The Collatz Conjecture: A Case Study In Mathematical Problem Solving

Maher Ali Rusho

Abstract

Most of the answers so far have been along the general lines of 'Why hard problems are important', rather than 'Why the Collatzconjecture isimportant'; I will try to address the latter. The Collatz conjecture is the simplest open problem in mathematics. You can explain it to all your non-mathematical friends, and even to small children who have just learned to divide by 2. It doesn't require understanding divisibility, just evenness. The lack of connections between this conjecture and existing mathematical theories (as complained of in some other answers) is not an inadequacy of this conjecture, but of our theories. This problem has led directly to theoretical work by Conway showing that very similar questions are formally undecidable, certainly a surprising result.

Date of Submission: 01-04-2022
Date of Acceptance: 14-04-2022

I. Introduction :

[13] Mathematical "experiments": computer visualisations are the best known example. Although in several respects unreliable, asitoften involves the reductionofthe(infinite)continuum toafinite, discreteset, theydoproduce "clues" that serve as a guide for a proof.
[I4] Probabilistic considerations: although proofs in the genuine sense of the word, what they establish is not that a mathematical object (say, a natural number) has a certain property (say, being a prime), but has that property with a certain probability.
[I5] Computer proofs: to be distinguished from computer visualisations, these proofs involve the checking of a finite, though huge amount of separate cases such that human checking is either impossible or too prone to errors and hence a computer programperformsthetask.Theresultisnotaproofintheclassical sense, sinceunavoidably a humancannotcheck theproof, one ofthe basic standards to call a proof a proof.
[I6] Metamathematical considerations: although one has a proof sat- isfying the required standards, the result is seen as paradoxical, counter- intuitive, in conflict with expectations, and hence it is questioned. It can also involve formal metamathematical results, e.g., in showing that a partic- ular problem is unsolvable.

Usually given a specific case, i.e., a particular theorem and its proof history, one will see that one itemora few of the above list willactuallybeusedintheproof search.Itisratherexceptionaltohaveacase where(nearly)alltheseelements arepresent.Thetopicof thispaper is quitesimply thepresentation (toa certaindepth) ofone such casestudy. Allelements, save[II], ofthe listare presentin one way or another.Itcanthus beconsideredan exemplar (inthe Kuhniansense), and,perhapsmoreimportantly, as farasIknow, a new exemplar. As is so often the case, in many philosophical discussions, the same typical example keeps coming back, wrongly suggesting that no other examples are available ${ }^{1}$. In addition, the problemis fairly easy to state, although the mathematics thatareused in search of a proof reach formidable heights. And, finally, it is also a problem that many mathematicians consider absolutely not interesting.Aswillbeshownhere,theproblemdefinitelyisinteresting,but then the question is
${ }^{1}$ Think, e.g., about thought experiments. A tiny set of examples keeps coming back over and over again: Galileo's thought experiment about heavy and light masses, Newton's bucket experiment concerning absolute properties such as acceleration, and Einstein's thought experiment about travelling onalightwave.Ithasledsomephilosopherstomistakenlyclaimthatthere is noreal problem aboutthoughtexperiments as they are exceptional and, hence, notimportant.

The CollatzConjecture 9 why so many think otherwise. In Section 3, I will provide some suggestions, relating to this matter.
This paper is primarily based on the overview article of Jeffrey Lagarias [2004] ${ }^{2}$ that provides an extremely detailed presentationof the problemand the attempts to deal with it.Additional sources are usedtohighlight details of the mainstory. The contrast between Lagarias' presentation and mine is that I focus on the philosophically interesting features, not necessarily the "pure" mathematical aspects. However, as should be clear, this paper is heavily indebted to the excellent work done by him.

II. The problem

Consider a function from N_{0} to N_{0}, defined as follows: $\mathrm{T}(\mathrm{n})=$
(8)
$n / 2$ if n is even
$(3 n+1) / 2$ if n is odd Next define the iterate of T as usual:

(a)

