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Abstract  
Dirichlet average is average given by Dirichlet. The Dirichlet average of elementary function like power 

function, exponential function etc is given by many notable mathematician, Actually, We have convert the 

elementary function into the summation form after that taking Dirichlet average of those function, using 

fractional integral and get new results. These results will be used in future by mathematician and scientist. Thus 

we have find a connection Dirichlet average of a function and fractional integral. 

 

I. INTRODUCTION 
Carlson  has defined Dirichlet average of functions which represents certain type of integral average 

with respect to Dirichlet measure. He showed that various important special functions can be derived as 

Dirichlet averages for the ordinary simple functions like𝑥𝑡 ,𝑒𝑥  etc. He has also pointed out that the hidden 

symmetry of all special functions which provided their various transformations can be obtained by averaging   

𝑥𝑛 ,𝑒𝑥  etc. Thus he established a unique process towards the unification of special functions by averaging a 

limited number of ordinary functions. Almost all known special functions and their well known properties have 

been derived by this process[1–5]. In this paper the Dirichlet average of a new Special function called as 

Generalized K4 – function has been obtained [6,7]. 

 

DEFINITIONS 

We give blew some of the definitions which are necessary in the preparation of this paper. 

 

Standard  Simplex in 𝑹𝒏, 𝒏 ≥ 𝟏 

We denote the standard simplex in 𝑅𝑛 , 𝑛 ≥ 1 by [1]. 

 

𝐸 = 𝐸𝑛 =  𝑆 𝑢1,𝑢2, …𝑢𝑛  ∶  𝑢1 ≥ 0, …𝑢𝑛 ≥ 0,  𝑢1 + 𝑢2 + ⋯ + 𝑢𝑛 ≤ 1 (2.1.1) 

 

Dirichlet measure 

Let 𝑏 ∈ 𝐶𝑘 , 𝑘 ≥ 2 and let 𝐸 = 𝐸𝑘−1  be the standard simplex in 𝑅𝑘−1. The complex measure 𝜇𝑏  is defined by 

𝐸[1]. 
 

𝑑𝜇𝑏 𝑢 =
1

𝐵 𝑏 
𝑢1

𝑏1−1
…  𝑢𝑘−1

𝑏𝑘−1−1
 1 − 𝑢1 − ⋯− 𝑢𝑘−1 𝑏𝑘

−1𝑑𝑢1 …𝑑𝑢𝑘−1              (2.2.1) 

 

Will be called a Dirichlet measure. 

Here 

𝐵 𝑏 = 𝐵 𝑏1, …  𝑏𝑘 =
Γ 𝑏1 … Γ 𝑏𝑘 

Γ 𝑏1 + ⋯ + 𝑏𝑘 
, 

 

𝐶> =  𝑧 ∈ 𝑧: 𝑧 ≠ 0,  𝑝ℎ 𝑧 < 𝜋
2  , 

 

Open right half plane and 𝐶>k is the 𝑘𝑡ℎ  Cartesian power of 𝐶> 

 

Dirichlet Average[1] 

Let Ω be the convex set in 𝐶>, let 𝑧 =  𝑧1, …  𝑧𝑘 ∈ Ωk , k ≥ 2 and let 𝑢. 𝑧 be a convex combination of 𝑧1, …𝑧𝑘 . 

Let 𝑓  be a measureable function on Ω  and let  𝜇𝑏  be a Dirichlet measure on the standard simplex 𝐸  in 

𝑅𝑘−1.Define  

 

𝐹 𝑏, 𝑧 =  𝑓 𝑢. 𝑧 𝑑
0

𝐸
𝜇𝑏 𝑢 (2.3.1) 
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We shall call F the Dirichlet measure of 𝑓 with variables 

𝑧 = (𝑧1, …𝑧𝑘) and parameters 𝑏 =  𝑏1, …𝑏𝑘 . 

 

Here  

𝑢. 𝑧 =  𝑢𝑖𝑧𝑖
𝑘
𝑖=1 and𝑢𝑘 = 1 − 𝑢1 − ⋯− 𝑢𝑘−1(2.3.2) 

 

If 𝑘 = 1, define 𝐹 𝑏, 𝑧 = 𝑓 𝑧 . 
 

Fractional Derivative [8] 

The concept of fractional derivative with respect to an arbitrary function has been used by Erdelyi[8]. The most 

common definition for the fractional derivative of order 𝛼 found in the literature on the “Riemann-Liouville 

integral” is 

 

𝐷𝑧
𝛼𝐹 𝑧 =

1

Γ(−𝛼)
 𝐹 𝑡 (𝑧 − 𝑡)−𝛼−1𝑑𝑡  

𝑧

0
(2.4.1) 

 

Where 𝑅𝑒(𝛼) < 0 and 𝐹(𝑥) is the form of 𝑥𝑝𝑓(𝑥), where 𝑓(𝑥) is analytic at 𝑥 = 0. 
 

