Characterization Of The First Coefficient λ_{1} In The
 Partition Function As An Equivalent To The Riemann Hypothesis

Danilo Merlini ${ }^{1,2,3}$
Massimo Sala ${ }^{2,3}$
Nicoletta Sala ${ }^{2,3}$
${ }^{1}$ Research Center for Mathematics and Physics (CERFIM, Locarno, Switzerland)
${ }^{2}$ Institute for Scientific and Interdisciplinary Studies (ISSI, Locarno, Switzerland)
${ }^{3}$ Research Institute in Arithmetic Physics (IRFIA, Locarno, Switzerland)

Abstract

We construct a new equivalent of the Riemann Hypothesis by means of the first coefficient λ_{1} alone. Some comments are also specified for λ_{n}, at any $n>1$.
Keywords: Equivalents, Li-Keiper coefficients, Partition Function, Riemann Hypothesis.

The new equivalent

We consider the formula for the Li-Keiper coefficients λ_{n} given by $[1,2,3]$:

$$
\lambda_{n}=\sum_{\varrho}\left(1-\left(1-\frac{1}{s}\right)^{n}\right)
$$

(1)
where the sum is on all nontrivial zeros of the Zeta function, and $s=\rho_{k}+i \cdot t_{k}$.
For $\mathrm{n}=1$, we have a sum of positive terms like:(one zero \rightarrow four zeros).
(2)

We notice now that an absolute maximum in Eq.(2) is obtained (independent of the t_{k} 's) with $\rho_{\mathrm{k}}=1 / 2$ for all k 's; the above sum is given by:

$$
\lambda_{1}=\sum_{k=1}^{\infty} \frac{2}{\frac{2}{\left(\frac{1}{4}+t_{k}^{2}\right)}}
$$

(3)

We divided by 2 assuming that the zeros are simple. We also notice that if the expression for λ_{1} given by:

$$
1+\frac{\gamma}{2}-\frac{1}{2} \cdot \log (4 \cdot \pi)=0.0230957 \ldots
$$

(4)
exhausts the above sum (3), this is equivalent to the truth of the Riemann Hypothesis (RH). See [4] for general

Equivalents to the Riemann Hypothesis, and for the expression of λ_{1} in the binary system [5].
Below, as an illustration we present the plot of the term at the first zero i.e. formula (2) where $t_{1}=14.134$ (the first zero) and $\rho_{\mathrm{k}}=\mathrm{x}$ as a function of x in the range $[0,1]$.

Fig. 1 The first term in Eq.(2) as a function of $\rho_{k}=x$ in $[0,1]$ with the maximum at $x=1 / 2$.
As noticed, in the sum (Eq.(3)), we divided by 2 in order to have simplicity of the zeros in the case that $\rho_{\mathrm{k}} \rightarrow 1 / 2$ for all k .
At this point, we remark the following:
if we assume that all the zeros are simple, then the contribution of $1 / 2+$ i.t and $1 / 2-i . t$ is given by $1 /(1 / 4$ $+\mathrm{t}_{\mathrm{k}}{ }^{2}$) while for a zero outside the critical line, still by the assumption that the zeros are simple, (i.e. we have now 4 distinct zeros) the amount is given by Eq.(2) above i.e.

$$
\frac{2 \cdot \varrho_{k}}{\left(\varrho_{k}^{2}+t_{k}^{2}\right)}+\frac{2 \cdot\left(1-\varrho_{k}\right)}{\left(\left(1-\varrho_{k}\right)^{2}+t_{k}^{2}\right)}
$$

(5)
a value which is greater than $1 /\left(1 / 4+\mathrm{t}_{\mathrm{k}}^{2}\right)$ as it may be verified for all ρ_{k} in the range $(0,1)$ and for all

$$
t>\frac{\sqrt{2}}{2}=0.707 \ldots
$$

(at the value $t=\frac{\sqrt{2}}{2}$ the amount for $\rho_{\mathrm{k}}=1$, i.e. $2 /\left(1+\mathrm{t}^{2}\right)$ is equal to $1 /\left(1 / 4+\mathrm{t}^{2}\right)$.

Fig. 2 Plot of Eq.(2) for various $\rho_{k}(0.5,0.55,0.7,0.85,0.94)$ in the range $t=0.2 . .5$, (notice that for $t>\frac{\sqrt{2}}{2}$ the red curve($1 /\left(1 / 4+t^{2}\right)$ is below of any plot for any ρ_{k} in the range ($0 . .1$)).