$\mathrm{T}^{(0)}(\mathrm{n})=\mathrm{n} \mathrm{T}^{(\mathrm{i}+1)}(\mathrm{n})=\mathrm{T}\left(\mathrm{T}^{\mathrm{i}}(\mathrm{n})\right)$
Thequestionisnowtoshowthatforeveryn $\in \mathrm{N}_{0}$, thereisafinitek,suchthat
$T^{(k)}(n)=1$.
Astraightforward example:taken=7, thenwehavethe followingsequence $7 \rightarrow 11 \rightarrow 17 \rightarrow 26 \rightarrow 13 \rightarrow 20 \rightarrow 10 \rightarrow 5 \rightarrow 8 \rightarrow 4 \rightarrow$ $2 \rightarrow 101234567891011$
therefore $\mathrm{T}^{(11)}(7)=1$ and $\mathrm{k}=11$.
2. The origin of the problem

Itis easy to understand why, if one has only the above information and is asked whether or not this is an interesting problem, the answerwillmostlikelybe negative. Why?
${ }^{2}$ This paper available on the Internet is an update of a previous webpaper from 1996, see Lagarias [1996], and itself a further elaboration of Lagarias [1985]. The most recent paper is an annotated bibliography whereas Lagarias [1996] retraces the history of the problem, proofs included.

10 Jean Paul Van Bendegem

Firstly, it is quiteeasy to "invent" similar problems, so why should this particular case attract our attention? As a matter of fact, this type of argument has been used on several occasions by mathematicians, the most famous case no doubt Gauss' comment on the problem that was to become Fermat's Last Theorem. In 1816 he wrote to Heinrich Olbers (known as the originator of the Olbers' paradox) that "he could easily lay down a multitude of such propositions, which one could neither prove nor dispose of" (see Ribenboim [1979], p.3).

Secondly, suppose we do manage to show the theorem to be correct, what have we gained? Are there other problems around that wouldgetsolvedinthe process as well? At firstsight not.

Thirdly,onthelevelofproofmethods,itisnotguaranteedatallthatinteresting thingswillcomeoutofit.Isitlikelythatsomeingenious new proofmethod could solve this problem, butis it tobeexpected?These are all very good reasons toconsider the problem not interesting (as the authorofthis paper believedforavery longtime, uptothe pointthatheactually wrotethatbecause the problemhas no connections with other problems, it was perfectly acceptable to consider it uninteresting; so this paper is at the same time a correction on one of my former views).

In fact, notwithstanding the observation that not that many mathemati- cians are actually involved with this problem, it is definitely an interesting problem. Let me say a few words about its origin. When one is dealing with number- theoretic functions, say functionsf from N_{0} to N_{0}, then one of the particular problems one has to deal with is notation and representation. What I mean is the following.

Supposethatthefunctionffrom N_{0} to N_{0} isapermutation.Thenthereare several ways to represent this function:
(a) One of the classical forms is in tabular form:
(8) ${ }^{(8)}$
12345... $f(1) f(2) f(3) f(4) f(5) \ldots$

Note that this representation supposes to have the necessary knowledge on how to continue the table.
(b) Obviously,asforanyfunction,wecanhaveanexplicitform:f(n)=some symbolic expression involving n .
(c) Avariationon(b)isafunctiondefinedimplicitlybysomerecurrence relations:
$f(n)=g(f(n-1), f(n-2), \ldots, f(3), f(2), f(1))$,

The Collatz Conjecture 11

wherenotalloff(i), $\mathrm{n}-1 ® \mathrm{i}$ i®1 1 needoccurandwheregissomespecified function.
(d) Anotherformthatdiffersradically fromthethreeabove,butjustlike(a) supposesthatonehassufficientknowledgeonhow tocontinuethefigure, isa graphical representation.
$1 \rightarrow 2 \rightarrow 34 \rightarrow 5 \rightarrow 67 \rightarrow \ldots \leftarrow--\leftarrow-$
where an arrow represents an application of the function f (in this case, the simple function $f(n)$, defined by $f(3 n+1)=3 n+2, f(3 n+2)=$ $3(n+1)$ and $f(3(n+1))=3 n+1))$. Although this example is rather trivial, the importance of a well- chosen representation must be obvious. The graphical representation shows immediately that f is composed of an infinite number of 3 -cycles. One could very well imagine thatiff becomes more complex, the graph can tell more things than an algebraic of analyticalexpression. (Note at the same time the connection with visualisations; although there is no computer involvement here, it does show the importance of an image).

