
IOSR Journal of Mathematics (IOSR-JM) 

e-ISSN: 2278-5728, p-ISSN: 2319-765X. Volume 19, Issue 1 Ser. I (Jan. – Feb. 2023), PP 52-60 

www.iosrjournals.org 

 

DOI: 10.9790/5728-1901015260                                 www.iosrjournals.org                                             52 | Page 

On The Greek Rho of Asian Option and Best of Asset 

Option, A Malliavin Calculus Approach 
 

Akeju Adeyemi. O
1
, Ayoola. E. O

2
 

Department of Mathematics, University of Ibadan, Nigeria. 

Corresponding Author: Akeju Adeyemi.O 

 

Abstract: 
In this paper, we consider the greek rho of Asian option and Best of asset option. These type of options are 

options with more than one underlying assets. The greeks which are represented by the sensitivities are obtained 

with Malliavin calculus. We use the Malliavin calculus to derive weight function of the Greeks for both Asian 

and Best of Asset Options. The weight function were used to derive expressions for the Greeks which represent 

the sensitivities of the two options with respect to the interest rate of the underlying process. 
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I. Introduction 
 We examine in this work, the Greek rho of an Asian option (AO) and Best of Asset option (BOA). 

Greeks are generally the price sensitivity of a derivative to a change in an underlying parameter. Rho measures 

an options sensitivity to changes in the risk free rate of interest. It represent the amount of money an option will 

gain or lose with a 1% change in interest rate. Interest rate impact on the option value can impact the cost of 

carrying the position over time. The fact that this impact is on the cost, interest rate changes impact longer term 

options than the options with short term. As the price of the stock increases over time towards the expiration, the 

higher the sensitivity to changes in interest rate and the higher the absolute Rho values. Rho is positive for a 

long call (right to buy) and it increase with the price of the stock. Rho is negative for long put (right to sell) and 

it approaches zero as the stock prices increases. Rho is positive for short put (obligation to buy) and negative for 

short call (obligation to sell). Asian option and Best of Asset option are option types whose payoff are defined 

with respect to multiple underlying assets. To determine the Rho sensitivity, we use the principles of Malliavin 

calculus, a calculus which involves the integration by part technique of the stochastic of variation as discussed 

in [7, 11]. We use this calculus to derive the expectation of the payoff function of both Asian and Best of Asset 

Options. The study of Malliavin calculus and the applications in finance involve the use of integration by part 

formula to give a mathematical approach to the computation of the price sensitivities [3, 4, 8].The Malliavin 

calculus is applicable when dealing with random variables with unknown density functions and when there are 

options with non-smooth payoffs [11]. 

Options are derivative contracts which gives its holder the right to buy or to sell a given number of 

derivatives (which can be a financial stock, a currency etc.) at a given and agreed price and at a particular time τ 

< T which are fixed in the contract. 

Let Sτrepresent the market price of the underlying asset at any time τ, Cτ represent the Call option value 

at time τ and Pτ  represent the Put option value at any time τ, where τ satisfies the condition 0 ≤ τ ≤ T, then the 

values of the Call and Put option can be defined respectively at the time of exercise as 

 

CT = max ((ST −K), 0) 

and  

PT = max ((K−ST), 0) 

Due to the variations associated with the underlying assets, investors have opportunity to several investment 

plans and strategies. One important feature of this type of option contract is the possibility to customize it to 

meet up with the investor risk tolerance. This will enable the investor to achieve a set desired profit. 

Asian option considered the average of the assets underlying the contract over a certain period of time to 

determine if there is profit when compared with the strike price. 

Best of Asset option is the type that considered the maximum of the underlying assets prices in comparison with 

the strike price to determine the profitability of the contract. 

The dynamics of pricing and hedging of options is such that at maturity time, a flow of the payoff h (ST) can be 

guaranteed by the option owner. Then the option owner can purchase with the premium, a portfolio that has 
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equal flow of price with one of the options. This process is known as the portfolio hedging or dynamic strategy 

of buying and selling of options [5, 11]. 

