General Form of Integral Solutions to the Ternary Non-**Homogeneous Cubic Equation**

 $x^{2} + y^{2} + xy + x - y + 1 = (m^{2} + 3n^{2})z^{3}$

S.Vidhyalakshmi¹, M.A.Gopalan²

¹Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

²Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract:

The purpose of this paper is to obtain a general form of non-zero distinct integral solutions of ternary nonhomogeneous cubic diophantine equation $x^2 + y^2 + xy + x - y + 1 = (m^2 + 3n^2)z^3$.

Keywords: Ternary cubic equation, Non-homogeneous cubic, Integer solutions

Date of Submission: 23-09-2022

Date of Acceptance: 08-10-2022 **Notations:**

 $T_{\rm n}$ -Triangular number of rank n ~ , $~Ob_{\rm n}$ -Oblong number of rank n

 Th_{n} -Tetrahedral number of rank n $, \ PP_{n}$ -Pentagonal Pyramidal number of rank n

 ${f J}_{
m n}$ -Jacobsthal number of rank n $\,$, $\,{f J}_{
m n}$ -Jacobsthal-Lucas number of rank n

I. **Introduction:**

The theory of Diophantine equations offers a rich variety of fascinating problems. In particular, cubic diophantine equations, homogeneous and non-homogeneous have aroused the interest of numerous mathematicians since antiquity [1-4]. In this context, one may refer [5-24] for various problems on the cubic diophantine equations with three variables, where, in each of the problems, different sets of non-zero integer solutions are obtained. However, often we come across homogeneous and non-homogeneous cubic equations and as such one may require its integral solution in its most general form. It is towards this end, this paper concerns with the problem of determining a general form of non-trivial integral solutions of the nonhomogeneous cubic equation with three unknowns given by $x^2 + y^2 + xy + x - y + 1 = (m^2 + 3n^2)z^3$.

Method of Analysis:

The ternary non-homogeneous cubic diophantine equation to be solved for its distinct non-zero integral solution is

$$x^{2} + y^{2} + x y + x - y + 1 = (m^{2} + 3n^{2})z^{3}$$
(1)

where m, n are not simultaneously zero. Introduction of the linear transformations

$$x = u + v - 1, y = u - v + 1$$
 (2)

in (1) leads to

$$v^{2} + 3u^{2} = (m^{2} + 3n^{2})z^{3}$$
(3)

(5)

(8)

Let \mathbf{V}_0 , \mathbf{u}_0 , \mathbf{Z}_0 be any given non-zero integer solution to (3) so that

$$v_0^2 + 3u_0^2 = (m^2 + 3n^2)z_0^3$$
(4)

Now, consider

$$\mathbf{v} = \mathbf{A}\mathbf{v}_0 \pm 3\mathbf{B}\mathbf{u}_0, \mathbf{u} = \mathbf{B}\mathbf{v}_0 \mp \mathbf{A}\mathbf{u}_0$$

where A, B are non-zero integers to be determined such that (5) satisfies (3). Substituting (5) in (3), we have

L.H.S.of (3) =
$$(v_0^2 + 3u_0^2)(A^2 + 3B^2)$$
 (6)

In view of (4), it is seen that

L.H.S.of (1) =
$$(m^2 + 3n^2) z_0^3 (A^2 + 3B^2)$$
 (7)

On comparing the R.H.S. of (3) and (7), note that we have to choose A and B so that

$$(A^2 + 3B^2)$$
 is a perfect cubical integer. Choosing
 $A = a(a^2 + 3b^2), B = b(a^2 + 3b^2)$

it is seen that

$$A^2 + 3B^2 = (a^2 + 3b^2)^3$$

and thus, one obtains

$$z = (a^2 + 3b^2)z_0$$
 (9)

Substituting (8) in (5), we have

$$u = b(a^{2} + 3b^{2})v_{0} \mp a(a^{2} + 3b^{2})u_{0},$$

$$v = a(a^{2} + 3b^{2})v_{0} \pm 3b(a^{2} + 3b^{2})u_{0}$$
(10)

