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1. Introduction 

 
Let ℋ denote a Hilbert space and 𝐵(ℋ) denote the Banach algebra of bounded linear operators. If 𝑇 ∈ 𝐵(ℋ), 

then 𝑇∗ denotes the adjoint of 𝑇, while Ker⁡(𝑇), Ran⁡(𝑇), ℳ  and ℳ⊥  stands for the kernel of 𝑇, range of 𝑇, 

closure of ℳ and orthogonal complement of a closed subspace ℳ of ℋ, respectively. We denote by 𝜎(𝑇), ∥ 𝑇 ∥ 

and 𝑊(𝑇), the spectrum, norm and numerical range of 𝑇, respectively. 

 

Two operators 𝐴 ∈ 𝐵(ℋ) and 𝐵 ∈ 𝐵(𝒦) are said to be similar (denoted 𝐴 ∼ 𝐵 ) if there exists an invertible 

operator 𝑁 ∈ 𝐵(ℋ, 𝒦) such that 𝑁𝐴 = 𝐵𝑁 or equivalently 𝐴 = 𝑁−1𝐵𝑁, and are unitarily equivalent (denoted 

by 𝐴 ≅ 𝐵 )if there exists a unitary operator 𝑈 ∈ 𝐵+(ℋ, 𝒦 ) (Banach algebra of all invertible operators in 𝐵(ℋ) 

) such that 𝑈𝐴 = 𝐵𝑈(i.e. 𝐴 = 𝑈∗𝐵𝑈, equivalently, 𝐴 = 𝑈−1𝐵𝑈 ). Two operators 𝐴 ∈ 𝐵(ℋ) and 𝐵 ∈ 𝐵(𝒦) are 

said to be metrically equivalent (denoted by 𝐴 ∼𝑚 𝐵 ) if ∥ 𝐴𝑥 ∥=∥ 𝐵𝑥 ∥, (equivalently, |⟨𝐴𝑥, 𝐴𝑥⟩|
1

2 =

|⟨𝐵𝑥, 𝐵𝑥⟩|
1

2 for all  𝑥 ∈ ℋ . The concept of metric equivalence of operators was initially introduced in [17] in 

2013. Clearly similarity, unitary equivalence and metric equivalence are equivalence relations on 𝐵(ℋ). 

𝑇 and 𝑆 are nearly-equivalent if 𝑇∗𝑇 and 𝑆∗𝑆 are similar and are unitarily-quasi-equivalent if there is a unitary 

operator 𝑈 such that 𝑇∗𝑇 = 𝑈𝑆∗𝑆𝑈∗. An operator 𝑇 is said to be nearly normal if 𝑇∗𝑇 = 𝐴𝑇𝑇∗𝐴−1, where 𝐴 is 

an invertible operator. 

 

2. Main Results 

 
Let 𝐴 be an operator on a separable Hilbert space ℋ. The spectrum of 𝐴 is defined as 𝜎(𝐴) = {𝜆 ∈ ℂ : 𝜆𝐼 − 𝐴 is 

not invertible }. Note that 𝜎(𝐴) ⊂ {𝜆 ∈ ℂ: |𝜆| ≤∥ 𝐴 ∥}. The numerical range of 𝐴 is defined to be the set 

𝑊(𝐴) = {⟨𝐴𝑥, 𝑥⟩: ∥ 𝑥 ∥= 1} and the numerical radius of 𝐴 is defined as 𝑤(𝐴) = sup{|𝜆|: 𝜆 ∈ 𝑊(𝐴)}. (See [9], 

[15]). An important use of 𝑊(𝑇) is to bound the spectrum 𝜎(𝑇) of an operator 𝑇.(cf. [9], [6]). 

 

The spectral radius of an operator 𝐴 is defined as 𝑟(𝐴) = sup{|𝜆|: 𝜆 ∈ 𝜎(𝐴)} (see [10], § 88). Clearly, for any 

𝑇, 𝑆 ∈ 𝐵(ℋ), 𝑟(𝑆𝑇) = 𝑟(𝑇𝑆), 𝜎(𝑆𝑇) and 𝜎(𝑇𝑆) differ at most by 0, which is irrelevant for the definition of the 

spectral radius. 

 

It is well known (cf. [9], [15], [6]) that 𝑤(.)is a norm onB(ℋ) and that for any 𝑇 ∈ 𝐵(ℋ) : 

(i). 𝑤(𝑇) ≥ 0 and 𝑤(𝑇) = 0 if and only if 𝑇 = 0. 

(ii). 𝑤(𝜆𝑇) = |𝜆|𝑤(𝑇), for any 𝜆 ∈ ℂ. 

