Identity using Ramanujan Sum

Uma Dixit ${ }^{1}$, V. Kiran ${ }^{2}$
${ }^{1}$ (Department of mathematics, University post graduate college secunderabad, Osmania University, India)
${ }^{2}$ (Department of mathematics, university college of science, Osmania University, India)

Abstract

: In Number theory, Ramanujan's sum, usually denoted $c_{a}(n)$, is a function of two positive integer variables q and n defined by the formula. where $(a, q)=1$ means that a only takes on values coprime to q. Also a real or complex valued function defined on the set of all positive integers is called an arithmetic function and an arithmetic function is said to be completely multiplicative function if f is not identically zero and $f(m n)=$ $f(m) f(n)$ for all m, n. we know the reduced residue system modulo N is the set of all integers m with $\operatorname{gcd}(m, N)=$ 1 and $0 \leq m \leq N$.

In this paper we will use reduced residue system modulo r^{k} and prove few results.

Key Word: Ramanujan sum, Arithmetic function, Multiplicative function, reduced residue system

 modulo integer
I. Introduction

A real or complex valued function defined on the set of all positive integers is called an arithmetic function and an arithmetic function is said to be completely multiplicative function if f is not identically zero and $f(m n)=f(m) f(n)$ for all m, n. The Euler Totient function $\varphi(n)$ is defined to be the number of positive integers not exceeding n which are relatively prime to n.

$$
\begin{equation*}
\emptyset(n)=\sum_{(d, n)=1}^{d / n} 1 \tag{1.1}
\end{equation*}
$$

If a and b are integers, not both zero, and k is any integer greater than 1 , then $(a, b)_{k}$ denotes the largest common divisor of a and b which is also a $k^{\text {th }}$ power. This will be referred to as $k^{\text {th }}$ power greatest common divisor of a and b.
(1.2) If $(\mathrm{a}, \mathrm{b})_{\mathrm{k}}=1$, then a is said to be relatively K-Prime to b .

Ecford Cohen [3] introduced a function $\emptyset_{k}(n)$ which denotes the number of non negative integers less than N^{k} which are relatively K-Prime to N^{k}.

$$
\begin{equation*}
\sum_{d / n} \emptyset_{k}(N / d)=N^{k} \tag{1.3}
\end{equation*}
$$

(1.4) The Mobius function $\mu(\mathrm{n})$ is defined by

$$
\mu(n)=\left\{\begin{array}{ccc}
1 & \text { if } n=1 \\
(-1)^{k} & \text { if } n=p_{1} p_{2} \ldots p_{k} \\
0 & \text { otherwise }
\end{array}\right.
$$

where p_{i} 's are distinct primes.
By the mobius inversion formula, we get that
(1.5) $\quad \emptyset_{k}(N)=\sum_{d / N} d^{k} \mu(N / d)$

Any system of $\emptyset(n)$ integers, where $\emptyset(n)$ is the totient function, representing all the residue classes relatively prime to n is called a reduced residue system.

II. Preliminaries

We shall define $C_{k}(n, r)$ is Ramanujan's sum by
(2.1) $C_{k}(n, r)=\sum_{\left(x, r^{k}\right)_{k}=1} e\left(n x, r^{k}\right)\left(e(a, b)=e^{\frac{2 \pi i a}{b}}, b>0\right)$

Where summation is taken over a K-reduced residue system $\left(\bmod r^{k}\right)$

That is, over all $x\left(\bmod r^{k}\right)$ Such that $\left(x, r^{k}\right)_{k}=1$
The function $C_{k}(n, r)$ has the following property
(2.2) $\quad C_{k}(n, r)=\sum_{d \mid(n, r)} d^{k} \mu\left(\frac{r}{d}\right)$, Where $\mu(d)$ denotes the Mobius function.