In view of (2), we get

$$x = (b+a)(a^{2}+3b^{2})v_{0} + (a^{2}+3b^{2})(\mp a \pm 3b)u_{0} - 1,$$

$$y = (b-a)(a^{2}+3b^{2})v_{0} \mp (a^{2}+3b^{2})(a+3b)u_{0} + 1$$
(11)

Thus, (9) and (11) represent the general form of integral solutions to (1). **Note :**

It is worth to mention that

 $A^2 + DB^2$ is a perfect cubical integer when

$$A = a(a^2 - 9b^2), B = b(3a^2 - 3b^2)$$

In this case, the general form of integer solution to (1) is given by

$$x = [a(a^{2}-9b^{2}) + b(3a^{2}-3b^{2})]v_{0} \pm [-a(a^{2}-9b^{2}) + 3b(3a^{2}-3b^{2})]u_{0} - 1$$

$$y = [-a(a^{2}-9b^{2}) + b(3a^{2}-3b^{2})]v_{0} \mp [a(a^{2}-9b^{2}) + 3b(3a^{2}-3b^{2})]u_{0} + 1$$

$$z = (a^{2}+3b^{2}) z_{0}$$
(12)

A few examples are presented in the following Table:

Table-Examples									
m	n	u ₀	V ₀	Z ₀	а	b	Х	У	Z
2	1	1	2	1	1	1	23	-15	4
							7	17	4
							-9	25	4
							-25	9	4
1	0	0	1	1	1	1	-9	9	4
							15	-15	4

To analyze the nature of solutions, one has to go in for particular values of m, n, u_0, v_0, z_0 . Here we present the solutions to (1) and a few properties for $m = 1, n = 0, v_0 = 1, u_0 = 0, z_0 = 1$ from (12). The solutions to (1) under consideration is

$$\begin{array}{l} x = a^{3} - 9ab^{2} + 3a^{2}b - 3b^{3} - 1 \\ y = 3a^{2}b - 3b^{3} - a^{3} + 9ab^{2} + 1 \\ z = a^{2} + 3b^{2} \end{array}$$
(13)

11/6 ٥h the following relation a the soluti

We observe the following relations among the solutions.
1)
$$x + y$$
 is a Nasty number when $a = \left(2^{4a-2} + 1\right)q^2$, $b = 2^{2a}q^2$
2) $\frac{3b(x - y + 2)}{2}$ is a Nasty number.
3) When $a = 3b$, $x - y + 2 = 0$ and therefore $x^3 - y^3 + 8 = -6xy$
4) When $a = 3b$, $2z$ is a Nasty number.
5) When $a = 2b$, $y + bz - x - 2$ and $\frac{3(x + y)}{2}$ are cubical integers.
6) When $a = 3b$, $36(x + y)$ is a cubical integer and $z - 6b^2(y - x) = 0$
7) $\frac{a(x + y)}{6}$ is a Nasty number.
8) $a(x + y)$ is 6 times the area of the Pythagorean Triangle $(2ab, a^2 - b^2, a^2 + b^2)$
9) $x - y + 6az + 2$ is a cubical integer.
10) $(x - y + 2)^2 = 4(z - 3b^2)(z - 12b^2)^2$
11) Representing the solutions x, y, z in (13) by the notations $x(a,b), y(a,b), z(a,b)$
respectively, the following relations are observed.
a) $x(a,b) + x(-a,-b) = -2$
b) If $a > 3b, \frac{3b}{2}[x(a,b) - x(-a,b)]$ is a Nasty number.
c) $x(-a,b) + y(a,-b) = 0$
d) $\frac{a}{6}[y(a,b) - y(a,-b)]$ is a Nasty number.
e) $x(a,-b) + y(a,-b) = 0$
1) $x(-a,b) + x(a,-b) = -2$
g) $y(-a,b) - x(a,b) = 2$
h) $y(a,-b) + y(9 - a,b) = 2$
i) If $a > b, \frac{a}{6}[y(a,b) + x(a,b)]$ is a Nasty number.
j) $x(-a,b) - y(a,b) = -2$
k) $x(a,b) + y(a,-b) = 0$
1) $a[y(a,1) - y(a,-1)] = 12(PP_a - T_a)$
m) $a[y(a,1) - y(a,-1)] = 12(PP_a - T_a)$
m) $a[y(a,1) - y(a,-1)] = 12(PP_a - GOb_a)$
n) $a[y(a,1) - y(a,-1)] = 12(PP_a - GOb_a)$
n) $a[y(a,1) - y(a,-1)] = 12(PP_a - GOb_a)$
n) $a[y(a,1) + x(a,1)] = 36Th_{(a-1)} = a[y(a,1) - y(a,-1)]$
o) $y(2^n, 1) + x(2^n, 1) = 6(3J_{2n}, -2)$
p) $b[y(1 + 2b, b) + x(1 + 2b, b) + y(1, b) + x(1, b) = 48(T_b)^2$
q) $z(a + 3b, a - b) = 4a^2 + 12b^2 = 4z$
r) $z(a + 6b, a - 2b) - 4z(a, b) = (6b)^2$, a perfect square.
s) $z(a + 6b, a - 2b) - 16z = 0(mod 12)$