Note also that different graph representations are possible. Instead of simply listing the natural numbers and drawing the appropriate arrows, we can start with 1 and list the iterates of 1 :
$1 \rightarrow \mathrm{f}(1) \rightarrow \mathrm{f}^{2}(1) \rightarrow \mathrm{f}^{3}(1) \rightarrow \ldots$
All of this showsthatif we wanttounderstand what permutations are allabout, what theirproperties are, then itis auseful approachto examine the graphs of such functions. In addition, it allows to rephrase some questions into graph- theoretical questions. This is actually the area that the "creator" of the problem, Lothar Collatz, was working on. Although his examples are different from what is now known as the Collatz Conjecture (CC), they raise the same problems. His original question was whether, for a particular function f, the trajectory starting with 8 and the iterates of 8 , contains 1 ornot.(Iuse here the term "trajectory" because itneed notbe acycle).One nowseestherelationtotheCC.Rephrased in terms of trajectories, the CC claims:

For any natural number n , the trajectory starting with n , contains the number 1 .
Of course, no mathematician doubts the importance of permutation theory. It is sodeeplyentrenchedinnumbertheoryandbeyond, thatismustbecon- sideredoneofthecorepartsofmathematics. Althoughonemightperhaps

12 Jean Paul Van Bendegem

consider the CC as a "spin-off", it is clear that the general question that is raised by it is an interesting one. What seems to have been at play is that there are several gaps in the research of the CC. The problem disappears for some years only to reappear at some other moment in the hands of another mathematician. The factthatitwasnoteasytolocatethe "true" originsofthe problemsis supported bythe observation thatthe very same problemisknownunder differentnames:Hasse's algorithm, the Syracuse problem,Kakutani's problem, Ulam's problem, and sometimes it is even referred to as the Hailstone problem. The lastname is areference to the behaviourof thesequenceofT ${ }^{1}(\mathrm{n})$.Ittends tomoveupwardsanddownwardsmuchinthewaythathailstoneshitthe ground andbounce backup again.

3. Mathematicalinduction, numbercrunching andpictures

An important feature to notice in the search for a proof of the CC is that, at first sight, it seems not very useful to invoke mathematical induction as a proof method. One of the obvious problems is that it does not help to start from the assumption that the CC has been proven for all cases up to a number n in order to prove the case for $n+1$, as the iterates for $n+1$ can go well beyond $n+1$. In the above exampleforn $=7$, thehighestvalueonereachesis 26 .Thiswouldshift the problem to the question whetherone can show that:

For all n, there is a finite number $N(n)$, such that for all i, $T^{(i)}(n) ® N(n)$.
Inaddition, one wouldneedsomeconnectionbetween $\mathrm{N}(\mathrm{n})$ and $\mathrm{N}(\mathrm{n}+1)$ tobe abletogetthe induction processworking. However, it is clearthatthis new tasklookseverybitasdifficultastheoriginaltask.Ofcourse, one mighttry an inductiononsomeotherparameterof
theproblem, butitbecomessoonclear thateitheronekeepscomingbacktotheoriginalproblemitselforoneendsup worseoff.E.g.,one mighttry aninductiononk, suchthat $\mathrm{T}^{(k)}(\mathrm{n})=1$, ifatall.
However,oneneedsawaytoenumeratethensuchthatkformsasequence1,
2,3,...(withorwithoutgaps?).Butthatseemsanevenharderquestionto answer:
Given a natural number k , what are the numbers n such that $\mathrm{T}^{(\mathrm{k})}(\mathrm{n})=1$?
Ifwehadananswertothisquestionand,foreveryk,wecouldlisthenumbers n, then ofcourseifwecould prove thatsomenumbern is missing

The CollatzConjecture 13

forallk, thenwe wouldhave adisproof oftheCC.Clearly, thisisnotan interesting strategy and so, in short, one does well(initially) to forget about mathematical induction.

As one might expect with this kind of problem, it is very tempting to collect numerical evidence, corresponding to a mixture of careerinduction[I2] and computerproof(amix of [I3] and[I5]). TheCChas beencheckedup toa staggering 3.24×10^{17}. One might wonder what the relevance of suchevidence could possiblybe.

One argument is rather trivial: one might come up with a counterexam- ple, thereby settling the problem by producing a disproof. However, oddly enough, in many cases where such evidence is collected, the mathematicians tend to believe that there are no counterexamples.Sowhydotheydoit?