(iii). 𝑤(𝑇 + 𝑆) ≤ 𝑤(𝑇) + 𝑤(𝑆), for any 𝑇, 𝑆 ∈ 𝐵(ℋ). 
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Recall (cf. [15]) that an operator 𝑇 ∈ 𝐵(ℋ) is 

self-adjoint if 𝑇∗ = 𝑇; normal if 𝑇∗𝑇 = 𝑇𝑇∗; quasinormal if 𝑇𝑇∗𝑇 = 𝑇∗𝑇𝑇; hyponormal if 𝑇∗𝑇 ≥ 𝑇𝑇∗; 

paranormal if ∥ 𝑇𝑥 ∥2≤ ∥∥𝑇2𝑥∥∥, for every unit vector 𝑥 ∈ ℋ; normaloid if 𝑟(𝑇) =∥ 𝑇 ∥ or equivalently, if 

∥𝑇𝑛∥ =∥ 𝑇 ∥𝑛 , for all positive integers 𝑛 and spectraloid if 𝑟(𝑇) = 𝑤(𝑇). Equivalently, if 𝑤 𝑇𝑛 = (𝑤(𝑇))𝑛 . 

An operator 𝑇 on a Hilbert space is a rank-one operator if dim⁡(Ran⁡(𝑇)) = 1. 

 

The spectral gap of 𝐴 ∈ 𝐵(ℋ) is defined as 𝐺𝑝(𝐴) =∥ 𝐴 ∥ −𝑟(𝐴) and the numerical gap of 𝐴 ∈ 𝐵(ℋ) is 

defined as 𝑤𝐺𝑝(𝐴) =∥ 𝐴 ∥ −𝑤(𝐴). (cf. [11]). The notion of a numerical gap was initially introduced by S.S. 

Dragomir (see [5]) but the name was coined in 2021 by Z. I. Ismailov and P.I. Al⁡([11]) while the concept of the 

spectral gap of an operator was introduced by M. Demuth in 2015(see [4]). These two concepts have been 

investigated by several authors (cf. [11], [3]) 

 

Remark. The spectral gap is the difference between the moduli of the two largest eigenvalues of an operator. 

The spectral and numerical gaps show how the spectral picture of an operator changes under perturbation. They 

also show how the numerical range 𝑊(𝑇) bounds the spectrum 𝜎(𝑇). 

Even though 𝑊(𝑇) is often used to bound the spectrum 𝜎(𝑇) of an operator 𝑇, 𝜎(𝑇) could be much smaller. 

Consider 𝑇 =  
0 1
0 0

 . Then 𝑊(𝑇) =  𝜆 ∈ ℂ: |𝜆| ≤
1

2
 , which is the closed disk with center 0 and radius 

1

2
. 

However, 𝜎(𝑇) = {0}. By contrast, for self-adjoint and generally spectraloid operators 𝑇, the spectrum 𝜎(𝑇) is 

sharply bounded by 𝑊(𝑇) (cf. [7], §2.5). 

 

Example. For 𝐴 =  
−1 1
0 1

 , the following figure obtained by a MAPLE procedure (see [2]) shows the spectral 

picture of 𝐴, where 

∥ 𝐴 ∥≈ 1.309, 𝜎(𝐴) = {−1,1}, 𝑟(𝐴) = 1, 𝑤(𝐴) ≈ 1.115. 
and the 𝑊(𝐴) is the ellipse with center (0,0), with foci at −1 and 1 and with minor axis length 1 and major axis 

length approximately 2.23. 
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Theorem 𝟐. 𝟏 ([15], Proposition 6.25) For any 𝐴 ∈ 𝐵(ℋ),0 ≤ 𝑟(𝐴) ≤ 𝑤(𝐴) ≤∥ 𝐴 ∥≤ 2𝑤(𝐴). 

 

For any operator 𝑇, the operator 𝐴 = 𝑇∗𝑇 − 𝑇𝑇∗ is a self-adjoint operator and 𝑇∗𝑇 − 𝑇𝑇∗ = 0, whenever 𝑇 is 

normal. Given 𝑇, 𝑆 ∈ 𝐵(ℋ), we let 𝐴 = 𝑇∗𝑇 − 𝑇𝑇∗ and 𝐵 = 𝑆∗𝑆 − 𝑆𝑆∗. Clearly, 𝐴 and 𝐵 are normal operators. 

 

2.1 Spectral and Numerical Gaps for Equivalent Operators 

 

In this subsection, we investigate the spectral and numerical gaps of in some equivalence relations. 

 

Remark. We characterize 𝐴 = 𝑇∗𝑇 − 𝑇𝑇∗ and 𝐵 = 𝑆∗𝑆 − 𝑆𝑆∗ when 𝑇, 𝑆 are equivalent in some sort. 