A single valued function $\mathrm{f}(\mathrm{n}, \mathrm{r})$ having values in the field of complex numbers is said to belong to the class E_{k} if for all n and $r, f(n, r)=f\left(\left(n, r^{k}\right)_{k}, r\right)$

In particular, $f \in E_{1} \Leftrightarrow f(n, r)=f((n, r), r)$ for all n, r
Let $g(r)$ be an arithmetical function, then define,
(2.3) $\quad G_{s}(r)=\sum_{d \mid r} d^{s} g\left(\frac{r}{d}\right)$
(2.4) $\quad T_{k}^{s}(n, r)=\sum_{d^{k} \mid\left(n, r^{k}\right)_{k}} d^{s} g\left(\frac{r}{d}\right)$

$$
\begin{equation*}
G_{s}^{*}(n, r)=m^{s} G_{s}\left(\frac{r}{m}\right) \text { where } m^{k}=\frac{r^{k}}{\left(n, r^{k}\right)_{k}} \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
G_{k S}^{*}(n, r)=r^{*} \sum_{d \mid r} \tau_{k}^{k(s+1)}\left(e^{k}, r\right) C_{k}(n, d) \tag{2.6}
\end{equation*}
$$

In Particular, substituting $s=0, g(r)=\mu(r)$ in (2.3) and (2.5)

$$
\begin{align*}
& G_{\circ}(r)=\sum_{d \mid r} d^{\circ} \mu\left(\frac{r}{d}\right) \tag{2.7}\\
& =\sum_{d \mid r} \mu\left(\frac{r}{d}\right) \\
& =\left\{\begin{array}{ll}
1 & \text { if } r=1 \\
0 & \text { if } r>1
\end{array}\right. \text { and }
\end{align*}
$$

$$
\begin{gather*}
G_{\circ}^{*}(n, r)=G_{\circ}\left(\frac{r}{m}\right) \tag{2.8}\\
= \begin{cases}1 & \text { if } r=m \\
0 & \text { if } r \neq m\end{cases} \\
= \begin{cases}1 & \text { if }\left(n, r^{k}\right)_{k}=1 \\
0 & \text { if }\left(n, r^{k}\right)_{k} \neq 1\end{cases}
\end{gather*}
$$

Substituting $s=k, n=e^{k}$ and $g(r)=\mu(r)$ in (2.4)

$$
\begin{gathered}
\tau_{k}^{k}\left(e^{k}, r\right)=\sum_{d^{k} \mid\left(e^{k}, r^{k}\right)_{k}} d^{k} \mu\left(\frac{r}{d}\right) \\
=\sum_{d \mid(e, r)} d^{k} \mu\left(\frac{r}{d}\right) \\
=\frac{\Phi_{k}(r) \mu(m)}{\Phi_{k}(m)} \text { where } m=\frac{r}{(n, r)}
\end{gathered}
$$

Therefore,

$$
\begin{equation*}
\tau_{k}^{k}\left(e^{k}, r\right)=\frac{\Phi_{k}(r) \mu\left(\frac{r}{e}\right)}{\Phi_{k}\left(\frac{r}{e}\right)} \text { if e|r } \tag{2.9}
\end{equation*}
$$

We shall now prove few Lemmas required for our main result
2.1 Lemma: If $d_{1}\left|r, d_{2}\right| r,\left(x, d_{1}^{k}\right)_{k}=1,\left(y, d_{2}\right)_{k}^{k}=1 d_{1}^{k} \geq x>0, d_{2}^{k} \geq y>0$. Then

$$
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} e\left(a x, d_{1}^{k}\right) e\left(b y, d_{2}^{k}\right)=\left\{\begin{aligned}
r^{k} e\left(n x, d^{k}\right) & \text { if } x=y, d=d_{1}=d_{2} \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Proof: If $d_{1}\left|r, d_{2}\right| r$ then $r=d_{1} e_{1}=d_{2} e_{2}$
Since $\quad n \equiv a+b\left(\bmod r^{k}\right)$, We have $b \equiv(n-a)\left(\bmod r^{k}\right)$
Consider