A possible answer is that mathematicians sometimes do what scientists in general do: you collect evidence hoping that some pattern appears that tells you something aboutthe problem yourstudying. As ithappens inthis case, the only thing thatappears is complexity andmore complexity. Table 1 shows the maximum value reached of the numbern, (indicated by the variable N) as n ranges from 1 to 100.000. Note, e.g., that between 1.819 and 4.254 , the highest value remains 1.276 .936 but at 4.255 it jumps straight away to 6.810 .136 . Even in this case, however, it is clear that the numerical evidence is interesting for it is shows that we are most likely dealing with a problemthatisintrinsically complexandthereforeweshouldnotbesurprisedthattheproblemsresists attempts to prove it.

Astothecomputeraspectofthisnumericalsearch,itisclearthatwe are dealingherenotwithamereenumerationofcases;thesizeof the set of checked cases is simply too large to be checked one by one. Hence a whole range of mathematical techniques and computer engineering is involved and, therefore, it becomes interesting. Note that for the computer checking a dis- tributed network had to be createdtohavesufficientcomputationalpower.

4. Enterprobabilitiesandstatistics5.1.Aprobabilisticargument

What is more interesting is the fact that there exists a probabilistic heuristic argument, a perfect illustration of [I4], that (at least some) mathematicians seemtofindconvincingenoughtobelievetheCCtobeprovable.Thisisthe argument:

14 Jean Paul Van Bendegem

N	Path length	Maximum value
	017	
	16	
	17	
1237	111	1
	47	$216521609,23213,12039,36441,524250,5041,276,9$
15	97	$8,153,62027,114,42450,143,264106,358,020121,012,8$
	131	$593,279,1521,570,824,736$
$272554476397031,8194,255$	170	
$4,5919,66320,89526,62331,911$	161	
$60,97577,671$	201	
	170	
	184	
	255	
	307	
	160	

\qquad
Table 1. Sequence of peak values up to N = 100,000 (© Scientific American, see Hayes [1984])
(a) You do not have to worry about even numbers 2 n , because in the next step, you will have n , so you go "down", i.e., the numbers arebecoming smaller.
(b) Thereforelookatwhathappenswhenyoustartwith anoddnumber $2 \mathrm{n}+1$. Eitherinthenextstepyouwillhaveanoddnumber oranevennumber.Assume that the probability is $1 / 2$ in both cases.
(c) Repeatthe process. This produces the following picture:
$\mathrm{n} \mathrm{n} / 2$
$(3 n+1) / 2$
$3(3 n+1) / 2+1) / 2(3 n+1) / 4$
(eacharrow has aprobability $1 / 2$ and note that $3(3 n+1) / 2+1) / 2$ is aneven number, since by construction $(3 n+1) / 2$ is odd).
(d) Considernowatrajectoryfromoneoddnumbertoanotheroddnumber. SupposethatinbetweenthereareN -1 odd numbers.Intotal

The Collatz Conjecture 15

thisproducesNtransitionsfromanoddnumbertothenext.Whatweexpectis thatN/2 ofthesetransitions willhappeninonestep,N/4in twosteps, andso on. This leads to a growth factor:
$(3 / 2)^{N / 2} .(3 / 4)^{N / 4} .(3 / 8)^{N / 8} \ldots$ So the average growth factor per transition is: $(3 / 2)^{1 / 2} .(3 / 4)^{1 / 4} .(3 / 8)^{1 / 8} \ldots$
(e) Asimplecalculationshowsthatthenumeratorisnothingbut3tothepower
$1 / 2+1 / 4+1 / 8+\cdots=1$, therefore 3 ; and the denominator is $2^{1 / 2} .4^{1 / 4} .8^{1 / 8} \ldots$
$=2^{2}=4$.(Hereasimpleinductivereasoningwilldothetrick).Hencethe averagegrowthfactorpertransitionis $3 / 4$ whichissmallerthan 1 , soon averagethenumbers"shrink",thereforetheCCshouldbecorrect.

Ofcourse,thisbeautifulargumentstandsorfallswiththeassumptionmadein
(b)(initalics).Is therereasontoassumethatthere is justasmuchchance to haveanoddoranevennumberinthenextstep? Actuallynot and, in addition, there are many interesting problems in numbertheory whereoneexpects certain probabilities but amazingly enough, the mathe- matical "facts" show otherwise. A famous example to illustrate this point concerns a conjecture put forward by Georg Polya. Think about the prime decomposition of natural numbers. Count the number of primes, that need not be distinct. Call $\mathrm{r}(\mathrm{n})=$ numberofprimesinn. Theneitherr(n)isevenorodd.Doesitnotseemlikely thatif we pickanarbitrary numbertheprobabilitythatr(n) isevenoroddis $1 / 2$? Asithappensthisis notthecase, and thebehaviourofthefunctionr(n) turnsouttobequitecomplex.Inthatsense, it isquiteunderstandablethatfor some mathematicians these probabilistic considerations carry little weight.