 

Theorem 2.2 Suppose 𝑇 and 𝑆 are unitarily equivalent. Then 𝐴 = 𝑇∗𝑇 − 𝑇𝑇∗ and 𝐵 = 𝑆∗𝑆 − 𝑆𝑆∗ are unitarily 

equivalent. 

 

Proof. Suppose 𝑇 = 𝑈∗𝑆𝑈, for some unitary operator 𝑈. Then a simple computation shows that 

𝑇∗𝑇 − 𝑇𝑇∗ = 𝑈∗ 𝑆∗𝑆 − 𝑆𝑆∗ 𝑈 = 𝐴. 
So, 𝑆∗𝑆 − 𝑆𝑆∗ = 𝑈𝐴𝑈∗ = 𝐵. This proves the claim. 

 

Remark. For any 𝐴, 𝐵 ∈ 𝐵(ℋ), 𝐺𝑝(𝐴) − 𝐺𝑝(𝐵) = (∥ 𝐴 ∥ −∥ 𝐵 ∥) − (𝑟(𝐴) + 𝑟(𝐵)) and 𝑤𝐺𝑝(𝐴) − 𝑤𝐺𝑝(𝐵) =

(∥ 𝐴 ∥ −∥ 𝐵 ∥) − (𝑤(𝐴) + 𝑤(𝐵)). 

 

Corollary 2.3 Suppose 𝐴 and 𝐵 are unitarily equivalent. Then 𝐺𝑝(𝐴) = 𝐺𝑝(𝐵) and 𝑤𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐵). 

 

Proof. The proof follows immediately from the definition of the respective gaps and the fact that unitary 

equivalence preserves spectral radii, numerical radii and also the norm of operators. 
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Remark. Note that in general, similarity need not preserve norm of operators. However, for similar normal 

operators, it does. Similarly, metric equivalence preserves norm (cf. [17], Theorem 2.14) but it does not preserve 

the spectrum ([17], Proposition 2.16). But clearly, although metrically equivalent operators need not have equal 

spectra, they must have equal spectral radius. 

 

Theorem 𝟐. 𝟒 ([17], Theorem 2.14) Suppose T and S are metrically equivalent operators. Then ∥ 𝑆 ∥=∥ 𝑇 ∥. 

 

Theorem 2.5 Suppose 𝐴 and 𝐵 are metrically equivalent operators. Then for every 𝜆 ∈ 𝜎(𝐴) there exists 

a𝛽 ∈ 𝜎(𝐵) (and vice versa) such that |𝜆| = |𝛽|. 
 

Theorem 2.5 says that metric equivalence preserves the spectral radii of operators, although it need not preserve 

the spectra of operators. 

 

Corollary 2.6 Suppose 𝑇 and 𝑆 are metrically equivalent operators. Then 𝑟(𝑇) = 𝑟(𝑆). 

 

Proof. The proof follows from Theorem 2.5. 

 

Remark. It is worth noting that the fact that operators have equal spectral radii does not in general imply that 

they are metrically equivalent. The operators represented by the matrices 𝐴 =  
0 0
0 1

  and 𝐵 =  
−1 0
0 0

  are 

such that 𝑟(𝐴) = 𝑟(𝐵) = 1, but are not metrically equivalent. Note also that in this example, 𝑊(𝐴) = [0,1] ≠
[−1,0] = 𝑊(𝐵) but 𝑤(𝐴) = 𝑤(𝐵) = 1. 

Note also that 𝐴 and 𝐵 are not similar but 𝐴∗𝐴 and 𝐵∗𝐵 are similar. That is, 𝐴 and 𝐵 are nearly equivalent. 

 

Theorem 2.7 Suppose 𝐴 and 𝐵 are similar normal operators. Then 𝐺𝑝(𝐴) = 𝐺𝑝(𝐵) and 𝑤𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐵). 

 

Proof. The proof follows immediately from the fact that similar normal operators are unitarily equivalent (cf. 

[17], Proposition 2.13 ) and the proof of Corollary 2.3. 

 

Theorem 2.8 Suppose 𝐴 and 𝐵 are metrically equivalent operators. Then 𝐺𝑝(𝐴) = 𝐺𝑝(𝐵). 

 

Proof. The proof follows from an application of Theorem 2.4 and Corollary 2.6. 

 

Theorem 𝟐. 𝟗 ([17], Theorem 2.18) Suppose 𝐴 and 𝐵 are metrically equivalent normal operators on a Hilbert 

space ℋ. Suppose 𝐴 = 𝑈|𝐴| and 𝐵 = 𝑉|𝐵| are the polar decompositions of 𝐴 and 𝐵, respectively. Then 

|𝐴| = |𝐵|. 
 