t)

z(a+9b, a-3b)-4z is a Nasty number.

II. Conclusion:

In this paper, we have made an attempt to find a general form of non-zero distinct integer solutions to the non-homogeneous cubic equation with three unknowns given by $x^2 + y^2 + xy + x - y + 1 = (m^2 + 3n^2)z^3$. To conclude, one may search for other choices of general form of integer solutions to the cubic equation with three unknowns in title.

References:

- [1]. L.E. Dickson, History of Theory of Numbers, Chelsea publishing company, Vol.II, New York, 1952.
- [2]. R.D. Carmichael, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, 1959.
- [3]. L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
- [4]. S.G. Telang, Number Theory, Tata Mcgrow Hill Publishing company, NewDelhi, 1996.
- [5]. M.A. Gopalan, G. Srividhya, Integral solutions of ternary cubic diophantine equation $x^3 + y^3 = z^2$, Acta Ciencia Indica, Vol.XXXVII, No.4, 805-808, 2011.
- [6]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, On the ternary non-homogeneous Cubic equation $x^3 + y^3 3(x + y) = 2(3k^2 2)z^3$, Impact journal of science and Technology, Vol.7, No.1, 41-45, 2013.
- [7]. M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, On homogeneous cubic equation with three unknowns $\mathbf{x}^2 \mathbf{v}^2 + \mathbf{z}^2 = 2\mathbf{k}\mathbf{x}\mathbf{v}\mathbf{z}$. Pullatin of Mathematics and Statistics Passarab. Vol.1(1), 13, 15, 2013.
- $x^2 y^2 + z^2 = 2kxyz$, Bulletin of Mathematics and Statistics Research, Vol.1(1), 13-15, 2013. [8]. M.A.Gopalan, S.Vidhyalakshmi, K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $x^3 + y^3 + z^3 + x + y + z = 0$, $x = y_1 + y_2 + z_2 = 0$
- $x^{3} + y^{3} + z^{3} + x + y + z = 0$, Impact J.Sci.Tech; Vol.7(1), 21-25, 2013 [9]. M.A.Gopalan, S.Vidhyalakshmi, K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $x^{3} + y^{3} + z^{3} - (x + y + z) = 0$, Impact J.Sci.Tech; Vol.7(1), 51-55, 2013
- [10]. S. Vidhyalakshmi, Ms. T.R. Usharani, and M.A.Gopalan, Integral Solutions of the Ternary cubic Equation $5(x^2 + y^2) 9xy + x + y + 1 = 35z^3$, International Journal of Research in Engineering and Technology, Vol.3(11), 449-452, Nov 2014.
- [11]. JM.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Integral solutions of x³ + y³ + z³ = 3xyz + 14(x + y)w³, International Journal of Innovative Research and Review, Vol.2, No.4, 18-22, Oct-Dec 2014.
 [12]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Non-homogeneous cubic equation with three unknowns
- [12]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Non-homogeneous cubic equation with three unknowns $3(x^2 + y^2) 5xy + 2(x + y) + 4 = 27z^3$, International Journal of Engineering Science and Research Technelogy, Vol.3, No.12, 138-141, Dec 2014.