THE NEW GENERALIZED K4 – FUNCTION 

Here , first the notation and the definition of the  Generalized K4 – function, introduced by Ahmad Faraj , Tariq 

Salim , Safaa Sadek, Jamal Ismail [9, 10] has been given as  

 

𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,𝑐 ;(𝑝 ;𝑞) 𝑧 =  
 𝑎1 𝑚𝑘   …  𝑎𝑝  

𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞
𝑘=𝑜

 𝛾 𝑘  𝑎
𝑘  𝑧−𝑐  𝑘+𝛾 𝛼−𝛽−1

K!Γ  𝑘+𝛾 𝛼−𝛽 
                      (1) 

 

Here 
0) ( Re  0,) ( Re ,,   C  𝑎𝑖 𝑚𝑘  ,  𝑏𝑗  𝑛𝑘 are the pochammer symbols and 𝑚, 𝑛  are non-

negative real numbers.  

When 𝑐 = 0in equation (1), we have  

 

𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,0 ;(𝑝 ;𝑞) 𝑧 =  
 𝑎1 𝑚𝑘   …  𝑎𝑝  

𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞
𝑘=𝑜

 𝛾 𝑘  𝑎
𝑘  𝑧  𝑘+𝛾 𝛼−𝛽−1

K!Γ  𝑘+𝛾 𝛼−𝛽 
                       (2) 

 

EQUIVALENCE 

In this section we shall show the equivalence of single Dirichlet average of𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,0 ;(𝑝 ;𝑞) 𝑧  function (𝑘 = 2) 

with the fractional derivative i.e. 

 

𝑆 𝛽, 𝛽′ ;𝑥, 𝑦 =
Γ 𝛽+𝛽 ′  

Γ𝛽
(𝑥 − 𝑦)1−𝛽−𝛽 ′

𝐷𝑥−𝑦
−𝛽 ′

𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,0 ;(𝑝 ;𝑞) 𝑥 (𝑥 − 𝑦)𝛽−1(3.2) 

 

Proof:  

𝑆 𝛽, 𝛽′ ;𝑥, 𝑦 =  
 𝑎1 𝑚𝑘   …   𝑎𝑝 𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞

𝑘=𝑜

 𝛾 𝑘  𝑎
𝑘 𝑧  𝑘+𝛾 𝛼−𝛽−1

K! Γ  𝑘 + 𝛾 𝛼 − 𝛽 
𝑅𝑛(𝛽, 𝛽′ ; 𝑥, 𝑦) 

 

=  
 𝑎1 𝑚𝑘   …   𝑎𝑝 𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞

𝑘=𝑜

 𝛾 𝑘  𝑎
𝑘

K! Γ  𝑘 + 𝛾 𝛼 − 𝛽 

Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
 

 

 [𝑢𝑥 +  1 − 𝑢 𝑦] 𝑘+𝛾 𝛼−𝛽−1𝑢𝛽 ′−1(1 − 𝑢)𝛽
′−1𝑑𝑢  

1

0

 

 

Putting 𝑢 𝑥 − 𝑦 = 𝑡, we have, 

=  
 𝑎1 𝑚𝑘   …   𝑎𝑝 𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞

𝑘=𝑜

 𝛾 𝑘  𝑎
𝑘

K! Γ  𝑘 + 𝛾 𝛼 − 𝛽 

Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
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 [𝑡 + 𝑦] 𝑘+𝛾 𝛼−𝛽−1  
𝑡

𝑥 − 𝑦
 
𝛽 ′−1

 1 −
𝑡

𝑥 − 𝑦
 
𝛽 ′−1 𝑑𝑡

𝑥 − 𝑦

𝑥−𝑦

0

 

 

On changing the order of integration and summation, we have 

 

= (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
  

 𝑎1 𝑚𝑘   …   𝑎𝑝 𝑚𝑘  

 𝑏1 𝑛𝑘  … 𝑏𝑞 𝑛𝑘

∞

𝑘=𝑜

𝑥−𝑦

0

 

 

 𝛾 𝑘  𝑎
𝑘

K! Γ  𝑘 + 𝛾 𝛼 − 𝛽 
[𝑡 + 𝑦] 𝑘+𝛾 𝛼−𝛽−1 𝑡 𝛽

′−1 𝑥 − 𝑦 − 𝑡 𝛽
′−1𝑑𝑡 

 

Or 

= (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽 Γ𝛽′
 𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,0 ;(𝑝 ;𝑞) 𝑦 + 𝑡  𝑡 𝛽
′−1 𝑥 − 𝑦 − 𝑡 𝛽

′−1𝑑𝑡  

𝑥−𝑦

0

 

 

Hence, by the definition of fractional derivative, we get 

 

𝑆 𝛽, 𝛽′ ;𝑥, 𝑦 = (𝑥 − 𝑦)1−𝛽−𝛽 ′ Γ 𝛽 + 𝛽′ 

Γ𝛽
𝐷𝑥−𝑦

−𝛽 ′

𝐾4(𝑚 ,𝑛)

 𝛼 ,𝛽 ,𝛾 , 𝑎 ,0 ;(𝑝 ;𝑞) 𝑥 (𝑥 − 𝑦)𝛽−1 

 

This completes the Analysis [10–18]. 

 

II. CONCLUSION 
Dirichlet average of a new Special function called as generalization of K4–function,which is recently 

given by Ahmad Faraj , Tariq Salim , Safaa Sadek, Jamal Ismailhas been obtained. This function is an extension 

of R- function which is introduced by Lorenzo and Hartly (1999). This is the modification of K4 – function 

given by Kishan Sharma and these functions have recently found essential applications in solving the various 

problems in the various field like as biology, physics, applied sciences and engineering. 
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