5.2. Gathering statistical evidence

Related to the above are what one might callstatistical analyses of the prob- lem. Here the objective is to explore and hopefully to understand and explain particularfeaturesthatappearinthenumericaltables,notnecessarilyto

16 Jean Paul Van Bendegem

find arguments for or against the correctness of the conjecture. $8 \mathrm{k}+44 \mathrm{k}+22 \mathrm{k}+1$
Consider, e.g., the fact that consecutive numbers have trajectories of the same length(andotherproperties).Insomecasesthis phenomenoncanbeeasily explained.Thediagramshowswhynumbersofthe $8 \mathrm{k}+4 \mathrm{end} 8 \mathrm{k}+5$ musthave the same trajectory length.

Although, as said, it is notclear in what way such results could contribute to a final answer, i.e., a proof satisfying the usual standards, thereseemstobea veryclearanalogy tobedrawnwithscientific practice.Ifitismeaningfulto speakofaCollatz-universe,meaning thereby all the numericalmaterialrelated to the conjecture, then these probabilistic and statistical analyses correspond to anexploration ofthatuniverse.Oneisnotreallyexpectingtofindlawsorthe like, butratherindicationsthatsuggestwhatpossiblelawsonecouldlook or aimfor.Inasensethemathematicianistryingtogeta"grip"ontheproblemby wandering through the territory.

5. Digression:generating concepts totackle the problem

Theheadingofthissectionseemstosuggestthatitstopicisofminorim- portance.Suchisdefinitelynotthecase,butthere aretworeasonswhyIwant totreatitseparately:firstly, becauseitis acommonfeature ofthe whole mathematicalenterprise andin thatsenseitoccursin [I1] up toand including [I6], and, secondly, because the topic and its related literature is too vastto treathere ina thorough way. What is this feature? For want of a better notion, I propose to call it generating concepts (GC). Let me first of all illustrate whatI mean usingCC.

Take alook at the original problem. What concepts occurin the problem formulation? We talk aboutfunctions, naturalnumbers, about elementary arithmetical operations (addition, multiplication, division) and about iter- ation. Those are roughly the "ingredients" of the problem. The striking feature whenonegoes throughthehistory ofCC is thattheconcepts as
$3 \mathrm{k}+2$
$8 \mathrm{k}+512 \mathrm{k}+86 \mathrm{k}+4$

The Collatz Conjecture 17

formulated in the original problem statement play hardly any role atall. Instead, and techniques such as listed in [I1]-[I6] promote this process, a whole range of derived concepts is introduced and in some theorems none of the original concepts actually occur. For CC,whatfollowsaresomeofthederived concepts:

1. (a)Thenotionofiterationleadsrathernaturallytotheideaofa trajectory, i.e., the sequence of numbers, starting with n , andending with the first 1 to occur.
2 (b) An obvious correlateof(a)isthelength of the trajectory.
3 (c) Givenatrajectory, letkbe theleastpositivenumbersuchthatT
$\left.{ }^{(k)}\right)_{(n)}<$
n , then k is called the stopping time of n, or, $\sigma(\mathrm{n})=\mathrm{k}$.
4 (d) Derivedfrom(c) is $\sigma_{\infty}(n)$, this is the total stopping time, i.e., thatk such that $\mathrm{T}^{(k)}(\mathrm{n})=1$, (this relates of course to
(b)).

5 (e) The expansionfactor $\mathrm{s}(\mathrm{n})$ isdefinedasthedivisionofthe largest
value
reached in a trajectory by n, i.e., $s(n)={ }^{\sup k} \mathrm{~B}^{\circledR 0} \mathrm{~T}^{(\mathrm{k})}(\mathrm{n}) . \mathrm{n}$
6 (f) Theparityvector $\mathrm{v}_{\mathrm{k}}(\mathrm{n})$,basicallycorrespondingtothetrajectory, where all the numbers are reduced modulo 2.
As an illustration, consider once more the example $\mathrm{n}=7$, then the properties are:
(a)Trajectory ofn=7:(7,11,17,26,13,20,10,5,8,4,2,1) ,(b)Lengthofthe trajectory $=12$,
(c) $\sigma(7)=7,(d) \sigma_{\infty}(7)=11$,
(e) $\mathrm{s}(\mathrm{n})=26 / 7 \approx 3,7$
(f) $v_{11}(7)=\langle 1,1,1,0,1,0,0,1,0,0,0,1\rangle$