We shall denote, at any time τ the value of the hedged portfolio simply as ⋎τ, 0 ≤ τ ≤ T and the possibility of not 

having arbitrage is such that 

P (⋎T >0) >0 ⋎0 = 0 

This means that, the possibility that the portfolio will always be replicated is positive at every time τ. 

 

II. Methods 
In this section, we provide some definitions and important concepts with respect to the theory of Malliavin 

calculus and its properties. 

Definition 2.1 (Stochastic Process): A random variable X is said to be a stochastic process if X = {X (t), t ∈ [0, 

T]} is a collection of random variables on a common probability space indexed by parameter t ∈T ⊂R+. 

Stochastic process can be formulated as a function that is, X:T × Ω −→R, such that X (t,.) is A- measurable for 

each t ∈T where Ω is a non-empty set, A is σ-algebra generated by Ω. X (t) can be written also as Xt. 

Definition 2.2 (Filtered Probability Space):Let Ω be a non-empty set, let A, a σ-algebra, be the collection of 

subsets of Ω, let P be a probability measure, if there exists (At,t ∈ [0,T]), a family of sub σ-algebra of A, then 

(Ω, A, P, At) is referred to as a filtered probability space. 

 

Remark: 

1. A sequence (fn, n ∈N) of σ-algebra is called filtration if fn  ⊂fn−1  ⊂ A for every n ∈N where 

A⊂ Ω 

2. (Ft, t ∈ [0,T]) is called filtration of the probability space (Ω,F,P) if and only if 

(i) F0 contains all subsets of any P- null set. 

(ii) Fs is a sub σ-algebra of Ft, t ≥ s 

Filtration can always be used with the property P (Ω) which represents the power set of Ω such that; 

(1) F0 = (∅, Ω): At the beginning, there is no information. 

(2) FT = P (Ω): At the end, there is full information. 

(3) F0 ⊂F1 ⊂... ⊂FT: The information available increases over time. 

Filtration are used to model the flow of information over time. At time t, we can decide if the event A ∈ Ft has 

occurred or not. 

Definition 2.3 (Adapted Processes): A sequence (Xt, t ≥ 0) of random variables is said to be adapted to a 

filtration Ft if for each t, the random variable (Xt is Ft- measurable, that is, for any t, Ft contains all the 

information about Xt. 

Definition 2.4 (Black Scholes Financial Market): A market, in the Black-Scholes sense is made up of an asset 

that is risk free A and an asset that is risky S. The price of the risk free asset A is expected to satisfy the 

differential equation 

   dA (τ) = rA (τ) dτ A (0) = 1     (2.1) 

which is an ordinary differential equation, provided the interest rate r is constant. The solution of equation (2.1) 

is A (τ) = Aτ = e
rτ
, which satisfies the price process of the risk free asset. If the interest rate r is a non-negative 

adapted process, then r will satisfy the condition that 

 
The price of the asset that is risky S is expected to have the dynamics 

 dS(τ) = κS(τ)dτ + σS(τ)dB(τ) S(0) = S0, S(τ) = Sτ, τ ∈ [0,T]  (2.2) 

 

 

 

a stochastic differential equation (SDE). 

The solutionS of the stochastic differential equation (2.2) shown in [6], 

satisfy the price process of the risky asset S where S0 represents the initial price of the asset S, κ is the drift term 

which is taken to be constant, σ represents the volatility of the process which is also known as the noise term, 

this volatility is also assumed to be constant, B = {B(τ),τ ∈ [0,T]} represents a Brownian motion defined on a 

filtered probability space (Ω, A, P, Aτ), and {Aτ, τ ∈ [0,T]} is a filtration, that is the flow of available 

information determined by the Brownian motion. 

Definition 2.5: Suppose that an investor holds a Call option with strike price K. If τ = 0 is the time when the Call 

option was acquired and S (τ) is the price of the underlying asset at time τ, then, if at maturity time T, 

S (T) > K, then, the option is in the money. 