Moreover, since it has been rigorously proven that the height of the first non-trivial zero t_{0} in the critical strip verify the inequality $t>\frac{\sqrt{2}}{2}$, for rigorous results on zero free regions (for an example, see [7]), we have the following equivalent:
The absolute minimum (with respect to the $\left(\rho_{\mathrm{k}}\right)$) for the first Li-Keiper coefficient λ_{1} (for any distribution of heights $\left(t_{k}>\frac{\sqrt{2}}{2}\right)$ is equivalent to the truth of the Riemann hypothesis.

Comments and plots for $\lambda_{n}, n>1$

The situation for $\lambda_{\mathrm{n}}, \mathrm{n}>1$ is different and is now discussed with some examples.
We consider one term in λ_{n}, i.e. one with a zero off the critical line given, following the definition Eq.(1) by:

$$
\begin{aligned}
& \Delta\left(\rho_{k}, n, t\right)=1-\left(1-\frac{1}{\left(\rho_{k}+i \cdot t\right)}\right)^{n}+1-\left(1-\frac{1}{\left(\rho_{k}-i \cdot t\right)}\right)^{n}+ \\
& \quad+1-\left(1-\frac{1}{\left(1-\rho_{k}+i \cdot t\right)}\right)^{n}+1-\left(1-\frac{1}{\left(1-\rho_{k}-i \cdot t\right)}\right)^{n}
\end{aligned}
$$

(6)
and the function $(1 / 2) \cdot \Delta\left(\rho_{\mathrm{k}}=1 / 2, \mathrm{n}, \mathrm{t}\right)$ (for a zero on the critical line, assuming that all the zeros are simple or not, in this case we divide by the multiplicity of the four zeros) and take as a first example $t=4 \cdot \pi$. The two plots
are given below at the value $\rho_{\mathrm{k}}=1$ (which as it is seen from the example on Fig. 1 is the minimum value), as a function of n. We then check that for each n,

$$
\begin{equation*}
\frac{1}{2} \cdot \Delta\left(\rho_{k}=\frac{1}{2}, n, t=4 \pi\right)>\Delta\left(\rho_{k}, n, t=4 \pi\right) \tag{7}
\end{equation*}
$$

in the intervals around each minimum of $(1 / 2) \cdot \Delta\left(\rho_{\mathrm{k}}=1 / 2, \mathrm{n}, \mathrm{t}=4 \pi\right)$, see Fig. 3, and thus the function $(1 / 2) \cdot \Delta\left(\rho_{\mathrm{k}}=1 / 2\right.$, $\mathrm{n}, \mathrm{t}=4 \pi$) is not a minimum in such (even if short) intervals of n .

Fig. 3 The functions $\frac{1}{2} \cdot \Delta\left(\rho_{k}=\frac{1}{2}, n, t=4 \pi\right)($ in red $)$ and $\Delta\left(\rho_{\mathrm{k}}=1,, \mathrm{n}, \mathrm{t}=4 \pi\right)($ in green $)$.

Fig. 4 The two functions around $n=315$ still for $t=4 \pi$.

Fig. 5 The two functions ($1 / 2$). $\Delta\left(\rho_{k}=1 / 2, n, t=12 \pi\right)$ (in red) and $\Delta\left(\rho_{k}=1, n, t=12 \pi\right)$ (in green) now at $t=12 \pi$.

Fig. 6 The two functions in the interval $\mathbf{n}=\mathbf{2 3 2} . .241$ still for $\mathbf{t}=\mathbf{1 2} \pi$.

Fig. 7 The two functions in the interval $n=465 . .483$ still for $t=12 \pi$.
Notice that increasing the value of t, as an example from $t=4 \pi$ to $t=12 \pi$, the range of the above inequality still persists and negativity increases with increasing n as illustrated above.

In conclusion, for $\mathrm{n}>1$ at a fix value of t , in some intervals of n the inequality:

$$
\begin{equation*}
\frac{1}{2} \cdot \Delta\left(\rho_{k}=\frac{1}{2}, n, t=4 \pi\right)<\Delta\left(\rho_{k}, n, t=4 \pi\right) \tag{8}
\end{equation*}
$$

is violated and a conclusion as for $\mathrm{n}=1$ cannot be established. This is in agreement with the Li criterion of positivity of $\lambda_{\mathrm{n}}, \forall \mathrm{n}$, for the truth of the Riemann Hypothesis [6].
We now decrease the value of the real part of the zero off the line ρ.

Fig. 8 The two functions for $\mathbf{t}=\mathbf{4} \pi$ the green one at $\rho=0.55$.

Fig. 9 The two functions for $\mathbf{t}=12 \pi$ the green one at $\rho=\mathbf{0 . 5 5}$.