Remark. We note that Theorem 2.9 also holds if we replace normality with invertibility of 𝐴 and 𝐵. 

 

Corollary 2.10 Suppose 𝐴 and 𝐵 are metrically equivalent invertible operators on a Hilbert space ℋ. Suppose 

𝐴 = 𝑈|𝐴| and 𝐵 = 𝑉|𝐵| are the polar decompositions of 𝐴 and 𝐵, respectively. Then |𝐴| = |𝐵|. 
Proof. By hypothesis, 𝐴∗𝐴 = 𝐵∗𝐵 and this implies that |𝐴|𝑈∗𝑈|𝐴| = |𝐵|𝑉∗𝑉|𝐵|. Since 𝐴 and 𝐵 are invertible 

both 𝑈 and 𝑉 are unitary operators (see [14], Remark 0.10 and [15], Corollary 5.91) and hence we have 

|𝐴|2 = |𝐵|2. Both |𝐴|2 and |𝐵|2 are positive operators and so they have unique positive square roots. Taking 

square roots proves the claim. 

 

Remark. It was proved in ([17], Theorem 2.15) that metrically equivalent operators 𝐴 and 𝐵 need not have 

equal numerical range. However, it was shown by the same author that 𝑊(|𝐴|) = 𝑊(|𝐵|). This is equivalent to 

saying that both 𝐴 and 𝐵 have the same numerical radius. For instance, let 𝐴 be the unilateral shift on ℓ2(ℕ) and 

𝐵 = 𝐼, the identity operator on ℓ2(ℕ). Clearly 𝐴 and 𝐵 are metrically equivalent. But 𝑊(𝐴) = {𝜆 ∈ ℂ: 𝜆 ≤ 1} ≠
{1} = 𝑊(𝐵). However, 𝑤(𝐴) = 𝑤(𝐵). 

 

Theorem 2.11 Suppose 𝐴 and 𝐵 are metrically equivalent invertible operators. Then 𝐺𝑝(|𝐴|) = 𝐺𝑝(|𝐵|) and 

𝑤𝐺𝑝(|𝐴|) = 𝑤𝐺𝑝(|𝐵|). 

 

Proof. Follows from the application of Corollary 2.6 and Corollary 2.10. 

 

Theorem 2.12 Suppose 𝐴 and 𝐵 are metrically equivalent invertible operators. Then 𝑤(𝐴) = 𝑤(𝐵). 
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Corollary 2.13 Suppose 𝐴 and 𝐵 are metrically equivalent invertible operators. Then 𝐺𝑝(𝐴) = 𝐺𝑝(𝐵) and 

𝑤𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐵). 

 

Proof. The proof of the first part of the claim follows from Theorem 2.8 and the proof of the second part of the 

claim follows from an application of Theorem 2.11 and Theorem 2.12. 

 

2.2 Spectral and Numerical Gaps for Some Classes of Operators 

 

In this subsection, we investigate the spectral and numerical gaps operators belonging to some operator classes. 

 

Clearly 𝐺𝑝(𝐴) ≥ 0 and 𝑤𝐺𝑝(𝐴) ≥ 0 for any 𝐴 ∈ 𝐵(ℋ). For normaloid operators, 𝑟(𝐴) =∥ 𝐴 ∥ and so 𝐺𝑝(𝐴) =

0 whenever 𝐴 is a normaloid operator. 

 

Theorem 2.14 If 𝐴 is normal, then 𝑤𝐺𝑝(𝐴) = 0. 

 

Proof. The proof follows from the fact that for a normal operator 𝐴, 𝑤(𝐴) =∥ 𝐴 ∥. 

 

Remark. Kubrusly [15] has proved that in a Hilbert space, if 𝑟(𝑇) =∥ 𝑇 ∥, then 𝑟(𝑇) = 𝑤(𝑇) and 𝑤(𝑇) =∥ 𝑇 ∥ 

Theorem 2.15 If 𝐴 is normaloid, then 𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐴) = 0. 

 

Proof. The proof follows from the fact that for a normaloid operator 𝐴, 𝑟(𝐴) =∥ 𝐴 ∥, which in turn implies that 

𝑤(𝐴) =∥ 𝐴 ∥ ( see [15]). 

 

Recall that an operator 𝑇 ∈ 𝐵(ℋ) is called an isometry if 𝑇∗𝑇 = 𝐼 and a co-isometry if 𝑇𝑇∗ = 𝐼. 
 

Theorem 2.16 If 𝐴 is an isometry or a co-isometry, then 𝐺𝑝(𝐴) = 0. 

 

Proof. The proof follows from the definition and the fact that ∥ 𝐴 ∥= 1 and 𝑟(𝐴) = 1 for any isometry or a co-

isometry 𝐴. 