S (T) = K, then, the option is at the money. 
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S (T) < K, then, the option is out of the money. 

Malliavin Calculus for Gaussian Processes 

Malliavin, [7] studied the solution of stochastic differential equation generated by Brownian noise by 

considering the regularity of the law of functional of the Brownian motion. The calculus can be adapted to both 

finite dimensional space, like R
n   

and infinite dimensional space like the Wiener space. Malliavin Calculus helps 

us to obtain the derivative of the functions of Brownian motion and this derivative is referred to as Malliavin 

derivative. 

Definition 2.6: B: = (Bτ) τ∈ [0, T] is a standard Brownian motion with respect to a right continuous filtration (Aτ) τ∈ 

[0, T] if 

(i) B is adapted with respect to (Aτ)τ∈[0,T] 

(ii) B0 = 0 

(iii) B possess a stationary Independent increments 

(iv) B is a Gaussian process that has Variance τ ∀ 0 ≤ τ0 ≤ τ1 ≤···≤ τn ≤ T, the random vector (Bτ1 − Bτ0,...,Bτn 

− Bτn−1) is Centered Gaussian with Covariance matrix Diag(τ1 −τ0,...,τn −τn−1).The Brownian motion can be 

described in the setting of isonormal Gaussian process. 

 

Let R: = L
2 

([0, T], dτ) be the space of deterministic functions h: [0, τ] →R such that ∞. then define

 where the stochastic integral is defined in the sense of Ito calculus. By linearity 

of the Ito stochastic integral, we have that 

 

- Z is a linear map 

-  

- Z is Centered Gaussian random variable with variance  

- . 

Suppose the Hilbert space H be represented as L
2 

(B, B, µ) such that (B, B) represent a measurable space and a σ 

- finite measure µ, i.e. the Gaussian process Z is characterized by the family of random variables {Z(A), A ∈B, 

µ(A) <∞} where Z(A) = Z(1A). We assume Z(A) to be an L
2
(Ω, A, P)-valued measure on the measurable space 

(B, B), which takes independent values on any family of disjoint subsets of B such that any random variable 

W(A) has the distribution N (0,µ(A)), where µ(A) <∞. 

This measure is also known as the white noise. To this end, for any function h ∈L
2 

(B), we shall dene the 

stochastic integral W (h) as W (h) =  ℎ𝑑𝑊
𝐵

 

It is possible to expressed as multiple stochastic integral the nth Wiener chaos Hn with respect to W. Next, the 

multiple stochastic integral In(f) is dene in what follows; 

For a function f ∈L
2 

(B
k
, B

k
, µ

k
), k ≥ 1, a stochastic integral is defined where B

k 
is the k-times product of space B 

and µ
k 
is the corresponding product measure. Let Ek represent the set of simple functions defined as 

 
such that whenever we have any two equal indices, the coefficient ai1...ik vanish and the set  A1...Ak  are pairwise 

disjoint in 𝛽0. So, 

 
defined the multiple-stochastic integral.  

Remarks: 

The multiple stochastic integral Ik (f) has the following properties 

(1) Ik (f) is linear.  

(2) Let 

 
be the symmetrization of f and σ run over all permutation of {1,..., k} then  

 

Skorohod Integral 

Consider a Hilbert space H defined as H = L
2 

(D, A, κ), an L
2
-space where κ is dene on a measurable space (D, 

A). Here, the square integrable processes are members of Domδ ⊂L
2 

(T × Ω), and the Skorohod stochastic 

integral is represented as δ (v) of the process v = v (τ, ϖ) τ ∈T, ϖ ∈ Ω. 

Definition 2.7: Suppose the stochastic process u (τ) is measurable such that τ ∈ [0, T]. If 
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then v (τ) is Aτ - measurable.   