$$
\begin{align*}
& \sum_{n \equiv a+b\left(\bmod r^{k}\right)} e\left(a x, d_{1}^{k}\right) e\left(b y, d_{2}^{k}\right)=\sum_{a=1}^{r^{k}} e\left(a x, d_{1}^{k}\right) e\left((n-a) y, d_{2}^{k}\right) \\
&=\sum_{a=1}^{r^{k}} e\left(a x, d_{1}^{k}\right) e\left(n y-a y, d_{2}^{k}\right) \\
&=\sum_{a=1}^{r^{k}} e^{\frac{2 \pi a x i}{d_{1}^{k}}} e^{\frac{2 \pi(n y-a y) i}{d_{2}^{k}}} \\
&=e^{\frac{2 \pi n y i}{d_{2}^{k}}} \sum_{a=1}^{r^{k}} e^{\frac{2 \pi a x i}{d_{1}^{k}}} e^{\frac{-2 \pi a y i}{d_{2}^{k}}} \\
&= e^{\frac{2 \pi n y i}{d_{2}^{k}}} \sum_{a=1}^{r^{k}} e^{\frac{2 \pi a x e_{1}^{k_{i}} i}{r^{k}} e^{\frac{-2 \pi a y e_{2}^{k_{i}}}{r^{k}}}} \\
&=e\left(n y, d_{2}^{k}\right) \sum_{a=1}^{r^{k}} e\left(a\left(x e_{1}^{k}-y e_{2}^{k}\right), r^{k}\right) \tag{2.1.1}
\end{align*}
$$

The hypothesis of the lemma and the definitions of e_{1} and e_{2} show that the following statements are equivalent.

$$
\begin{gather*}
x e_{1}^{k} \equiv y e_{2}^{k}\left(\bmod r^{k}\right) \Leftrightarrow x e_{1}^{k}=y e_{2}^{k} \tag{2.1.2}\\
\Leftrightarrow x d_{2}^{k}=y d_{1}^{k} \\
\Leftrightarrow d_{1}=d_{2}, x=y
\end{gather*}
$$

Now, define

$$
\sum_{a=1}^{r^{k}} e^{\frac{2 n \pi a i}{b^{s}}}=\left\{\begin{array}{l}
b^{s} \text { if } b^{s} \mid n \\
0 \text { otherwise }
\end{array}\right.
$$

Then (2.1.1) becomes

$$
\begin{gathered}
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} e\left(a x, d_{1}^{k}\right) e\left(b y, d_{2}^{k}\right)=\left\{\begin{array}{cc}
r^{k} e\left(n y, d_{2}^{k}\right) & \text { if } r^{k} \mid x e_{1}^{k}-y e_{2}^{k} \\
0 & \text { otherwise }
\end{array}\right. \\
=\left\{\begin{array}{cc}
r^{k} e\left(n y, d_{2}^{k}\right) & \text { if } x e_{1}^{k} \equiv y e_{2}^{k}\left(\bmod r^{k}\right) \\
0 & \text { otherwise. }
\end{array}\right. \\
=\left\{\begin{aligned}
r^{k} e\left(n x, d^{k}\right) & \text { ifd }=d_{1}=d_{2}, x=y, \quad \text { by }(2.1 .2) \\
0 & \text { otherwise }
\end{aligned}\right.
\end{gathered}
$$

Hence Lemma follows.
An immediate useful consequences of the above is
2.2 Lemma: If $d|r, c| r$ then

$$
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} C_{k}(a, d) C_{k}(b, e)= \begin{cases}r^{k} C_{k}(n, d) & \text { if } d=e \\ 0 & \text { if } d \neq e\end{cases}
$$

Proof: Suppose $d \geq x \geq 0, e \geq y \geq 0$. Then

$$
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} C_{k}(a, d) C_{k}(b, e)=\sum_{\substack{\left(x, d^{k}\right)_{k}=1 \\\left(y, e^{k}\right)_{k}=1}} \sum_{n \equiv a+b\left(\bmod r^{k}\right)} e\left(a x, d^{k}\right) e\left(b y, e^{k}\right)
$$

$$
\begin{gathered}
=\left\{\begin{array}{cc}
\sum_{\left(X, d^{k}\right)_{k}=1} & r^{k} e\left(n x, d^{k}\right) \\
0 & \text { if } x=y, d=e \\
0 & \text { otherwise }
\end{array}, \text { by lemma } 2.1\right. \\
=\left\{\begin{array}{cl}
r^{k} C_{k}(n, d) & \text { if } d=e \\
0 & \text { otherwise } .
\end{array}\right.
\end{gathered}
$$

Proving the lemma.

