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Abstract 
This paper presents the power of some tests for detecting heteroscedasticity in Constant Elasticity of 

Substitution (CES) nonlinear model. The tests used include Breusch-Pagan, Glejser, White, Park and Goldfeld-

Quandt. The CES production function was transformed to intrinsically linear model through Kmenta 

linearization approach. Using the parameter estimates of the model, the residual was computed and used as the 

dependent for the auxiliary regression. The error structure data was drawn from a normal distribution with 

mean, zero and variance, 
2

 . The sample sizes for the simulation were 10 and 30, 50 and 100, 150 and 200 for 

small, medium and large sample sizes, respectively with 10,000 replications. The levels of heteroscedasticity 

introduced were 0.1, 0.5 and 0.9 for mild, moderate and severe heteroscedasticity, respectively. The result 

indicates that the power of the test for Glejser and Park tests increases as the sample size increases at every 

level of heteroscedasticity both at 1% and 5% levels of significance.    
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I. Introduction 
Regression disturbances whose variances are not constant across observations are heteroscedastic. 

Heteroscedasticity arises in numerous applications, in both cross-sectional and time series data. One of the 

assumptions of classical linear regression model (CLRM) is that the disturbances ui entering the population 
regression function (PRF) are homoscedastic; that is, they all have the same variance, σ2.  If the errors are 

heteroscedastic, the ordinary least square (OLS) estimator remains unbiased but becomes inefficient [Draper and 

Smith (1981), Neter et al. (1985)]. More importantly, estimates of the standard errors are inconsistent. The 

estimated standard errors can either be too large or small, in either case resulting in incorrect inferences. There 

are certain circumstances in which the assumption of constant error variance, homoscedasticity, in the linear 

model is not tenable; researchers have observed that heteroscedasticity is usually found in cross sectional data. 

Such as income and expenditure of individual families. Here, the assumption of homoscedasticity is not very 

plausible on a prior ground since we would expect less variation in consumption for low income families’ than 

for high income families. At low levels of income the average level of consumption is low, and variation around 

this level is restricted. This constraint is likely to be less binding at higher income levels [Paris and Houthakker 

(1955), Jan Kmenta (1971)]. 
Fasoranbaku (2005) in course of the analysis of the power of tests for homoscedasticity in a single 

equation econometric model analysed the power of the tests using aggregated and disaggregated approach. He 

showed that the three tests, Goldfeld-Quandt, Glejser and Breush-Pagan are among the most powerful while 

Park, White and Cook-Weisberg tests are the least powerful. Marie and Pegiun-Feissolle (2007) proposed two 

tests for homoscedasticity that require little knowledge of the functional relationship determining the variance of 

the error term. The idea of the first test is to approximate the true relationship by Tailor’s series expansion, 

which is essentially linearizing the function in a neighbourhood. Gianluigi, Timo and Rolf (1999) earlier applied 

this idea to non-linear variable selection, while Pegiun-Feissolle (2008) focused on causality testing in a non-

linear framework. Peguin-Feissolle (1999) also compared the power in small samples of different tests for 

conditional heteroscedasticity in which two new tests based on neural networks are proposed: the main interest 

in them arises from the fact that they do not require the exact specification of the conditional variance under the 
alternative. 

Timo (2011) presented a brief survey of nonlinear models of autoregressive conditional 

heteroscedasticity. The models in question are parametric nonlinear extensions of the original model by Engle 

(1982). After presenting the individual models, linearity testing and parameter estimation are discussed, 

forecasting volatility with nonlinear models is considered. Finally, parametric nonlinear models based on 

multiplicative decomposition of the variance received attention. Muhammed (2012) in his work titled, a study 
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on the violation of homoscedasticity assumption in linear regression models, after using different methods of 

detecting the presence of heteroscedasticity, found out that, Goldfeld-Quandt , Glejser and Park are most 

powerful while White, Breusch Pagan and Levene tests are the least powerful. 
 

II. Material and Methods 
A.  Nonlinear Regression Model 
A nonlinear regression model is one for which the first order conditions for least squares estimation of the 

parameters are nonlinear functions of the parameters. 

