The Second Largest Number Of Maximal Independent Sets In Quasi-Unicyclic Graphs

Shang-Wei Chen ${ }^{1}$, Jenq-Jong Lin ${ }^{2, *}$, Min-Jen Jou ${ }^{3}$
${ }^{1,2}$ (Department of Finance, Ling-Tung University, Taiwan)
${ }^{3}$ (Department of Information Technology, Ling-Tung University, Taiwan)

Abstract

Let $G=(V, E)$ be a simple undirected graph. An independent set is a subset S of $V(G)$ such that no two vertices in S are adjacent. A maximal independent set is an independent set that is not a proper subset of any other independent set. A graph is said to be unicyclic if it contains exactly one cycle. A graph G with vertex set $V(G)$ is called a quasi-unicyclic graph, if there exists a vertex $x \in V(G)$ such that $G-x$ is a unicyclic graph. In this paper, we determine the second largest number of maximal independent sets among all quasi-unicyclic graphs. We also characterize those extremal graphs achieving these values.

Keywords: independent set; maximal independent sets; unicyclic graphs; quasi-unicyclic graphs.
Date of Submission: 25-05-2023
Date of Acceptance: 05-06-2023

I. Introduction

Let $G=(V, E)$ be a simple undirected graph. An independent set is a subset S of $V(G)$ such that no two vertices in S are adjacent. A maximal independent set is an independent set that is not a proper subset of any other independent set. The cardinality of the set of all maximal independent sets of a graph G is denoted by $\operatorname{mi}(G)$.

The problem of determining the largest number of $m i(G)$ in a general graph of order n and those graphs achieving the largest number was proposed by Erdös and Moser, and solved by Moon and Moser [11]. It was then studied for various families of graphs, including trees, forests, (connected) graphs with at most one cycle, (connected) triangle-free graphs, (k-)connected graphs, bipartite graphs; for a survey see [5]. Jin and Li [2] investigated the second largest number of $m i(G)$ among all graphs of order n; Jou and Lin [6] further explored the same problem for trees and forests.

A graph is said to be unicyclic if it contains exactly one cycle. Jou and Chang [4] settled the largest number of $\operatorname{mi}(G)$ for the family of (connected) unicyclic graphs. Lin and Jou [9] investigated the second and the third largest numbers of $m i(G)$ among all (connected) unicyclic graphs of order n. A graph G with vertex set $V(G)$ is called a quasi-unicyclic graph, if there exists a vertex $x \in V(G)$ such that $G-x$ is a unicyclic graph. The concept of quasi-unicyclic graphs was first introduced in [1]. The problem of determining the largest numbers of $m i(G)$ among all connected quasi-unicyclic graphs and quasi-unicyclic graphs of order n was solved by Lin and Jou [10]. The purpose of this paper is to determine the second largest number of maximal independent sets among all quasi-unicyclic graphs. Additionally, extremal graphs achieving these values are also given.

II. Preliminary

In this section, we describe some notations and preliminary results. Let $G=(V, E)$ be a graph. The neighborhood $N_{G}(v)$ of a vertex $v \in V(G)$ is the set of vertices adjacent to v in G and the closed neighborhood $N_{G}[v]$ is $v \cup N_{G}(v)$. The degree of v is the cardinality of $N_{G}(v)$, denoted by $\operatorname{deg}_{G}(v)$. For a set $A \subseteq V(G)$, the deletion of A from G is the graph $G-A$ obtained from G by removing all vertices in A and their incident edges. Two graphs G_{1} and G_{2} are disjoint if $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$. The union of two disjoint graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with vertex set $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) . n G$ is the short notation for the union of n copies of disjoint graphs isomorphic to G. Denote by C_{n} a cycle with n vertices, P_{n} a path with n vertices and K_{n} a complete graph with n vertices. Throughout this paper, for simplicity, let $r=$ $\sqrt{2}$.