 

We note that the class of normaloid operators on a Hilbert space ℋ coincides with the class of all operators on 

ℋ for which ∥ 𝑇 ∥= sup{|⟨𝑇𝑥, 𝑥⟩|: ∥ 𝑥 ∥= 1, 𝑥 ∈ ℋ}. This includes the normal operators, isometries, 

quasinormal operators, hypornormal and paranormal operators (cf. [19]). 

 

Theorem 2.17 If 𝐴 is a non-zero quasinilpotent operator, then 𝐺𝑝(𝐴) > 0 and 𝑤𝐺𝑝(𝐴) > 0. 

 

Remark. As a consequence of Theorem 2.17, it has been shown in ([6],[9]) that if 𝐴 ∈ 𝐵(ℋ) 

is non-zero and 𝐴2 = 0, then 𝑤(𝐴) =
∥𝐴∥

2
. Therefore, 𝑟(𝐴) = 0, ∥ 𝐴 ∥> 0 and so 𝐺𝑝(𝐴) =∥ 𝐴 ∥

−0 =∥ 𝐴 ∥> 0 and 𝑤𝐺𝑝(𝐴) =∥ 𝐴 ∥ −
∥𝐴∥

2
=

∥𝐴∥

2
> 0. 

Theorem 𝟐. 𝟏𝟖 For any operator A 

 (a). 𝑟(𝐴) ≤ 𝑤(𝐴).

 (b). 𝑤𝐺𝑝(𝐴) ≤ 𝐺𝑝(𝐴).
 

 

Theorem 2.19 If 𝐴 is spectraloid, then 𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐴) = 0. 

 

Proof. Follows from the fact that for a spectraloid operator 𝐴, 𝑟(𝐴) = 𝑤(𝐴) =∥ 𝐴 ∥. 

 

Theorem 2.20 If 𝐴 is unitarily equivalent to a normal operator, then 𝐴 is normal. 

 

Proof. Suppose 𝐴 = 𝑈∗𝐵𝑈, where 𝑈 is a unitary operator and 𝐵 is normal. Then 

𝐴∗𝐴 = 𝑈∗𝐵∗𝐵𝑈 = 𝑈∗𝐵𝐵∗𝑈 = 𝐴𝐴∗. 

 

Corollary 2.21 If 𝐴 is unitarily equivalent to a normal operator, then 𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐴) = 0. 

 

Proof. The proof follows from an application of Theorem 2.14, Theorem 2.20 and the fact that every normal 

operator is normaloid. 
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We note that if 𝐴 is a normal operator, then 𝑊(𝐴)        = conv⁡(𝜎(𝐴)), the convex hull of 𝜎(𝐴). 

 

Theorem 2.22 Let 𝐴, 𝐵 ∈ 𝐵(ℋ) are normal operators such that 𝜎(𝐴) = 𝜎(𝐵), then 𝑊(𝐴)        = 𝑊(𝐵)        . 

 

Proof. Since 𝐴, 𝐵 ∈ 𝐵(ℋ) are normal and 𝜎(𝐴) = 𝜎(𝐵), we have that 

𝑊(𝐴)        = conv⁡(𝜎(𝐴)) = conv⁡(𝜎(𝐵)) = 𝑊(𝐵)        . 
 

Theorem 2.22 says that for normal operators 𝐴, 𝐵 ∈ 𝐵(ℋ) with the same spectrum, their numerical ranges can 

differ only by their boundaries ∂𝑊(𝐴) and ∂𝑊(𝐵) (see also [16]). 

 

Corollary 2.23 Let 𝐴, 𝐵 ∈ 𝐵(ℋ) are normal operators such that 𝜎(𝐴) = 𝜎(𝐵), then 𝑤(𝐴) = 𝑤(𝐵). 

 

Proof. The proof follows from Theorem 2.22, the convexity of the numerical range and the fact that for any 

𝑇 ∈ 𝐵(ℋ), the set 𝑊(𝑇)         is closed and contains all its boundary points 𝜆 ∈ ∂𝑊(𝑇) such that |𝜆| = 𝑤(𝑇). 

 

3. Approximation of Spectral and Numerical Gaps of sums and products of Operators 

 
For any 𝐴 ∈ 𝐵(ℋ), small changes (or perturbations) may lead to big changes in the spectral picture. For 

instance, in finite dimensional settings, one eigenvalue of an operator matrix can be shifted arbitrarily by a rank-

one perturbation, without disturbing the other eigenvalues. However, for a self-adjoint operator 𝐴, small changes 

in 𝐴 will generally not lead to large changes in the spectrum and the numerical range. This is due to the fact that 

the spectrum of a self-adjoint operator is bounded sharply by the numerical range. In general, for spectraloid 

operators, since 𝑟(𝑇) = 𝑤(𝑇), the spectrum of a spectraloid operator is bounded sharply by its numerical range. 

