General Form of Integral Solutions to the Ternary NonHomogeneous Cubic Equation

$x^{2}+y^{2}+x y+x-y+1=\left(m^{2}+3 n^{2}\right) z^{3}$
S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract

: The purpose of this paper is to obtain a general form of non-zero distinct integral solutions of ternary nonhomogeneous cubic diophantine equation $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{xy}+\mathrm{x}-\mathrm{y}+1=\left(\mathrm{m}^{2}+3 \mathrm{n}^{2}\right) \mathrm{z}^{3}$.

Keywords: Ternary cubic equation, Non-homogeneous cubic, Integer solutions
Date of Submission: 23-09-2022
Date of Acceptance: 08-10-2022

Notations:

T_{n}-Triangular number of rank $\mathrm{n}, \mathrm{Ob}_{\mathrm{n}}$-Oblong number of rank n
Th_{n}-Tetrahedral number of rank $\mathrm{n}, \mathrm{PP}_{\mathrm{n}}$-Pentagonal Pyramidal number of rank n
J_{n}-Jacobsthal number of rank $\mathrm{n}, \mathrm{j}_{\mathrm{n} \text {-Jacobsthal-Lucas number of rank } \mathrm{n}}$

I. Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, cubic diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-4]. In this context, one may refer [5-24] for various problems on the cubic diophantine equations with three variables, where, in each of the problems, different sets of non-zero integer solutions are obtained. However, often we come across homogeneous and non-homogeneous cubic equations and as such one may require its integral solution in its most general form. It is towards this end, this paper concerns with the problem of determining a general form of non-trivial integral solutions of the nonhomogeneous cubic equation with three unknowns given by $x^{2}+y^{2}+x y+x-y+1=\left(m^{2}+3 n^{2}\right) z^{3}$.

Method of Analysis:

The ternary non-homogeneous cubic diophantine equation to be solved for its distinct non-zero integral solution is

$$
\begin{equation*}
x^{2}+y^{2}+x y+x-y+1=\left(m^{2}+3 n^{2}\right) z^{3} \tag{1}
\end{equation*}
$$

where m, n are not simultaneously zero.
Introduction of the linear transformations

$$
\begin{equation*}
\mathrm{x}=\mathrm{u}+\mathrm{v}-1, \mathrm{y}=\mathrm{u}-\mathrm{v}+1 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
v^{2}+3 u^{2}=\left(m^{2}+3 n^{2}\right) z^{3} \tag{3}
\end{equation*}
$$

Let $\mathrm{v}_{0}, \mathrm{u}_{0}, \mathrm{z}_{0}$ be any given non-zero integer solution to (3) so that

$$
\begin{equation*}
\mathrm{v}_{0}^{2}+3 \mathrm{u}_{0}^{2}=\left(\mathrm{m}^{2}+3 \mathrm{n}^{2}\right) \mathrm{z}_{0}^{3} \tag{4}
\end{equation*}
$$

Now, consider

$$
\begin{equation*}
\mathrm{v}=\mathrm{Av}_{0} \pm 3 \mathrm{Bu}_{0}, \mathrm{u}=\mathrm{B} \mathrm{v}_{0} \mp \mathrm{Au}_{0} \tag{5}
\end{equation*}
$$

where A, B are non-zero integers to be determined such that (5) satisfies (3).
Substituting (5) in (3), we have

$$
\begin{equation*}
\text { L.H.S. of }(3)=\left(v_{0}^{2}+3 u_{0}^{2}\right)\left(A^{2}+3 B^{2}\right) \tag{6}
\end{equation*}
$$

In view of (4), it is seen that

$$
\begin{equation*}
\text { L.H.S.of }(1)=\left(\mathrm{m}^{2}+3 \mathrm{n}^{2}\right) \mathrm{z}_{0}^{3}\left(\mathrm{~A}^{2}+3 \mathrm{~B}^{2}\right) \tag{7}
\end{equation*}
$$

