by I h(t), defined as

I°h(t) = ﬁfo (t — $)*~N(s)ds,

where I'(.) denoted the Euler gamma function.
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Definition 2.2[6]. Let n be a positive integer, and a be a real number sat-
isfying n — 1 <a < n .The a-th R-L fractional derivative of the function h
€ LY(R™). denoted by D, h(t), defined as

1 dr rt
D, h(t) = T o) & [0 (t —s)"~* 'h(s)ds,

where the function h(t) have absolutely continuous derivatives up to order (n —

1).

Definition 2.3. Let B be a Banach space over R. A closed nonempty
subset P of B is said to be a cone provided the following hold,

(i) pz+ny € P, p,n= 0 for all z,y € P.
(ii)zeP,—zeP = z=0

Lemma 2.4[10]. For h € L(0,1), D*I*h(t) = h(t), o > 0 holds.

Lemma 2.5[10]. The general solution to D%z(¢) = 0 with a € (n — 1,n]
and n > 1 is the function

(t) = at* 4 apt* 4 at* e, e Ri=1,2,...n
Lemma 2.6[10]. Let a > 0.Then the following equality holds for =(t):
I°D2(t) = 2(t) + ayt* ' + axt® % 4 . 4 a,t* ",
where a; € R.i=1.2,....n.

Lemma 2.7[15]. If u € C[0,1], for ¢ = 1, 2, the fractional boundary value
problem,

DG‘T(i) —I—U.(t) =0, 0<t<1, (3]
#(0) = /(1) = 0, &/(1) - 8,a’(&) = 0,
then 1 54—l 1
z(t) = /D G(t, s)u(s)ds + mfo Ghil&i, s)u(s)ds, (4)
where
R e e AR ET R R
Clts) = = ©)
I'(a) to-1(1 = )2, 0<t<s<l.
L (€70 (G- 0Ss <6<,
Ghi(&i.s) = T(a) ©

1 —9)272, 0<&<s<l
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Lemma 2.8 [10]. For all (t,s) €[0,1] x [0,1],

(1) 0 < Gui(&i,8) € 75602 (1— 9)272,G(t,5) 2 0;
(i)uG(1,5) < G(t,s) < G(1,5),(t,5) € [7,1] % [0,1],

where = n®~!, for i = 1,2, n satisfies

1
/ s(1 —5)*2b;(s)ds > 0, (7)
0
and G(1,s) = %a)S(l —5)* 2,
We now assume the system (1)-(2). It is clear that (z,y) € C?(0,1) x

C?(0,1) is the solution of the system (1)-(2) if and only if (z,y) € C[0,1] x
C'[0,1] is a solution of the following integral systems:

1
2(t) = /0 G(t, )by (s)hi (5. 2,y)ds
a—1 1
%/@ G11(n1,8)bi(s)hy(s, =, y)ds
1 .
1
v() = [ G(t.pa(s)ha(s.z.v)ds

a—1 1
%fo G12(&2, 8)ba(s)ha(s, 2, y)ds.
— 526577,

(8)

4

Definition 2.9[13]. A map & is said to be a nonnegative continuous
concave functional on a cone P of a real Banach space Bif & : P — R is
continuous and

Dtz + (1 —t)y) =t B(x) + (1 —1)D(y)
for all 2,y € P and t € [0, 1].

Similary, we say the map ¢ is a nonnegative convex functional on a cone P of a
real Banach space B if ¢ : P — R, is continuous and

Ptz + (1 —t)y) <t ¢(z) + (1 - t)6(y)
for all 2,y € P and t € [0, 1].

An operator is called completely continuous if it is continuous and maps bounded
sets into precompact sets.

We will use the following notations as introduced by Avery and peterson [1].
Let ¢ and © be nonnegative convex functionals on P, let ® be a nonnegative
continuous concave functional on P, and let ¢ be a nonnegative continuous
functional on P.Then, for positive numbers ¢, ¢, ¢3, and ¢;, we define the
following sets:

P(p,ca) ={x e P :d(x) < e}

P(p,ca) = {z € P:d(2) < eu};

P(¢,®@,c2,c4) ={z € P: 2 < B(2), ¢(z) < euls
P(6,0,8,c0,c5,¢1) = {z €P ey < (), Oz) < 3, d(z) < e}
R(), v, c1,eq) ={z € P ey < ¢(z), d(z) < eals

To establish the existence of three positive solutions of sysytem (1)-(2), we will
employ the following Avery-Peterson fixed point theorem to (1)-(2).
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Theorem 2.10.(Avery and Peterson [1]) Let P be a cone in a real Banach
space B. Let ¢ and @ be nonnegative continuous convex functionals on P, let ¢
be a nonnegative continuous concave functional on P satisfying (k) < Ey(z)
for 0 < k < 1, such that for some positive numbers M and ¢,

B(z) < ¥(z) and ||z]| < M(a)

for all = € P(¢, ca). Suppose

T :P(gc) — P, ca)
is a completely continuous operator and there exist constants ¢y, ¢z, and ¢3 with

¢y < 9 such that

(B1): {2 € P(¢,0,D,c5,65,¢4) : O(2) > c3} is nonempty and &(Tz) > e
for 2 € P(¢,0, D, e, e3,¢4);

(B2): ®(Tz) > g for = € P(¢, D, €2, ¢4) with O(Tz) > e3;
(B3): 0 ¢ R(¢,,e1,¢4) and Y(Tx) < ¢y for x € R(p, ¥, ¢1, c4) with ¥(z) = ¢4.