 

Recall that for any 𝑇 ∈ 𝐵(ℋ), 𝑟(𝑇) = 𝑟 𝑇∗ , ∥ 𝑇 ∥= ∥𝑇∗∥, 𝑤(𝑇) = 𝑤 𝑇∗ . 

 

Proposition 𝟑. 𝟏 ([18], Proposition 1) If 𝑇, 𝑆 ∈ 𝐵(ℋ) and 𝑆𝑇 = 𝑇𝑆, then 𝑟(𝑇 + 𝑆) ≤ 𝑟(𝑇) + 𝑟(𝑆) and 𝑟(𝑇𝑆) ≤
𝑟(𝑇)𝑟(𝑆). 

 

The following result is an application of Proposition 3.1. 

 

Theorem 3.2 If 𝑇 ∈ 𝐵(ℋ) is normal, then 𝐺𝑝 𝑇 + 𝑇∗ = 0. 

 

Proof. Normality of 𝑇 ensures 𝑇 and 𝑇∗ commute. Applying Proposition 3.1 we have 𝑟 𝑇 + 𝑇∗ ≤ 𝑟(𝑇) +
𝑟 𝑇∗ = 2𝑟(𝑇) and ∥𝑇 + 𝑇∗∥ ≤∥ 𝑇 ∥ +∥𝑇∗∥ = 2 ∥ 𝑇 ∥. Therefore 𝐺𝑝 𝑇 + 𝑇∗ = ∥𝑇 + 𝑇∗∥ − 𝑟 𝑇 + 𝑇∗ ≤ 2(∥

𝑇 ∥ −𝑟(𝑇)) = 0. 

 

Remark. Note also that if 𝑇 is normal, then 𝐺𝑝 𝑇𝑇
∗ = ∥𝑇𝑇∗∥ − 𝑟 𝑇𝑇∗ ≤∥ 𝑇 ∥2− (𝑟(𝑇))2 = 0. 

Note that the assumption that 𝑇 is normal in Theorem 3.2 cannot be dropped since it ensures the commutativity 

of 𝑇 and 𝑇∗. This result is trivial since the operators 𝑇 + 𝑇∗ and 𝑇𝑇∗ are self-adjoint and hence normaloid, 

which means that 𝑟 𝑇 + 𝑇∗ = ∥𝑇 + 𝑇∗∥ and 𝑟 𝑇𝑇∗ = ∥𝑇𝑇∗∥. 

We note also that the assumption that 𝑆 and 𝑇 commute in Theorem 3.1 cannot be dropped. In fact, if 𝑆 and 𝑇 

do not commute, it is difficult to say how 𝜎(𝑆 + 𝑇) is related to 𝜎(𝑆) and 𝜎(𝑇). Consequently, it would be 

difficult to determine how 𝑟(𝑆 + 𝑇) is related to 𝑟(𝑆) and 𝑟(𝑇). In particular, 𝜎(𝑆 + 𝑇) need not be contained in 

𝜎(𝑆) + 𝜎(𝑇). To see, this let 𝑆 =  
0 1
0 0

  and 𝑇 =  
0 0
1 0

 . Then 𝜎(𝑆 + 𝑇) = {−1,1} and 𝜎(𝑆) = 𝜎(𝑇) = {0}. 

This shows also that 𝑟(𝑆 + 𝑇) need not be less than 𝑟(𝑇) + 𝑟(𝑆). 

 

The following result estimates the spectral gap of the operator pencil 𝑇 + 𝐼, after 𝑇 is given a perturbation I. 

This will show how sensitive a system is upon perturbation or disturbance. 

 

Theorem 3.3 Let 𝑇 ∈ 𝐵(ℋ). Then 𝐺𝑝(𝑇 + 𝐼) ≤ 𝐺𝑝(𝑇). 