On comparing the R.H.S. of (3) and (7), note that we have to choose A and B so that $\left(A^{2}+3 B^{2}\right)$ is a perfect cubical integer. Choosing

$$
\mathrm{A}=\mathrm{a}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right), \mathrm{B}=\mathrm{b}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right)
$$

it is seen that

$$
A^{2}+3 B^{2}=\left(a^{2}+3 b^{2}\right)^{3}
$$

and thus, one obtains

$$
\begin{equation*}
\mathrm{z}=\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right) \mathrm{z}_{0} \tag{9}
\end{equation*}
$$

Substituting (8) in (5), we have

$$
\left.\begin{array}{l}
\mathrm{u}=\mathrm{b}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right) \mathrm{v}_{0} \mp \mathrm{a}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right) \mathrm{u}_{0} \\
\mathrm{v}=\mathrm{a}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right) \mathrm{v}_{0} \pm 3 \mathrm{~b}\left(\mathrm{a}^{2}+3 \mathrm{~b}^{2}\right) \mathrm{u}_{0} \tag{10}
\end{array}\right)
$$

In view of (2), we get

$$
\left.\begin{array}{l}
x=(b+a)\left(a^{2}+3 b^{2}\right) v_{0}+\left(a^{2}+3 b^{2}\right)(\mp a \pm 3 b) u_{0}-1 \\
y=(b-a)\left(a^{2}+3 b^{2}\right) v_{0} \mp\left(a^{2}+3 b^{2}\right)(a+3 b) u_{0}+1 \tag{11}
\end{array}\right)
$$

Thus, (9) and (11) represent the general form of integral solutions to (1).

Note :

It is worth to mention that

$$
\mathrm{A}^{2}+\mathrm{DB}^{2} \text { is a perfect cubical integer when }
$$

$$
A=a\left(a^{2}-9 b^{2}\right), B=b\left(3 a^{2}-3 b^{2}\right)
$$

In this case, the general form of integer solution to (1) is given by
$\left.x=\left[a\left(a^{2}-9 b^{2}\right)+b\left(3 a^{2}-3 b^{2}\right)\right] v_{0} \pm\left[-a\left(a^{2}-9 b^{2}\right)+3 b\left(3 a^{2}-3 b^{2}\right)\right] u_{0}-1\right)$
$\mathrm{y}=\left[-\mathrm{a}\left(\mathrm{a}^{2}-9 \mathrm{~b}^{2}\right)+\mathrm{b}\left(3 \mathrm{a}^{2}-3 \mathrm{~b}^{2}\right)\right] \mathrm{v}_{0} \mp\left[\mathrm{a}\left(\mathrm{a}^{2}-9 \mathrm{~b}^{2}\right)+3 \mathrm{~b}\left(3 \mathrm{a}^{2}-3 \mathrm{~b}^{2}\right)\right] \mathrm{u}_{0}+1$
$z=\left(a^{2}+3 b^{2}\right) z_{0}$

A few examples are presented in the following Table:

m	n	u_{0}	v_{0}	z_{0}	a	b	x	y	Z
2	1	1	2	1	1	1	23	-15	4
							$\mathbf{7}$	$\mathbf{1 7}$	4
							-9	25	4
$\mathbf{1}$		$\mathbf{0}$	$\mathbf{0}$	1	1	1	1	-25	$\mathbf{9}$
							$-\mathbf{9}$	$\mathbf{9}$	4

To analyze the nature of solutions, one has to go in for particular values of $\mathrm{m}, \mathrm{n}, \mathrm{u}_{0}, \mathrm{v}_{0}, \mathrm{z}_{0}$. Here we present the solutions to (1) and a few properties for $\mathrm{m}=1, \mathrm{n}=0, \mathrm{v}_{0}=1, \mathrm{u}_{0}=0, \mathrm{z}_{0}=1$ from (12). The solutions to (1) under consideration is

$$
\left.\begin{array}{l}
x=a^{3}-9 a b^{2}+3 a^{2} b-3 b^{3}-1 \tag{13}\\
y=3 a^{2} b-3 b^{3}-a^{3}+9 a b^{2}+1 \\
z=a^{2}+3 b^{2}
\end{array}\right)
$$

We observe the following relations among the solutions.