Fig. 10 The two functions for $t=12 \pi$ the green one at $\rho=\mathbf{0 . 5 5}$ in the range $\mathbf{n}=\mathbf{4 7 3} . .474 .5$.

Fig. $11 \Delta(\rho, n, t=4 \pi)$ for $\rho=1$ (green), $\rho=0.7$ (red) $\rho=0.501$ (yellow) and $(1 / 2) \cdot \Delta(1 / 2, n, t=4 \pi)$ (blue), around $\mathrm{n}=79$.

From the above plots the message is that for all $n>1$ and any height t, the absolute minimum for λ_{n} is reached (for all $\mathrm{n}>1$) and for any $t>\frac{\sqrt{2}}{2}$ at $\rho_{\mathrm{k}}=1 / 2$. (In this case, the function (plot in red) is exactly $1 / 2$ of the function (plot in green), i.e. the disappearance of the exploding factor for $\rho_{\mathrm{k}} \neq 1 / 2, \forall \mathrm{k}$ (see Appendix)).
Finally, in the Fig. 15 we give the plot of the two function at $\rho=0.501$, at $n=90$, this time as a function of t in the range (0..23).

Fig. 12 The two function as for t in the range $t=(1 . .23) ;(1 / 2) \cdot \Delta\left(\rho_{k}=1 / 2, n=90, t\right)$ (in green), $\Delta\left(\rho_{k}=0.501, n=\right.$ 90, t) (in red).

I. Conclusion

The Riemann Hypothesis has fascinated and involved many scholars with interesting works, using different points of view [7, 8, 9, 10, 11].

In this work, the equivalent by the extreme values of the first coefficient is simple and we add that it bears some analogy with the partition function -as an example- of the 2-d Ising model in zero field solved by Onsager where, after a transformation, the zeros in $s=\sinh (2 \cdot \beta \cdot J)$ sitting on the unit circle (with some boundary conditions) becomes zeros in z sitting on the critical line $\mathrm{z}=1 / 2+\mathrm{i} \cdot \mathrm{t}$, as discussed in [12, 13].

To the best of our knowledge, the above equivalent in terms of the first Li-Keiper coefficients is new or has not been derived along the above lines and this reinforces the conjecture on the truth of the Riemann Hypothesis by means of a minimum principle.

References

[1]. Patterson, S. J. (1988). An Introduction To The Theory Of The Riemann Zeta-Function, Cambridge Studies In Advanced Mathematics, 14. Cambridge University Press, Cambridge, 1988.
[2]. Edwards, H. M. (2001). Riemann's Zeta Function. Reprint Of The 1974 Original [Academic Press, New York]. Dover Publications, Inc., Mineola, NY.
[3]. Titchmarsh, E. C. (1986). The Theory Of The Riemann Zeta-Function, Second Edition. Edited And With A Preface By D. R. HeathBrown. The Clarendon Press, Oxford University Press, New York.
[4]. Broughan, K. (2017). Equivalents Of The Riemann Hypothesis: Volume 2, Analytic Equivalents (Vol. 165). Cambridge University Press.
[5]. Matiyasevich, Y. (2014). Yet Another Representation For The Sum Of Reciprocals Of The Nontrivial Zeros Of The Riemann Zeta-

Function. Arxiv Preprint Arxiv:1410.7036

[6]. Li, X. J. (1997). The Positivity Of A Sequence Of Numbers And The Riemann Hypothesis. Journal Of Number Theory, 65(2), 325333.
[7]. Albeverio, S., \& Cebulla, C. (2007). Müntz Formula And Zero Free Regions For The Riemann Zeta Function. Bulletin Des Sciences Mathematiques, 131(1), 12-38.
[8]. Conrey, J. B. (2003). The Riemann Hypothesis. Notices Of The AMS, 50(3), 341-353.
[9]. Bombieri, E. (2000). Problems Of The Millennium: The Riemann Hypothesis. Clay Mathematics Institute.
[10]. Merlini, D., Rusconi, L., Sala, M., \& Sala, N. (2022). Two Infinite Sums With The Li-Keiper Coefficients (At $S=2$ And At $S=$ 1/2). Quest Journals. Journal Of Research In Applied Mathematics, 8(4), 1-10.
[11]. Merlini, D., Rusconi, L., Sala, M., \& Sala, N. (2023). Spin $1 / 2$ Model In Statistical Mechanics And Relation To A Truncation Of The Riemann Ξ Function In The Riemann Hypothesis. International Journal Of Physics And Applications, 2766, 2748.
[12]. Merlini, D., \& Rusconi, L. (2018). Small Ferromagnetic Spin Systems And Polynomial Truncations Of The Riemann ξ Function. Chaos And Complexity Letters, 12(2), 101-122.
[13]. Merlini, D., Sala, M., \& Sala, N. (2019). A Possible Non Negative Lower Bound On The Li-Keiper Coefficients (A High Temperature Limit For The Riemann Ξ Function). IOSR Journal Of Mathematics (IOSR-JM), 15(6), 01-16.