 

Proof. Note that [𝐼, 𝑇] = 0 and so we can apply Proposition 3.1 to get ∥ 𝑇 + 𝐼 ∥≤∥ 𝑇 ∥ +∥ 𝐼 ∥= 1+∥ 𝑇 ∥ and 

𝑟(𝑇 + 𝐼) ≤ 𝑟(𝑇) + 𝑟(𝐼) = 1 + 𝑟(𝑇) Therefore, 𝐺𝑝(𝑇 + 𝐼) =∥ 𝑇 + 𝐼 ∥ −𝑟(𝑇 + 𝐼) ≤ 1+∥ 𝑇 ∥ −1 − 𝑟(𝑇) =∥

𝑇 ∥ −𝑟(𝑇) = 𝐺𝑝(𝑇). 
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Proposition 3.4 Let 𝑇, 𝑆 ∈ 𝐵(ℋ) and 𝑆𝑇 = 𝑇𝑆. If 𝜀 ∈ ℂ, then 𝐺𝑝(𝑇 + 𝜀𝑆) ≤ 𝐺𝑝(𝑇) + |𝜀|𝐺𝑝(𝑆) and 𝐺𝑝(𝜀𝑆𝑇) ≤

|𝜀|(∥ 𝑆 ∥∥ 𝑇 ∥ −𝑟(𝑆)𝑟(𝑇)). 

 

Proof. Since [𝑆, 𝑇] = 0 it follows that [𝜀𝑆, 𝑇] = 0 for any 𝜀 ∈ ℂ. A simple computation shows that 𝐺𝑝(𝑇 +

𝜀𝑆) =∥ 𝑇 + 𝜀𝑆 ∥ −𝑟(𝑇 + 𝜀𝑆) ≤ (∥ 𝑇 ∥ +|𝜀| ∥ 𝑆 ∥) − (𝑟(𝑇) + |𝜀|)𝑟(𝑆) = (∥ 𝑇 ∥ −𝑟(𝑇)) + |𝜀|(∥ 𝑆 ∥ −𝑟(𝑆)) =
𝐺𝑝(𝑇) + |𝜀|𝐺𝑝(𝑆). That is, 𝐺𝑝(𝑇 + 𝜀𝑆) ≤ 𝐺𝑝(𝑇) + |𝜀|𝐺𝑝(𝑆), which proves the first claim. The second claim is 

proved similarly. 

 

Note that the assumption that the change 𝜀𝑆 is sufficiently small, will result in a small perturbation of the 

spectral gap. Note that in the second claim if |𝜀| ⟶ 0, we have 𝐺𝑝(𝑆𝑇) ⟶ 0. This is because the operator 𝜀𝑆𝑇 

will tend to 0, the zero operator, which is normaloid. Theorem 3.5 (Equivalent norm) For any 𝑇 ∈ 𝐵(ℋ), we 

have𝑤(𝑇) ≤∥ 𝑇 ∥≤ 2𝑤(𝑇). 

 

Theorem 𝟑. 𝟔 ([6], Theorem 5) Let 𝑇 ∈ 𝐵(ℋ). If 𝑤(𝑇) =∥ 𝑇 ∥, then 𝑟(𝑇) =∥ 𝑇 ∥. 

 

It is noted in (cf. [15]) that in a Hilbert space 𝑟(𝑇) =∥ 𝑇 ∥ implies that 𝑟(𝑇) = 𝑤(𝑇). Moreover, 𝑟(𝑇) =∥ 𝑇 ∥ 

also implies 𝑤(𝑇) =∥ 𝑇 ∥. Thus, 𝑤(𝑇) =∥ 𝑇 ∥ is a property of every normaloid operator on a Hilbert space. 

 

Proposition 𝟑. 𝟕 Let 𝑥, 𝑦 ∈ ℝ. Then max{𝑥, 𝑦} =
1

2
(𝑥 + 𝑦 + |𝑥 − 𝑦|). 

 

Proof. The case when 𝑥 = 𝑦 is trivial. Suppose that 𝑥 < 𝑦 or 𝑥 > 𝑦. Then max{𝑥, 𝑦} + min{𝑥, 𝑦} = 𝑥 + 𝑦 and 

max{𝑥, 𝑦} − min{𝑥, 𝑦} = |𝑥 − 𝑦|. Adding/subtracting these equations, we have that max {𝑥, 𝑦} =
1

2
(𝑥 + 𝑦 +

|𝑥 − 𝑦|) and min{𝑥, 𝑦} =
1

2
(𝑥 + 𝑦 − |𝑥 − 𝑦|). 

 

Lemma 𝟑. 𝟖 ([1], Exercise I.3.1(ii)) Let 𝐴 ∈ 𝐵(ℋ) and suppose 𝐴 has a direct sum decomposition 𝐴 = 𝐴1 ⊕
𝐴2 with respect to the decomposition ℋ = ℳ ⊕ ℳ⊥. Then 

(i). ∥ 𝐴 ∥= max ∥∥𝐴1∥∥, ∥∥𝐴2∥∥ . 
(ii). 𝑟(𝐴) = max 𝑟 𝐴1 , 𝑟 𝐴2  . 
(iii). 𝑤(𝐴) = max 𝑤 𝐴1 , 𝑤 𝐴2  . 
 