Lemma 2.1. ([3]) For any vertex x in a graph $G, \operatorname{mi}(G) \leq m i(G-x)+m i\left(G-N_{G}[x]\right)$.
Lemma 2.2. ([8]) For positive integers m, p, q, s and t, if $f(x)=p r^{x}+q r^{m-x}$ for $s \leq x \leq t$, then $f(x)$ has a maximum value at $x=s$ or t.

Theorem 2.3. ([4]) If G is a connected unicyclic graph of order $n \geq 3$, then $\operatorname{mi}(G) \leq u_{1}(n)$, where

$$
u_{1}(n)=\left\{\begin{array}{cc}
r^{n-1}+1, & \text { if } n \geq 3 \text { is odd } \\
3 r^{n-4}, & \text { if } n \geq 4 \text { is even } .
\end{array}\right.
$$

Furthermore, $\operatorname{mi}(G)=u_{1}(n)$ if and only if $G \in U_{1}(n)$, where $U_{1}(n)$ is shown in Figure 1 .

Figure 1: The graph $U_{1}(n)$
Theorem 2.4. ([4]) If G is a graph with at most one cycle of order $n \geq 2$, then $m i(G) \leq h_{1}^{\prime}(n)$, where

$$
h_{1}^{\prime}(n)=\left\{\begin{array}{cc}
3 r^{n-3}, & \text { if } n \geq 3 \text { is odd } \\
r^{n}, & \text { if } n \geq 2 \text { is even } .
\end{array}\right.
$$

Furthermore, $\operatorname{mi}(G)=h_{1}^{\prime}(n)$ if and only if $G \in H_{1}^{\prime}(n)$, where $H_{1}^{\prime}(n)$ is shown in Figure 2.

Figure 2: The graph $H_{1}^{\prime}(n)$
Theorem 2.5. ([7]) If G is a graph with at most one cycle of order $n \geq 4$ having $G \notin H_{1}^{\prime}(n)$,
then $\operatorname{mi}(G) \leq h_{2}^{\prime}(n)$, where

$$
h_{2}^{\prime}(n)= \begin{cases}5 r^{n-5}, & \text { if } n \geq 5 \text { is odd } \\ 3 r^{n-4}, & \text { if } n \geq 4 \text { is even } .\end{cases}
$$

Furthermore, $\operatorname{mi}(G)=h_{2}^{\prime}(n)$ if and only if $G \in H_{2}^{\prime}(n)$, where $H_{2}^{\prime}(n)$ is shown in Figure 3.

Figure 3: The graph $H_{2}^{\prime}(n)$

Theorem 2.6. ([10]) If G is a quasi-unicyclic graph of order $n \geq 5$, then $m i(G) \leq q u_{1}^{\prime}(n)$, where

$$
q u_{1}^{\prime}(n)= \begin{cases}3 r^{n-3}, & \text { if } n \geq 5 \text { is odd } \\ 9 r^{n-6}, & \text { if } n \geq 6 \text { is even } .\end{cases}
$$

Furthermore, $\operatorname{mi}(G)=q u_{1}^{\prime}(n)$ if and only if $G \in Q U_{1}^{\prime}(n)$, where $Q U_{1}^{\prime}(n)$ is shown in Figure 4.

Figure 4: The graph $Q U_{1}^{\prime}(n)$

III. Main results

In this section, we determine the second largest values of $m i(G)$ among all quasi-unicyclic graphs of order $n \geq 5$, respectively. Moreover, the extremal graphs achieving these values are also determined.

Theorem 3.1. If Q is a quasi-unicyclic graph of even order $n \geq 6$ with $Q \neq Q U^{\prime}{ }_{1 e}(n)$, then $\operatorname{mi}(Q) \leq$ r^{n}. Furthermore, the equality holds if and only if $Q \in\left\{K_{4} \cup \frac{n-4}{2} P_{2}, Q U_{1 e}(6) \cup \frac{n-6}{2} P_{2}\right\}$.