Appendix

An explicit Formula for the Li-Keiper coefficients is obtained from the Definition: if a zero is off the critical line, then, there are at least four zero and

$$
\begin{gathered}
\Delta(\rho, n, t)=\left(1-\frac{1}{(\rho+i \cdot t)}\right)^{n}+\left(1-\frac{1}{(\rho-i \cdot t)}\right)^{n}+\left(1-\frac{1}{(1-\rho+i \cdot t)}\right)^{n}+\left(1-\frac{1}{(1-\rho-i \cdot t)}\right)^{n}= \\
=4-2 \cdot\left[\left(\frac{\rho^{2}+t^{2}}{(1-\rho)^{2}+t^{2}}\right)^{\frac{n}{2}}+\left(\frac{(1-\rho)^{2}+t^{2}}{\rho^{2}+t^{2}}\right)^{\frac{n}{2}}\right] \cdot \cos (a)
\end{gathered}
$$

Where: $a=\left[n \cdot\left(\arctan \left(\frac{t}{\rho}\right)+\arctan \left(\frac{t}{1-\rho}\right)+\alpha\right)\right]$ with $\alpha=\mathrm{p} \cdot \pi$ and some p .

The exploding factor, (the factor of $2 \cdot \cos (\mathrm{a})$) reduces to the nonexploding factor equal to 2 only for $\rho=1 / 2$ and 4 $4 \cdot \cos (a) \geq 0$ in agreement with the Li criterion of positivity of λ_{n} (for every n). But for $n=1$ alone, the above equivalent is given by an absolute minimum of λ_{1} alone.
(Returning now at the case $\mathrm{n}=1$, if we apply the measure $(\mathrm{dt} / 2 \cdot \pi) /\left(1 / 4+\mathrm{t}^{2}\right)$ to the first term in z of the function $\log (\xi(\mathrm{z})) \sim-\lambda_{1} \cdot|\mathrm{z}|$ i.e. with $\mathrm{z}=1-1 /(1+\mathrm{i} \cdot \mathrm{t})$ and if we define (here $\mathrm{z} \sim 0$ (i.e. $\left.\mathrm{S} \sim 1\right)$ means
$|z|=|1-1 / s|=|1-1(1+i \cdot t)|=t / 1+i \cdot t \mid$ instead of $z=0$, then

$$
\begin{aligned}
& \beta \cdot f_{1}=-\lambda_{1} \cdot\left(\frac{1}{2 \pi}\right) \cdot \int_{R} d t \cdot \frac{1}{\left(\frac{1}{4}\right)+t^{2}} \cdot\left|1-\frac{1}{1+i \cdot t}\right|= \\
& =-\lambda_{1} \cdot\left(\frac{1}{2 \pi}\right) \cdot \int_{R} d t \cdot \frac{1}{\left(\frac{1}{4}\right)+t^{2}} \cdot \frac{|t|}{\left[\left(1+t^{2}\right]^{1 / 2}\right.} \sim-\lambda_{1} \cdot 0.4840513 . .
\end{aligned}
$$

This first contribution $\beta \cdot \mathrm{f}_{1}$ to $\beta \cdot \mathrm{f}$ (as given above) is also a maximum amount since λ_{1} is a minimum. The same computations for the quadratic terms and the cubic terms i.e.:
$\left(-\frac{1}{2}\right) \cdot \lambda_{2} \cdot z^{2} \quad$ and for the cubic: $\left(-\frac{1}{3}\right) \cdot \lambda_{3} \cdot z^{3}$ give:

$$
\begin{gathered}
\beta \cdot f_{2}=-\lambda_{2} \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2 \pi}\right) \cdot \int_{R} d t \cdot \frac{1}{\left(\frac{1}{4}\right)+t^{2}} \cdot\left|1-\frac{1}{1+i \cdot t}\right|^{2}=-\lambda_{2} \cdot\left(\frac{1}{2}\right) \cdot \\
\beta \cdot f_{3}=-\lambda_{3} \cdot\left(\frac{1}{3}\right) \cdot(0.26306275) \ldots
\end{gathered}
$$