Then T has atleast three fixed points xy, 25,23 € P(@,cy), such that ¢(z;) <
e1,1=1,2.3, co < ®(z1), 1 < Y(22), O(22) < 2, and Y(z3) < c1.

1. Main Result

We define B = C([0,1], R) x C([0,1], R) with the norm||(z,y)| = ||z|| +
[lyl], where ||z|| = maxp<¢<q|z(t)]. Then B is a Banach space and define a
cone cone P C B by

P={(z.y) € Bra(t) 2 0,y(t) > 0, minyee: (2(t) +3(t) > p[|(z. )|}, (9)
and the operator T : B — B by

T(z,y)(t) = (A(z,y)(t), B(z,y)(1)), ¥ 0 <t <1, (10)

where

(A@)(0) = [ Clt.s)bi (6 (s,z,)ds

Jltn—l 1
+ e G .s)b hi(s.z. v)d
{1_515?_2}13 11(&1,8)bi(s)hy (s, 2, y)ds .

1
Bla.y)(t) = [ G(t.s)ba(sMha(s.z.)ds

vopa—1 1
o | Guten tehals e
2

The following notations are provided for the convenience to prove the result.
Assuming

1 a—1 1
Z; = maziep,y [f, G(t, s)bi(s)ds + (1fr;‘£?__) Iy Gui(&, s)bi(s)ds],

o ax—1

2= ity Uy Gt 9)bi(8)ds + 245 [, G1i(€i, $)bi(s)ds], i=1,2

Then 0 < 2z; < Z;, i=1,2.
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Lemma 3.2[10]. The operator T defined in (10) is completely continuons and
TP —=P.

For this entire section, we consider that 1;,i = 1,2, are two positive numhbers
iafui 1 1

satisfying rtn=1

To prove our result, we suppose that the following conditions are satisfied:

(E1) On any subinterval of (0,1}, b;(¢) do not vanish identically, and there exists

to € (0, 1) such that b;(tg) > 0 and 0 < fol bi(s)G(t, s)ds < oo,
0 < [ bi(s)Gi(t.s)ds < oo, i =1,2.

Theorem 3.3. Suppose (E1) holds. Consider that there exist nonnegative num-
bers ¢y, 62,03 and ¢4 such that 0 < ¢ < e < 3 < {n,;ﬁ;,lﬁg}g are the
constants. Assume that h;(f, r,y) satisty the following hypothesis:

(E2): hi(t,z,y) < %%—t Viel0,ll,r4+ye[0,e],i=1,2,
(E3):

(Dhi(t,z,y) > 2 Vi€ 1,z +y € [c2, F], 0r
(éi}h?(t!m: y) = Z_z Vie [?F? 1]55":_'_ ye [Cz, %]

(BE4): hi(t, =z, y) < %%—4’ Vi e0,1ll,z+y<[0,e4],i=1,2.

Then the fractional boundary wvalue problem (1)-(2) has atleast three posi-
tive solutions (x1,y1), (T2,y2),(r3,y3) € P such that [[(zi.11)]] < e1,00 <
MiTte[y 1] (T2 4+ Y2), and [[(za, yz)|| > e1, with min.ep, 1j(zs + y3) < ca.

Proof :Consider the cone P given in (9). We define a nonnnegative continuous
concave functional ¢ on P by

®(z,y) = mingep, 1 |2(t) +y(i)]-

so that ®(z,y) < ||z, y||. We consider two nonnegative continuous convex func-
tionals ¢ and © on P given by

O(z,y) = ¢(z,y) = ||z, yl|,

and a nonnegative continuous function v» on P given by

v(z,y) = ||z, Y-
Then,
U(r(z,y) = llr@ )l < Irl eyl < |7 d(z,y) =7 P(z,y), 0=r<1.
Bz, y) = mineep |2(8) +y(@0)| < |l2,y]| = ¥(2.y),
Also we find N = 1 such that ||z, y|| = ¢(z,y) < No(z,y) ¥V (z,y) € P(d, cq).
We show that the conditions of Theorem (2.10) are satisfied.
By the proof of Lemma (3.2), we can show that. T: P(¢,ca) — P, ca).