- [13]. M.A.Gopalan, N. Thiruniraiselvi, R. Sridevi, On the ternary cubic equation $5(x^2 + y^2) 8xy = 74(k^2 + s^2)z^3$, International Journal of Multidisciplinary Research and Modern Engineering, Vol.1(1), 317-319, 2015.
- [14]. M.A.Gopalan, N. Thiruniraiselvi, V. Krithika, On the ternary cubic diophantine equation $7x^2 4y^2 = 3z^3$, International Journal of Recent Scientific Research, Vol.6(9), 6197-6199, 2015.
- [15]. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, On ternary cubic diophantine equation $3(x^2 + y^2) 5xy + x + y + 1 = 12z^3$, IJAR, Vol.1, Issue 8, 209-212, 2015.
- [16]. G. Janaki and P. Saranya, On the ternary Cubic diophantine equation $5(x^2 + y^2) 6xy + 4(x + y) + 4 = 40z^3$, International Journal of Science and Research-online, Vol.5, Issue 3, 227-229, March 2016.
- [17]. R. Anbuselvi, K. Kannan, On Ternary cubic Diophantine equation $3(x^2 + y^2) 5xy + x + y + 1 = 15z^3$, International Journal of scientific Research, Vol.5, Issue 9, 369-375, Sep 2016.
- [18]. A. Vijayasankar, M.A. Gopalan, V. Krithika, On the ternary cubic Diophantine equation 2(x² + y²) 3xy = 56z³, Worldwide Journal of Multidisciplinary Research and Development, Vol.3, Issue 11, 6-9, 2017.
 [19]. G. Janaki and C. Saranya, Integral Solutions Of The Ternary Cubic Equation

$$3(x^2 + y^2) - 4xy + 2(x + y + 1) = 972z^3$$
, IRJET, Vol.4, Issue 3, 665-669, 2017

- [20]. Dr.R. Anbuselvi, R. Nandhini, Observations on the ternary cubic Diophantine equation $x^2 + y^2 xy = 52z^3$, International Journal of Scientific Development and Research Vol. 3, Issue 8, 223-225, August 2018.
- [21]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $3(x^2 + y^2) - 5xy + x + y + 1 = 111z^3$, International Journal of Engineering and technology, Vol.4, Issue 5, 105-107, Sep-Oct 2018.
- [22]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $(x + y)^2 3xy = 12z^3$, IJCESR, Vol.5, Issue 1, 68-70, 2018.

- [23]. A. Vijayasankar, Sharadha Kumar , M.A.Gopalan, On Non-Homogeneous Ternary Cubic Equation $x^3 + y^3 + x + y = 2z(2z^2 \alpha^2 + 1)$, International Journal of Research Publication and Reviews, Vol.2(8), 592-598, 2021.
- [24]. S. Vidhyalakshmi, J. Shanthi, K. Hema, M.A. Gopalan, Observation on the paper entitled Integral Solution of the homogeneous ternary cubic equation $x^3 + y^3 = 52(x + y)z^2$, EPRA IJMR, Vol.8, Issue 2, 266-273, 2022.

S.Vidhyalakshmi, et. al. "General Form of Integral Solutions to the Ternary Non-Homogeneous Cubic Equation $x^2 + y^2 + xy + x - y + 1 = (m^2 + 3n^2)z^3$." *IOSR Journal of Mathematics (IOSR-JM)*, 18(5), (2022): pp. 29-33.