1) $x+y$ is a Nasty number when $a=\left(2^{4 \alpha-2}+1\right) q^{2}, b=2^{2 \alpha} q^{2}$
2) $\quad \frac{3 b(x-y+2)}{2}$ is a Nasty number.
3) When $a=3 b, x-y+2=0$ and therefore $x^{3}-y^{3}+8=-6 x y$
4) When $a=3 b, 2 z$ is a Nasty number.
5)
6) When $a=3 b, 36(x+y)$ is a cubical integer and $z-6 b^{2}(y-x)=0$
7) $\frac{a(x+y)}{6}$ is a Nasty number.
8) $\quad a(x+y)$ is 6 times the area of the Pythagorean Triangle $\left(2 a b, a^{2}-b^{2}, a^{2}+b^{2}\right)$
9) $\quad x-y+6 a z+2$ is a cubical integer.
10)

$(x-y+2)^{2}=4\left(z-3 b^{2}\right)\left(z-12 b^{2}\right)^{2}$
Representing the solutions x, y, z in (13) by the notations $x(a, b), y(a, b), z(a, b)$ respectively, the following relations are observed.
a)
$x(a, b)+x(-a,-b)=-2$
b)

If $a>3 b, \frac{3 b}{2}[x(a, b)-x(-a, b)]$ is a Nasty number.
c)
$x(-a, b)+y(a,-b)=0$
d) $\quad \frac{a}{6}[y(a, b)-y(a,-b)]$ is a Nasty number
e) $\quad x(a,-b)+y(a, b)=0$
f) $\quad x(-a, b)+x(a,-b)=-2$
g) $\quad y(-a, b)-x(a, b)=2$
h) $\quad y(a,-b)+y(9-a, b)=2$
i) If $a>b, \frac{a}{6}[y(a, b)+x(a, b)]$ is a Nasty number.
j) $\quad x(-a, b)-y(a, b)=-2$
k) $\quad x(a, b)+y(a,-b)=0$

1) $\quad a\left[y(a, 1)-y(a,-1)=12\left(P P_{a}-T_{a}\right)\right.$
m) $\quad a[y(a, 1)-y(a,-1)]=12\left(P P_{a}-6 O b_{a}\right)$
n) $\quad a[y(a, 1)+x(a, 1)]=36 \operatorname{Th}_{(a-1)}=a[y(a, 1)-y(a,-1)]$
о) $\quad y\left(2^{n}, 1\right)+x\left(2^{n}, 1\right)=6\left(3 J_{2 n}\right)=6\left(j_{2 n}-2\right)$
p) $\quad b\left[y(1+2 b, b)+x(1+2 b, b)+y(1, b)+x(1, b)=48\left(T_{b}\right)^{2}\right.$
q) $\quad z(a+3 b, a-b)=4 a^{2}+12 b^{2}=4 z$
r) $z(a+6 b, a-2 b)-4 z(a, b)=(6 b)^{2}$, a perfect square.
s) $\quad z(a+6 b, a-2 b)-16 z \equiv 0(\bmod 12)$

$$
z(a+9 b, a-3 b)-4 z \text { is a Nasty number. }
$$

II. Conclusion:

In this paper, we have made an attempt to find a general form of non-zero distinct integer solutions to the nonhomogeneous cubic equation with three unknowns given by $x^{2}+y^{2}+x y+x-y+1=\left(m^{2}+3 n^{2}\right) z^{3}$. To conclude, one may search for other choices of general form of integer solutions to the cubic equation with three unknowns in title.