2.3 Lemma:

$$
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} f(a, r) g(b, r)=r^{k} \sum_{d \mid r} \alpha(d, r) \beta(d, r) C_{k}(n, d)
$$

Proof: Consider

$$
\begin{gathered}
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} f(a, r) g(b, r)=\sum_{n \equiv a+b\left(\bmod r^{k}\right)}\left(\sum_{d \mid r} \alpha(d, r) c_{k}(a, d)\right)\left(\sum_{\delta \mid r} \beta(\delta, r) c_{k}(b, \delta)\right) \\
=\sum_{n \equiv a+b\left(\bmod r^{k}\right)} \sum_{\substack{d|r \\
\delta| r}} \alpha(d, r) \beta(\delta, r) c_{k}(a, b) c_{k}(b, \delta) \\
=\sum_{\substack{d|r \\
\delta| r}} \alpha(d, r) \beta(\delta, r) \sum_{n \equiv a+b\left(\bmod r^{k}\right)} c_{k}(a, d) c_{k}(b, \delta) \\
=\sum_{d \mid r} \alpha(d, r) \beta(d, r) r^{k} c_{k}(n, d) \text { by lemma } 2.2 \\
=r^{k} \sum_{d \mid r} \alpha(d, r) \beta(d, r) c_{k}(n, d)
\end{gathered}
$$

Thus proving lemma 2.3.

III. Main Result

3.1 Theorem: If $C_{k}(n, r)$ is Ramanujan's sum then

$$
\sum_{\left(b, r^{k}\right)_{k}=1} c_{k}(n-b, r)=\mu(r) c_{k}(n, r)
$$

Proof: Let us consider

$$
\begin{aligned}
\sum_{n \equiv a+b\left(\bmod r^{k}\right)} f(a, r) G_{k s}^{*}(b, r) & =r^{k} \sum_{d \mid r} \alpha(d, r) \tau_{k}^{k(s+1)}\left(e^{k}, r\right) c_{k}(n, d) \text { by lemma } 2.3 \text { and }(2.6) \\
& =\sum_{d \mid r} \alpha(d, r) \tau_{k}^{k(s+1)}\left(e^{k}, r\right) c_{k}(n, d)
\end{aligned}
$$

In Particular

$$
\begin{gathered}
\sum_{\substack{n \equiv a+b\left(\bmod r^{k}\right)}} f(a, r) G_{o}^{*}(b, r)=\sum_{d \mid r} \alpha(d, r) \tau_{k}^{k}\left(e^{k}, r\right) c_{k}(n, d) \\
\sum_{\substack{n \equiv a+b\left(\bmod r^{k}\right) \\
\left(b, r^{k}\right)_{k}=1}} f(a, r)=\sum_{d \mid r} \frac{\alpha(d, r) \Phi_{k}(r) \mu(d) C_{k}(n, d)}{\Phi_{k}(d)} \text { by (2.8) and (2.9) }
\end{gathered}
$$

$$
\sum_{\left(b, r^{k}\right)_{k}=1} f(n-b, r)=\Phi_{k}(r) \sum_{d \mid r} \frac{\alpha(d, r) \mu(d) C_{k}(n, d)}{\phi_{k}(d)}
$$

Taking $f(n, r)=C_{k}(n, r)$, We have

$$
\alpha(d, r)=\left\{\begin{array}{cc}
1 & \text { if } d=r \\
0 & \text { otherwise } .
\end{array}\right.
$$