Proof. It is straightforward to check that $m i\left(K_{4} \cup \frac{n-4}{2} P_{2}\right)=m i\left(Q U_{1 e}(6) \cup \frac{n-6}{2} P_{2}\right)=r^{n}$. Suppose that Q is a unicyclic graph, by Lemma 2.5, we obtain that $m i(Q) \leq m i\left(H^{\prime}{ }_{2 e_{1}}(n)\right)=m i\left(H^{\prime}{ }_{2 e_{2}}(n)\right)=3 r^{n-4}<$ r^{n}. Then we assume that Q contains at least two cycles. Let x be the vertex such that $Q-x$ is a unicyclic graph. Then x is on some cycle of Q, it follows that $\operatorname{deg}_{Q}(x) \geq 2$. We distinguish two cases to consider.

Case 1: $\operatorname{deg}_{Q}(x)=2$. By Lemmas 2.1 and 2.4, we have that $m i(Q-x) \geq m i(Q)-m i\left(Q-N_{Q}[x]\right) \geq r^{n}-$ $3 r^{(n-3)-3}=5 r^{(n-1)-5}$. It follows that $Q-x \in\left\{H_{1 o}^{\prime}(n-1), H^{\prime}{ }_{2 o_{1}}(n-1), H^{\prime}{ }_{2 o_{2}}(n-1)\right\}$. Note that $Q \neq$ $Q U_{1 e}^{\prime}(n)$.

Subcase 1.1. $Q-x=H^{\prime}{ }_{1 o}(n-1)$, then $Q=D \cup \frac{n-4}{2} P_{2}$, where D is the graph obtained from a K_{4} by removing an arbitrary edge. According to a straightforward computation, we have that $m i(Q)=3 r^{n-4}<r^{n}$.

Subcase 1.2. $Q-x \in\left\{H^{\prime}{ }_{2 o_{1}}(n-1), H^{\prime}{ }_{2 o_{2}}(n-1)\right\}$, by Lemmas 2.1, 2.4 and 2.5, we have that $m i(Q) \leq$ $m i(Q-x)+m i\left(Q-N_{Q}[x]\right) \leq 5 r^{(n-1)-5}+3 r^{(n-3)-3}=r^{n}$. Furthermore, the equalities holding imply that $Q-x=H^{\prime}{ }_{2 o_{1}}(n-1)$ and $Q-N_{Q}[x]=H^{\prime}{ }_{1 o}(n-3)$. In conclusion, $Q=Q U_{1 e}(6) \cup \frac{n-6}{2} P_{2}$.
Case 2: $\operatorname{deg}_{Q}(x) \geq 3$. By Lemmas 2.1, 2.4 and 2.6, we have that $m i(Q) \leq m i(Q-x)+m i\left(Q-N_{Q}[x]\right) \leq$ $3 r^{(n-1)-3}+\max \left\{r^{n-4}, 3 r^{(n-5)-3}\right\}=r^{n}$. Furthermore, the equalities holding imply that $Q-x=H_{1 o}^{\prime}(n-1)$ and $Q-N_{Q}[x]=F_{1 e}(n-4)$. In conclusion, $Q=K_{4} \cup \frac{n-4}{2} P_{2}$ or $Q U_{1 e}(6) \cup \frac{n-6}{2} P_{2}$.

Theorem 3.2. If Q is a quasi-unicyclic graph of odd order $n \geq 5$ having $Q \neq H_{1 o}^{\prime}(n)$, then $\operatorname{mi}(Q) \leq$ $5 r^{n-5}$. Furthermore, the equality holds if and only if $Q \in\left\{H^{\prime}{ }_{2 o_{1}}(n), H^{\prime}{ }_{2 o_{2}}(n), W \cup \frac{n-5}{2} P_{2}\right\}$, where W is a bow, that is, two triangles C_{3} having one common vertex.