Suppose the postulated model is of the form 

 1 2 1 2
, , ..., , , , ...,

k j
Y f X X X u   

                                                                                           2.1 

and that (2.1) is assumed to be intrinsically nonlinear given a sample of n  observation on Y and 'X s , then we 

can write 

 1 2 1 2
, , ..., , , , ...,

i i i k i j
Y f X X X u                                                                                                 2.2 

 ,Y f X u                                                                                                                                       2.3 
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B. Production Function Nonlinear Model 

 A production function is a heuristic device that describes the maximum output that can be produced from 

different combinations of inputs using a given technology. This can be expressed mathematically as a mapping 

:
N

f
 
R R such that  Y f X , where X is a vector of factor inputs  1 2

, , ,
n

X X X
 and  f X is 

the maximum output that can be produced for a given set of inputs 
i

X


 R . This can be applied at both 

microeconomic (individual firm) and macroeconomic (overall economy) levels, [Eric (2008), Barro and Sala 

(2004)].  

Constant Elasticity of Substitution (CES) Production Function 

Solow, Minhas, Arrow and Chenery (1961) developed the Constant Elasticity of Substitution function. It can be 

expressed in the form: 

 3 3
3

1

1 2 2
1 i

u

i
Y K L e

    


 
   
   

                                                                                             2.4 

Where 

i
Y  is a vector of the dependent variables,  

1
 is the intercept ,  

2
 and 

3
 are the regression coefficients,  

K is the Capital 

L  is the Labour   

i
u is the random error. 

By applying the natural logarithms to the two sides of (3.4), gives 

     3 3

1 2 2

3

1
ln ln ln 1

i i
Y K L u

 
  



 
     
 

                                                                            2.5 

The result in (2.5) is intrinsically nonlinear since taking logarithms will not make the nonlinear function linear 

in parameters. 

The model in (2.4) is linearised using Kmenta (1967) linearisation approach. Besides, a linear Taylor Series 

expansion around 
3

0  produced an intrinsically linear model.
 

  1 3

3

1
ln ln ( )

i
Y f u 


                                                                                                                    2.6                                                                           
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By Taylor’s Series expansion, 
0 1 2

3 3 3

3
( ) (0 ) (0 ) (0 )
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2.7                                                   
where, 
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Putting (3.8), (3.10) and (3.12) into (3.7), that is,  
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Putting (3.13) into (3.6) 
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Putting (2.15) into (2.14) 
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The intrinsically linear model in 2.16 is expressed as 
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where, 
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C.  Error Variance Structures and Tests for Heteroscedasticity 

         We considered, the multiplicative heteroscedasticity error structure model discussed by Harvey (1976). 

This can be shown as follows: 

         
i i i

y x u                                                                                                                         2.18 

         Where, 
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          For 1, 2 , ,i n  where 
i

y  is the 
th

i observation, 
i

x and 
i

q are the 
th

i  I k  and  I J I   

          vectors of explanatory variables, respectively.   and   are the vectors of unknown           

         parameters.  

          Let  ,
i i
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i
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         Then we can rewrite (2.19) as 

          
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                
2

i
Z



  

        Where 
2

  and  are both unknown real constants, which determines the levels or degree of    

heteroscedasticity.  

The following five tests were considered in this paper namely, Breusch-Pagan (1979), White (1980), Glejser 

(1969), Park (1966) and Goldfeld-Quandt (1965). 

 

III. Simulation 
An infected heteroscedasticity sample using uniform distribution was used to generate data for Capital 

(K), Labour (L) and Output (Y). The study used an arbitrary initial values for 
1

 =0.2, 
2

 =0.5 and 
3

 =0.3 for 

the model. The set of parameter estimates obtained were used to compute the residuals which represented the 

dependent variable for the auxiliary regression. The error structure data were drawn from a normal distribution 

with mean, zero and variance,
2

.  
The sample sizes for the simulation were specified as 10 and 30, 50 and 100, 150 and 200 for small, 

medium and large sample sizes respectively. Each sample size was replicated in 10,000 times. The levels of 

heteroscedasticity,  , introduced were 0.1, 0.5 and 0.9 for mild, moderate and severe heteroscedasticity, 

respectively. The statistical package used for the analysis was STATA 12.0 version.  
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IV. Result 