Then

$$
\begin{gathered}
\sum_{\left(b, r^{k}\right)_{k}=1} C_{k}(n-b, r)=\frac{\Phi_{k}(r) \mu(r) C_{k}(n, r)}{\Phi_{k}(r)} \\
=\mu(r) C_{k}(n, r)
\end{gathered}
$$

Therefore,

$$
\sum_{\left(b, r^{k}\right)_{k}=1} C_{k}(n-b, r)=\mu(r) C_{k}(n, r)
$$

3.2 Theorem:

$$
\sum_{\left(b, r^{k}\right)_{k}=1} C_{k}(n-b, r)=\Phi_{k}(r) \sum_{\substack{d \mid r \\\left(n, d^{k}\right)_{k}=1}} \frac{d^{k} \mu\left(\frac{r}{d}\right)}{\Phi_{k}(d)}
$$

Proof: Consider

$$
\begin{gathered}
\sum_{\left(b, r^{k}\right)_{k}=1} C_{k}(n-b, r)=\sum_{\left(b, r^{k}\right)_{k}=1} \sum_{d^{k} \mid\left(n-b, r^{k}\right)_{k}} d^{k} \mu\left(\frac{r}{d}\right) \\
=\sum_{\left(b, r^{k}\right)_{k}=1} \sum_{\substack{d \mid r \\
n \equiv b\left(\bmod d^{k}\right)}} d^{k} \mu\left(\frac{r}{d}\right) \\
=\sum_{d \mid r} d^{k} \mu\left(\frac{r}{d}\right) \sum_{\substack{n \equiv b\left(\bmod d^{k}\right) \\
\left(b, r^{k}\right)_{k}=1}} 1
\end{gathered}
$$

If $\left(n, d^{k}\right)_{k}=1$ where d is a divisor of r then there are exactly $\frac{\Phi_{k}(r)}{\Phi_{k}(d)}$ K-reduced residue $b\left(\bmod r^{k}\right)$ congruent to $n\left(\bmod r^{k}\right)$.
Therefore,

$$
\begin{gathered}
\sum_{\left(b, r^{k}\right)_{k}=1} C_{k}(n-b, r)=\sum_{\substack{d \mid r \\
\left(n, d^{k}\right)_{k}=1}} d^{k} \mu\left(\frac{r}{d}\right) \frac{\Phi_{k}(r)}{\Phi_{k}(d)} \\
=\Phi_{k}(r) \sum_{\substack{d \mid r \\
\left(n, d^{k}\right)_{k}=1}} \frac{d^{k} \mu\left(\frac{r}{d}\right)}{\Phi_{k}(d)}
\end{gathered}
$$

Proving the theorem.

References

[1]. Apostel, T.M, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976.
[2]. Brown, T. C. and L. C. Hsu, J. Wang, and P. J.-S. Shiue, "On a certain kind of generalized number theoretical Mobius function", The Mathematical Scientist 25 (2000), no. 2, 72-77.
[3]. Eckford Cohen, An Extension of Ramanujan's Sum II Additive properties, Duke maths J., Vol.22. 1955, pp 543-550.
[4]. Eckford Cohen, Arithmetical Inversion Formulas, Canadian J. Math., 12 (1960), pp 399-409.
[5]. Eckford Cohen, An Extension of Ramanujan's Sum, Vol.16, (1949), pp 85-90.
[6]. Haukkanen P, Classical arithmetical identities involving a generalization of Ramanujan's sum, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica Dissertationes (1988), no. 68, 69 pages
[7]. Ramanathan K. G. and M. V. Subbarao Some Generalizations of Ramanujan's Sum, Canadian Journal of Mathematics, Volume 32 , Issue 5, 01 October 1980 , pp. 1250 - 1260
[8]. Toth, L' Remarks on generalized Ramanujan sums and even functions, Acta Mathematica. Academiae Paedagogicae Ny'ıregyhaziensis (New Series)' 20 (2004), no. 2, 233-238
[9]. Umadixit, Identity using strongly multiplicative functions, MuktShabd journal, Volume IX Issue V, may/2020, pp 1350-1354.