Let 2,y € P(d.ca). Then o(z,y) = ||z, y|] < ¢4 for 0 < (z,y) < ¢4 and 0
<t < 1. Then by (E4), we have

|7 (=, y)|| = mazicoa)| Az, y)(8)| + mazicp,1| Bz, y)(t)]

1
= MaTic(o,1) {/ G(t,s)bi(s)hi (s, >, y)ds +
Jo

51tq_1
(1— 51510‘72)

« flau(gl.s)bl(s)m(s.x,y)ds}
1]

Jgtcx—l

1
T, G(t.s)b ha(s,z,y)d. "
+mazion{ [ Gt o)ba(e)ha(s, 7. u)ds + s

1
* f Gha(&a, s)ba(s)ha(s, x, y)ds}
0
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61ta_1

1 ¢y /1
< .= G(t,s)by(s)ds + ——
=17 MaTie(n,1] { g (t,5)b1(s)ds 1 _51§?_2)

1
« [ entesimesis

62 tc\'— 1

1 ¢4 '
+ EZ_Q MaTie(o,1] {L G(t, s)bz(s)ds + m

1
% A Gn({z, s)bg(s)ds}

PRI D
_E.C,_l E.C4—C4 ﬂ E

< 4.

Hence, T: P(¢.e4) — P(¢, c4). The operator T: P(¢, c4) — P(¢, cq) is com-
pletely continuous by the Application of Arzela-Ascoli Theorem.

Now, we prove that the condition (B1) of Theorem (2.10) is satisfied.
The constant function (z +y) = ¢z = < € P(¢, ®,0,c2,¢3,¢4) and O(2) >

ea = (2,y) € {P(¢,D,0,00,¢3,¢4) : @(2,y) > 3} #0.
Now, we consider z,y € P(o, ©,0, 0,3, ¢4) then co < (z+4y) < ¢z fort € [n,1]

By assumption (E3)(i),
O(T'(z,y) (1)) = minepm 1 (Alz, y)(t) + Blz, y)(1))

1 g ooe—1
) 011]
> MmN, <i< { [ G(t,s)bi(s)hy(s, z,y)ds + —
TR vn (1 - é"1.5‘]_ 2)

1
X/ 011(51,5}3?1(3)1'11(8,1‘:'y)d3}

J0

1 a—1
+ mingem 1 {/ﬂ G(t,8)ba(s)ha(s, =, y)ds + %
1

X/ Glz(fﬁss}bZ(s)hZ(S!lﬁy)ds}

Jo

a—1

a1m
(1—0:1£777)

1
x /0 Gu(.fl,s}bl(s)ds} = 221.21 = cp.

1
> C—Qm-inte[n__l] {/ G(t,s)bi(s)ds +
1 n

Similarly, by (E3)(ii), we get

q 2 6211
D(T(z,y)(t)) > o, MiNen.1] {/ﬂ G(t,s)bz(s)ds + )

1
e

X / GlZ(‘fles}bQ(s)ds} =Zn=c
Jo Z2

o—1

This is for all (z,y) € P(¢, ®,0,c0,c3,c4), (T (2,y)) > ca.
Hence condition (B1) of theorem 2.10 holds.

Next assume that (z,y) € P(¢, O, co, cq) with@(T'(z,y) > ca.
Then we have,

O(T(z,y)) = mingepm,q (T(z.y)(t) =p|[T(xy)|l=pO(T(2,y)) > u cz = co,
which proves (B2) of Theorem (2.10) holds.

Clearly ¢(0,0) = 0 < ¢; implies that ¢ € R(¢,v,e1,¢4). Let(z,y) € ¢ €
R(¢, 1, 1, c4) with (z,y) = ||z, y|| < e1 then by (E2), we get
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[10].
[11].
[12].
[13].
[14].
[15].
[16].

[17].
[18].

U(T(z,y)) = mazcp ) [Alz, y)(t)| + maz,cp 1) | Bz, y)(t)]

1 oa—1
At
<maziey 4 | Gt s)by(s)ha(s, zy)ds + —2b
mazeo ) {f[) (t,s)by(s)hi(s, z.y)ds 1= 6079
1
X Gu[f;-l.S)bL{S)hl[S\i‘z'H)dS}
Jo
é‘ztﬁ—l

1
+ maziep, ] {L G(t,s)ba(s)ha(s, z,y)ds + m
L )

.t

1
/Glz[u'fz.5)52{5)1’12[3.2‘-5@!)43}
Jo

(51t"-'_l
A-a& )

1

< i-ﬂ??laﬂ’ze'o_r{f G(t,s)bi(s)ds +
L Z T lJo

1

Gll[uf'hf")bL{S)dS}

X
Jo
1 Cq 1 0‘21‘:&_1

+ —.—mazcio g G(t, 5)ba(8)ds + ————
L Z;narfe_[)_l_{- | (t,5)ba(s5)ds 0627

1

X/ G-lz[fg.S)bg{S:ldS}
Jo

C'ic +ic ¢ 1 -|—l

_-El-l JIZ-1 1 I, L

S:Cl.

Hence (B3) of Theorem (2.10) is satisfied.

Therefore, by Theorem (2.10), the fractional boundary value problem (1)-(2) has
at least three positive solutions(z1,y1 ), (22, ¥2), (23.ys) € P such that ||(z1,11)]] <
€1, 0 < Miny<e<1(T2 + y2), and ||(23,y3)|| > e1, with ming<i<i1(23 + y3) < c2.
This completes the proof of the Theorem (3.3).
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