References:

[1]. L.E. Dickson, History of Theory of Numbers, Chelsea publishing company, Vol.II, New York, 1952.
[2]. R.D. Carmichael, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, 1959.
[3]. L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[4]. S.G. Telang, Number Theory, Tata Mcgrow Hill Publishing company, NewDelhi, 1996.
[5]. M.A. Gopalan, G. Srividhya, Integral solutions of ternary cubic diophantine equation $X^{3}+y^{3}=z^{2}$, Acta Ciencia Indica, Vol.XXXVII, No.4, 805-808, 2011.
[6]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, On the ternary non-homogeneous Cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, Impact journal of science and Technology, Vol.7, No.1, 41-45, 2013.
[7]. M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, On homogeneous cubic equation with three unknowns $\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{z}^{2}=2 \mathrm{kxyz}$, Bulletin of Mathematics and Statistics Research, Vol.1(1), 13-15, 2013.
[8]. M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+\mathrm{x}+\mathrm{y}+\mathrm{z}=0$,Impact J.Sci.Tech; Vol.7(1), 21-25, 2013
[9]. M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0$,Impact J.Sci.Tech; Vol.7(1), 51-55, 2013
[10]. S. Vidhyalakshmi, Ms. T.R. Usharani, and M.A.Gopalan, Integral Solutions of the Ternary cubic Equation $5\left(x^{2}+y^{2}\right)-9 x y+x+y+1=35 z^{3}$, International Journal of Research in Engineering and Technology, Vol.3(11), 449-452, Nov 2014.
[11].]M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Integral solutions of $x^{3}+y^{3}+z^{3}=3 x y z+14(x+y) w^{3}$, International Journal of Innovative Research and Review, Vol.2, No.4, 18-22, Oct-Dec 2014.
[12]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Non-homogeneous cubic equation with three unknowns $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=27 z^{3}$, International Journal of Engineering Science and Research Technelogy, Vol.3, No.12, 138-141, Dec 2014.
[13]. M.A.Gopalan, N. Thiruniraiselvi, R. Sridevi, On the ternary cubic equation $5\left(x^{2}+y^{2}\right)-8 x y=74\left(k^{2}+s^{2}\right) z^{3}$, International Journal of Multidisciplinary Research and Modern Engineering, Vol.1(1), 317-319, 2015.
[14]. M.A.Gopalan, N. Thiruniraiselvi, V. Krithika, On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$, International Journal of Recent Scientific Research, Vol.6(9), 6197-6199, 2015.
[15]. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, IJAR, Vol.1, Issue 8, 209-212, 2015.
[16]. G. Janaki and P. Saranya, On the ternary Cubic diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research-online, Vol.5, Issue 3, 227-229, March 2016.
[17]. R. Anbuselvi, K. Kannan, On Ternary cubic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$, International Journal of scientific Research, Vol.5, Issue 9, 369-375, Sep 2016.
[18]. A. Vijayasankar, M.A. Gopalan, V. Krithika, On the ternary cubic Diophantine equation $2\left(x^{2}+y^{2}\right)-3 x y=56 z^{3}$, Worldwide Journal of Multidisciplinary Research and Development, Vol.3, Issue 11, 6-9, 2017.
[19]. G. Janaki and C. Saranya, Integral Solutions Of The Ternary Cubic Equation
$3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, IRJET, Vol.4, Issue 3, 665-669, 2017.
[20]. Dr.R. Anbuselvi, R. Nandhini, Observations on the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=52 z^{3}$, International Journal of Scientific Development and Research Vol. 3, Issue 8, 223-225, August 2018.
[21]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation
$3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=111 z^{3}$, International Journal of Engineering and technology, Vol.4, Issue 5, 105-107, Sep-Oct 2018.
[22]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $(x+y)^{2}-3 x y=12 z^{3}$, IJCESR,Vol.5, Issue 1, 68-70, 2018
[23]. A. Vijayasankar, Sharadha Kumar , M.A.Gopalan, On Non-Homogeneous Ternary Cubic Equation $\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{x}+\mathrm{y}=2 \mathrm{z}\left(2 \mathrm{z}^{2}-\alpha^{2}+1\right)$, International Journal of Research Publication and Reviews, Vol.2(8), 592-598, 2021.
[24]. S. Vidhyalakshmi, J. Shanthi, K. Hema, M.A. Gopalan, Observation on the paper entitled Integral Solution of the homogeneous ternary cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}=52(\mathrm{x}+\mathrm{y}) \mathrm{z}^{2}$, EPRA IJMR, Vol.8, Issue 2, 266-273, 2022.