Table 1: Power of the Tests for CES Model at 0 .01   
TEST   SAMPLE SIZE 

10 30 50 100 150 200 

BREUSCH-PAGAN 0.1 - 0.5011 0.3651 0.5625 0.4562 0.5941 

WHITE  - 0.2873 0.1368 0.0146 0.1022 0.3057 

GLEJSER  - 0.9133 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.1888 0.9830 0.9999 0.9999 1.0000 

GOLDFELD QUANDT  - - 0.0421 0.3982 0.1912 0.1646 

        

BREUSCH-PAGAN 0.5 - 0.2916 0.1981 0.3074 0.0026 0.9159 

WHITE  - 0.3062 0.4889 0.2451 0.2500 0.4280 

GLEJSER  - 0.9972 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.8127 0.9975 0.9999 1.0000 1.0000 

GOLDFELD QUANDT  - - 0.0002 0.1226 0.0000 0.0001 

        

BREUSCH-PAGAN 0.9 - 0.9103 0.5769 0.3794 0.4787 0.1879 

WHITE  - 0.2873 0.3234 0.5208 0.3492 0.0000 

GLEJSER  - 0.8822 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.5123 0.8896 0.9999 1.0000 1.0000 

GOLDFELD QUANDT  - - 0.2483 0.0022 0.0362 0.0000 

 

Table 2: Power of the Tests for CES Model at 0 .05   
TEST   SAMPLE SIZE 

10 30 50 100 150 200 

BREUSCH-PAGAN 0.1 - 0.5011 0.1604 0.3744 0.9103 0.2233 

WHITE  0.2231 0.2873 0.0726 0.5204 0.2255 0.0797 

GLEJSER  - 0.9133 0.9989 1.0000 1.0000 1.0000 

PARK  - 0.1888 0.5755 0.9999 1.0000 1.0000 

GOLDFELD QUANDT  - - 0.0114 0.0022 0.0595 0.1054 

        

BREUSCH-PAGAN 0.5 - 0.6873 0.5766 0.3769 0.4809 0.1877 

WHITE  0.2231 0.2873 0.3227 0.5206 0.3492 0.0000 

GLEJSER  1.0000 0.8851 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.1856 0.8898 0.9999 1.0000 1.0000 

GOLDFELD QUANDT  - - 0.1903 0.0022 0.0364 0.0004 

        

BREUSCH-PAGAN 0.9 - 0.9103 0.5769 0.3794 0.4787 0.0067 

WHITE  0.2231 0.2873 0.3234 0.5208 0.3492 0.0000 

GLEJSER  - 0.8822 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.5123 0.8896 0.9999 1.0000 1.0000 

GOLDFELD QUANDT  - - 0.1907 0.0022 0.0362 0.0000 

 

V. Discussion 
A test is considered to have high power, if it has a value of 0.8 and above .Table 1 shows the power of 

the tests for CES Model at 0 .01  . There is no result for sample size 10 at all levels of heteroscedasticity 

   for all the tests due to insufficient sample size. The result shows that at every level of heteroscedasticity, as 

the sample size increases, the power of the test for Glejser is very high [Machhado and Silva (2000)] while the 

power of Park test also improves as the sample size increases at every levels of heteroscedasticity. White test 

has low power [Ayoola and Olubusoye (2012)] and Goldfeld-Quandt test loses power of the test at every level 

of heteroscedasticity as sample size increases [Carmelo and Subhash (2008)]  

Table 2 shows the power of the tests for CES Model at 0.05  . The result showed that at every level 

of heteroscedasticity, as the sample size increases, the power of the test for Glejser test is high while the power 

of test for Park improves as the sample size increases at all levels of heteroscedasticity. Goldfeld-Quandt test 

has low power at every level of heteroscedasticity as sample size increases.  
 

VI. Conclusion 
 It is evident that Glejser and Park tests performed better than other tests such as Breusch-Pagan, White 

and Goldfeld-Quandt both at 1% and 5% levels of significance. Based on these facts, one can suggest the two 

tests for detecting heteroscedasticity in nonlinear models. 
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