Theorem 3.9 Let 𝐴 ∈ 𝐵(ℋ) and suppose 𝐴 has a direct sum decomposition 𝐴 = 𝐴1 ⊕ 𝐴2 with respect to the 

decomposition ℋ = ℳ ⊕ ℳ⊥ . Then 

𝐺𝑝(𝐴) =
1

2
 𝐺𝑝 𝐴1 + 𝐺𝑝 𝐴2 +  ∥∥𝐴1∥∥ − ∥∥𝐴2∥∥ +  𝑟 𝐴1 − 𝑟 𝐴2   and⁡𝑤𝐺𝑝(𝐴) =

1

2
 𝑤𝐺𝑝 𝐴1 + 𝑤𝐺𝑝 𝐴2 +

𝐴1−𝐴2+𝑤𝐴1−𝑤𝐴2. 

 

Proof. Using Proposition 3.7 and Lemma 3.8(i) and (ii), we have 

 

𝐺𝑝(𝐴) =∥ 𝐴 ∥ −𝑟(𝐴)

= max ∥∥𝐴1∥∥, ∥∥𝐴2∥∥ − max 𝑟 𝐴1 , 𝑟 𝐴2  

=
1

2
 ∥∥𝐴1∥∥ + ∥∥𝐴2∥∥ +  ∥∥𝐴1∥∥ − ∥∥𝐴2∥∥  −

1

2
 𝑟 𝐴1 + 𝑟 𝐴2 +  𝑟 𝐴1 − 𝑟 𝐴2   

=
1

2
 ∥∥𝐴1∥∥ − 𝑟 𝐴1 + ∥∥𝐴2∥∥ − 𝑟 𝐴2 +  ∥∥𝐴1∥∥ − ∥∥𝐴2∥∥ −  𝑟 𝐴1 − 𝑟 𝐴2   

=
1

2
 𝐺𝑝 𝐴1 + 𝐺𝑝 𝐴2 +  ∥∥𝐴1∥∥ − ∥∥𝐴2∥∥ −  𝑟 𝐴1 − 𝑟 𝐴2   

 

The proof of the second claim is similar and follows easily from the definition of 𝑤𝐺𝑝(𝐴), Proposition 3.7 and 

Lemma 3.8(i) and (iii). 

 

4. Gap Equivalences of Operators 

 

We say that two operators 𝐴 and 𝐵 are spectrally gap-equivalent if 𝐺𝑝(𝐴) = 𝐺𝑝(𝐵), and we denote it by 𝐴 ∼
𝑠𝑔𝑒

𝐵 

We say that two operators 𝐴 and 𝐵 are numerically gap-equivalent if 𝑤𝐺𝑝(𝐴) = 𝑤𝐺𝑝(𝐵), and we denote it by 

𝐴 ∼
𝑛𝑔𝑒

𝐵. 

 

Theorem 4.1 Spectral gap equivalence and numerical gap equivalence are equivalence relations on B(H). 
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Theorem 4.2 Metric equivalence implies spectral gap equivalence on 𝐵(ℋ).  

 

Proof. The proof follows from Theorem 2.8. 

 

Theorem 4.3 If 𝐴, 𝐵 ∈ 𝐵(ℋ) are invertible or normal and metrically equivalent then they are numerically gap-

equivalent. 

 

Proof. The proof follows from the application of Theorem 2.11, Theorem 2.12 and Corollary 2.13. 

 

Remark. We note that for normaloid operators, numerical gap equivalence and spectral gap equivalence 

coincide. However, there exist non-normaloid operators with this property. 

 

From Corollary 2.3, it is clear that unitary equivalence preserves spectral gap and numerical gap between 

operators. This means that unitary equivalence implies spectral gap equivalence and also numerical gap 

equivalence of operators. However, similarity of operators does not in general imply spectral gap equivalence 

and also numerical gap equivalence of operators, unless the operators are normal. This proof of this claim 

follows from Theorem 2.7. 

 

5. Discussion 

 
The numerical radius provides a norm equivalent to the operator norm in complex Hilbert spaces. Together with 

the convexity of the numerical range, these properties can be used in eigenvalue approximationby constructing 

an initial guess for iterative methods, in particular the convergence of the steepest descent method for solving 

the system 𝐴𝑥 = 𝑏 and also those methods that estimate eigenvalues instead of using Gershgorin circles- in 

areas such as fluid dynamics and stability analysis of finite difference approximations of solutions to hyperbolic 

initial value problems(cf. [8]). This finds application in many areas of theoretical and applied mathematics, 

including in quantum information processing and mathematical modelling. Spectral and numerical gaps of 

operators find application in how sensitive a system is under perturbation(cf. [9]). They may show how 

eigenvalues of an operator change under perturbation. 
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