Suppose for fn (·, τ) ∈𝐿 ([0, T]
n
), we defined Wiener Ito expansion as 

 
then, 

 

δ (v) :=  𝑣(𝜏)𝑑𝐵(𝑡) 
𝑇

0
:=  𝐼𝑛+1

∞
𝑛=0 (𝑓 𝑛) 

defined the Skorohod integral of u where the symmetrization of 𝑓𝑛 (., t) is represented as 𝑓 𝑛  

More so, 

 
We can write fn,τ (τ1...τn) = fn(τ1,...,τn,τ) since fn(·,τ) = fn,τ(.) is a function of the parameter τ. 

Since the function fn is symmetric with respect to its first n variables then fn and the symmetrization  are 

function of n+1 variables τ1,...,τn,τ where the symmetrization with τn+1 = τ is given by, 

 
where the sum is taken over those permutations σ of the indices (1..... , n+1) which inter- change the last 

component with one of the others and leave the rest in place. 

 

The Skorohod integral satisfies the following properties 

 It is a linear operator. 

  Its expectation is zero i.e.  E[δ(v)] =0  

 If v, Xv ∈Dom(δ) then, 

 
provided the random variable X is an Aτ-measurable. 

 

Theorem 2.8 [4]: 

The Ito-integral can be extended to the Skorohod integral i.e. 

Let  where the stochastic process v (τ), τ ∈ [0, T] is a 𝒜𝑡- adapted measurable 

process then 

 
i.e. v is Skorohod integrable and it is also Ito integrable. 

 

Proposition (2.9) [8]:  

If in L
2 
(Ω), the series 

 
converges and v can be expanded as 

 
where v ∈L

2
(T × Ω), then v is in Domδ.  

Theorem 2.10: [2] 

Suppose v (τ, ϖ) is a Aτ-adapted stochastic process and 

  where τ ∈ [0, T] then 

 
and v ∈Dom (δ) 

 

Let A represent a σ-field generated by B and let (A,A,P) represent a complete probability space on which a 

Hilbert space R is defined, then we can represent by Z = {Z(r),r ∈R} an Isonormal Gaussian process. 
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The space of infinitely continuously differentiable functions f: R
n 

→R is represented as Cb
∞
(R

n
) (respectively

) such that its partial derivatives are bounded (respectively have polynomial growth). We represent also

 as the space of all infinitely continuously differentiable functions with compact support. 

Definition 2.11: Let Y: Ω →R and let denote by S the set of smooth random variables, if there is a function y in 

Cp
∞ 

(R
n
), then 

Y = y (Z (r1)...Z (rn))      (2.3) 

for n ≥ 1 and elements r1,...,rn ∈R 

 

Integration by Part Formula 

We use the Malliavin derivative and the relation between it and Skorohod integral to obtain an integration by 

part formula which play an important role in the calculation of the Greeks. The integration by part formula is 

very essential in the study of smoothness of random variables and the absolutely continuity of the Malliavin 

calculus. This is fundamental in application to finance. 

 

Proposition 2.12: [8] 

Let r ∈R and let Y be a smooth random variable of the form (2.3), then 

E [⟨DY, r⟩R] = E[Y Z(r)] 

the integration by parts formula holds. 

Proposition 2.13: [10] Suppose that (DYn)n converges to η, a stochastic process in 𝐿𝑃(Ω ,R) such that the 

sequence {Yn}n∈N of smooth random variables, n →∞ converges to zero in L
p
(Ω). Then, η = 0 and D, the 

Malliavin derivative operator is closable from 𝐿𝑃(Ω) to 𝐿𝑃(Ω, R) 

 

 

Proposition 2.14 [8]:Suppose ϱ: R
m 

→R is a function, where x, y ∈R
m 

and k >0 then ϱ is a Lipchitz function 

provided |ϱ(x) − ϱ(y)| ≤ k∥x − y∥. Given a random vector Y = (Y 
′
,...,Y 

m
) such that Y 

i ∈D
1,P

, P ≥ 1, if there exist 

random variables X
i  

and ϱ(Y ) which belongs to D
1,P 

then 

 

In addition, if Y is an absolutely continuous random variable on R
m
then . Note that since ϱ is 

Lipchitz,  exist for almost all x in R
m
. 