Proof. It is straightforward to check that $m i\left(H^{\prime}{ }_{2 o_{1}}(n)\right)=m i\left(H^{\prime}{ }_{2 o_{2}}(n)\right)=m i\left(W \cup \frac{n-5}{2} P_{2}\right)=5 r^{n-5}$. Suppose that Q is a unicyclic graph, by Lemma 2.3, it follows that $Q \in\left\{H^{\prime}{ }_{2 o_{1}}(n), H^{\prime}{ }_{2 o_{2}}(n)\right\}$. Now we assume that Q contains at least two cycles. Let x be the vertex such that $Q-x$ is a unicyclic graph. Then x is on some cycle of Q and $Q-x \neq F_{1 e}(n)$, it follows that $\operatorname{deg}_{Q}(x) \geq 2$ and $m i(Q-x) \leq 3 r^{(n-1)-4}$. By Lemmas 2.1, 2.4 and 2.5 , we have that

$$
\operatorname{mi}(Q) \leq \operatorname{mi}(Q-x)+\operatorname{mi}\left(Q-N_{Q}[x]\right) \leq 3 r^{(n-1)-4}+\max \left\{r^{n-3}, 3 r^{(n-4)-3}\right\}=3 r^{n-5}+r^{n-3}=
$$

$5 r^{n-5}$.
Furthermore, the equalities holding imply that $\operatorname{deg}_{Q}(x)=2, Q-x=H^{\prime}{ }_{2 e_{1}}(n-1)$ and $Q-N_{Q}[x]=F_{1 e}(n-$ 3). There are two possibilities for graph Q. See Figure 5. The number inside the brackets in figure indicates the largest number of maximal independent sets of the corresponding graphs. According to a straightforward
computation and Lemma 2.2, we have that $m i(Q) \leq 5 r^{n-5}$. Also, the equality holding imply that $b=0$ in $Q^{(1)}$. Hence we obtain that $Q=W \cup \frac{n-5}{2} P_{2}$, where W is a bow, that is, two triangles C_{3} having one common vertex.

$Q^{(1)},\left[5 r^{n-5}\right]$

Figure 5. The possible graphs $Q^{(1)}$ and $Q^{(2)}$

References

[1]. X. Geng, S. Li, and S.K. Simic, On the spectral radius of quasi-k-cyclic graphs, Linear Algebra Appl. 433 (2010) 1561-1572.
[2]. Z. Jin, X. Li, Graphs with the second largest number of maximal independent sets, Discrete Math. 308 (2008) 5864-5870.
[3]. M. J. Jou, The number of maximal independent sets in graphs, Master Thesis, Department of Mathematics, National Central University, Taiwan, (1991).
[4]. M. J. Jou and G. J. Chang, Maximal independent sets in graphs with at most one cycle, Dicrete Appl. Math. 79 (1997) 67-73.
[5]. M. J. Jou and G. J. Chang, Survey on conunting maximal independent sets, in: Proceedings of the Second Asian Mathematical Conference, S. Tangmance and E. Schulz eds., World Scientific, Singapore, (1995) 265-275.
[6]. M. J. Jou and J. J. Lin, Trees with the second largest number of maximal independent sets, Discrete Math. 309 (2009) 4469-4474.
[7]. M. J. Jou, The second largest number of maximal independent sets in connected graphs with at most one cycle, J. Comb. Optim. 24 (2012) 192-201.
[8]. J. J. Lin and M. J. Jou, Trees with the fourth largest number of maximal independent sets, Ars Combin. 109 (2013) 299-308
[9]. J. J. Lin and M. J. Jou, The numbers of maximal independent sets in connected unicyclic graphs, Utilitas Math. 101 (2016), 215-225.
[10]. J. J. Lin and M. J. Jou, The largest number of maximal independent sets in quasi-unicyclic graphs, Utilitas Math. 111 (2019), 85-93.
[11]. J. W. Moon and L. Moser, On cliques in graphs, Israel J. Math. 3 (1965) 23-28.