Proposition 2.15 [8, 9, 10]: Given the function y ∈  𝐶1 with bounded derivative and two random variables Y and 

X where Y∈ 𝔻1,2. Suppose X𝜐(< 𝐷𝑌, 𝜐 >𝑅)−1 ∈ Dom𝛿 and < 𝐷𝑌, 𝜐 >𝑅≠ 0 where 𝜈 is an ℝ -valued random 

variable, then,  

  E [𝑦 ′(Y) X] = E[ f (Y) H(Y, X)]    2.4 

and 

  H(Y, X) = 𝛿(𝑋 𝜐(< 𝐷𝑌, 𝜐 >𝑅)−1)    2.5 

Remarks: In application to finance,  

1) If 𝜐 = DY, then E [𝑦′(Y) X] = E[y(Y) 𝛿(
𝑋𝐷𝑌

||𝐷𝑌 ||𝑅
2 )]   2.6 

2) Suppose X(< 𝐷𝑌, 𝜐 >𝑅)−1)∈ 𝔻1,2.such that X𝜐(< 𝐷𝑌, 𝜐 >𝑅)−1) ∈ 𝔻1,2 ⊂ 𝐷𝑜𝑚𝛿, then 𝜐 is a deterministic 

process 

 

III. Result 
We consider here, an Asian option which is an example of a Rainbow Option. Rainbow options are 

options or derivatives exposed to two or more sources of uncertainty. Apart from it been a path dependent 

option [3], that is, options whose value depend both on the price of the underlying assets, and the path that the 

asset took during some part or all the life of the option, it is also an option contract linked to the performance of 

two or more underlying assets. They can speculate on the best performer in the group or minimum performance 

of all the underlying assets at any time. Each underlying may be called a color so the sum of all these factors 

makes up a rainbow. Rainbow options sometimes has many moving paths and all the underlying assets in a 

rainbow option have to move in the right direction so that the investment will pay o eventually. The measure of 

the sensitivity analysis refers to the greeks, and the greeks are quantities that describe the sensitivities of 

financial derivative with respect to the different parameters of the model. They are vital tools in risk 

management and hedging. 

Definition 3.1: Suppose V (t) represent the pay o process of some derivatives where t ∈ [0, T], then 
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. This measures the changes in V in terms of the prevailing rate of interest r. 

The computation of the greeks are sometime difficult to express in closed form depending on the pay-off 

function, and so, they require numerical methods for their computation. 

 

Malliavin calculus is suitable in calculating greeks especially when the pay-off function is strongly 

discontinuous [4]. 

Greeks are the measure of changes of financial derivative with respect to its parameters. They are important 

when considering stability of the quantity under variation, which is the chosen parameter. If the price of an 

option is calculated using the measure Q as 

V = E [exp (−r (T−τ)) υ(s(τ))] 

where the pay-off function is represented as υ(x), then under the same measure as the price, the greek will be 

calculated, so that the 

Greek = E [e
−rτ 

υ ((s (t))) ∗ψ(x)] 

where ψ(x) represent the weight function called Malliavin weight. 

We consider the stochastic process S(t) defined on (Ω, A, P, Aτ), the filtered probability space where τ ∈ [0, T] 

So, if S(τ) satisfies equation 

S , 

Then 

    
𝜕𝑆𝑇

𝜕𝜅
 = 𝑆0𝑇 exp  𝜅 −  

𝜎2

2
 𝑇 +  𝜎 𝐵 𝑇  = 𝑇𝑆𝑇  

Greeks generally measure the sensitivity of the financial quantity in terms of the changes in the parameter, and 

these can be calculated using Malliavin calculus integration by part technique defined in equation (2.4) 

    E [y
′
(Y) X] = E[y(Y) δ (Xv (D

v 
Y)

−1
)] 

Theorem 3.2 (Greek Rho): [1] 

Suppose the value of the Rainbow option is represented by V: [0, T] × ℝ−→ℝ, where the dynamics of the option 

underlying asset S (τ) is given by 

dS (τ) = κs (τ) dτ + σs (τ) dB (τ) τ ∈ [0, T] 

where κ and σ are constant, B(τ) is defined on the filtered probability space (Ω, A, P, Aτ), with filtration Aτ, then 

greek rho is given by 

ρ = e
−rT 

E (υ (ST) ψ(x)) 

 

 

 

Proof 

 

 
Here, using 

υ = y, ST = Y, X = TST v = 1 

in equation (2.2) 

E (y
′
(Y) X = E(y(Y) δ(Xv(D

v 
Y )

−1
)) 

we have 

 
So 
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The weight function is 

  
For Asian options whose pay-off is described as 

 
Then      

For a best of asset call whose pay-off is described as 

υ (ST) = max(Si − [K]), i = 1,2... 

 

 

So 

 
 

3.1 Computation and Analysis 

The greeks play a major role when hedging a financial derivatives. It provides the tool for risk management 

which help investor in taking right and appropriate decisions concerning their investment. We discretize the 

investment period and express the underlying asset price in discrete form by the Euler-Maruyana method.  

Definition 3.3 [Call Option] If the holder of a certain option is given a right in the option contract to buy the 

option at a specified time τ at a fixed strike price K, such an option is known as a call option. The call option has 

a pay-off described by 

Payoff = max [(ST −K), 0] 

ST is the price of the underlying asset at the expiration date or time 

Definition 3.4 [Put Option] An option is called put if the option at a particular time τ gives the holder the right to 

sell at specified strike price K but not the obligation. The put option has a pay-off described by 

Payoff = max [(K−ST), 0] 

ST is the price of the underlying asset at the expiration date or time. 

Rho Let CE = max [(ST −K), 0] be the pay o process of an European call and suppose V (τ) represent the option 

value where τ ∈ [0, T], then the measures of changes in V in terms of rate of interest is given as 

 

 
so, 

 
Let  be the pay o process of an Asian call and suppose V (τ) represents the 

option value where τ ∈ [0, T], then the measures of changes in V in terms of rate of interest is given as 
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      Figure 1: Rho AO Graph 

      Figure 2: Rho Graph BAO  

 
Let CB = [Max(Si −K),0]1Si>Sj I ̸=j, i,j=1,2,...n be the pay-off process of Best of Assets call option and let V (τ),τ ∈ 

[0,T] be the value of the option at time τ, then the measures the sensitivity of the option with respect to changes 

in the rate of interest is given as 

 

 

 

 
so, 
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IV. Discussion 
In this section, we summarize and discuss the results obtained for the various Greeks and their 

implications to an investors 

Rho measured the effect of changes in the interest rate on the value of the option. When the interest rate 

is high, the holder of a Call is happy because the condition is favorable to him or her. This is because, the value 

of Call will increase, but this position is not favorable to the holder of a Put option. This high interest rate will 

lead to high value of rho, and this is only attainable when underlying asset value is high compare to the strike 

price. 

In figure 1, we used the following values for the computation, σ = 0.2, r = 0.01, S0 = 70, κ = 0.3, h = 

0.1, B0 = 0.5, T = 5, and K = 71. Rho is highest with value 27.23274. This value is obtained when the underlying 

asset values are respectively 82.45160, 87.94837, 93.44514, and 71.45805. The difference between these values 

and the strike price is the highest, and when this happened, the holder of a Call option is at advantage because 

the condition is favorable. 

In figure 2, we used the following values for the computation, σ = 0.2, r = 0.01, S0 = 70, κ = 0.3, h = 

0.1, B0 = 0.5, T = 5, and K = 71. Rho is highest with value 53.6837. This value is obtained when the underlying 

asset values are respectively 82.5657, 88.0701, 93.5733, 71.5569, and 77.0613. The difference between these 

values and the strike price is the highest, and when this happened, the holder of a Call option is at advantage 

because the condition is favorable. 

This is expected for a Call option because, as the underlying asset value increases, the difference 

between the underlying asset value and the strike price increases also. This is what an investor wants since this 

increment is likely to be positive. This positive difference is like making profit on the investment. 
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