Ontheonehand, itseemsobviousthatthesenewconceptsshouldemerge, asit iseasy toseehow they are relatedtotheoriginalproblem and, hence, how they can be helpful in the search for a proof. However, this is only part of the story. Besides the concepts mentioned above, many others could have been proposed, but apparently have notbeen proposed. As an example, take this personally thoughtup concept:
$\mathrm{M}_{7}=$ thesetofalltrajectoriessuchthatthelengthofthetrajectoryisamultiple of 7
and related to that:
$\mathrm{N}_{7}=$ those numbers that belong to a trajectory in M_{7}.

18 Jean Paul Van Bendegem

Itismyestimatedguessthatnomathematicianwillfindthenotionsof M_{7} and N_{7} theleastbitinteresting. Butthenthequestionmustbe: why?Nodoubthe answerwillbe:themathematicians'practice,butthatdoesnothelptofillinthe details. Whatisitinthatpracticethat allowsmathematicianstomakesucha selection?Letmereformulatethatquestioninslightlymoreabstractterms.
Suppose that:
(a) we are given a set X, and
(b) a property corresponds to a subset of X , then,
(c) we have a total of $2^{[\mathrm{X} \mid}$ possible properties.

If X is of infinite size, so is 2^{X}. Hence we are faced with a double question:
(Q1)Howisafinite subsetoftheinterestingpropertieschosen?(Q2)Howare uninteresting propertiesavoided?
Note the importanceof(Q1).ComputerprogramssuchasAutomaticMathe- matician, developed in the eighties by Douglas Lenat, were indeed capable of generating interesting concepts, but, as time went on, they tended to drown in them. Somehow, real-life mathematicians seem to avoid this pitfall. Apart from general considerations about concept generation and selection as stud-ied in cognitive psychology ${ }^{3}$ (involving the study of metaphors, analogies, conceptual blending, and the like), mathematics is in thissensea specialcase in that conceptgenerationandproofare tied together.E.g.,inthe caseofCC, $\sigma(\mathrm{n})$ is more interestingthan $\sigma_{\infty}(\mathrm{n})$ because the first theorems one could prove about CC involved the stopping time function and not the total stopping time function. Thereby the conceptisreinforcedandallcon-ceptsthatcanbeeasilylinkedto it. If a derived conceptdoes notturnupsomewhere in a proof, thenit will most likely disappear. As the production of proofs is aratherdifficultand oftenslow process, it explains why so few derived concepts survive.

As a further support of this thesis-the link between concept generation and proof production-it is worthwhile to look atso-called "seminal" papers in the history of mathematics, i.e., those contributions that either set in motion a new branch of the mathematical tree or relaunched a research that had arrived at a standstill. One suchfamousexample isBernhardRiemann'spaper"Uberdie Anzahlder Primzahlen untereiner gegebenen
${ }^{3}$ The literature in this field is tooextensive andtoo varied to be reported here, but, obviously, for mathematics a fine example (although many, such as myself, tend to disagree with the authors) is the recent work of Lakoff and Nunez [2000].

The Collatz Conjecture 19
Grösse"[1859],("OntheNumberofPrimeNumbersLessthanaGiven Quantity").Iwillnotgointodetailshere, butone, ifnotthe moststriking feature ofthe paperisthatthere arehardly any proofsandifso, theytendtobe "over-summarized", making it atoughjobto reconstruct what the author might havemeant ${ }^{4}$. On the otherhand, whatthe paperdoesistointroducearangeof new functions that get connected to existing and well- studied functions, thereby offering a new range to explore. As the paper is generally acknowledged as a fundamental contribution, it is reasonable to conclude that such concept generation attempts are considered as important as proofs themselves.

However,letmenowreturntothemainstoryofthispaperandlookintoitem [I6] on the list.

7. Metalevelconsiderations

In1972JohnConwaypublishedashortpaperwithacuriousandimportant result:ageneralizationofCCisundecidable.Inthatsense, it isabeautiful illustrationofatype[I6]kindofargument.Itimplies thatperhapsCCitselfis undecidable, althoughatpresentnosuch resulthasbeenfound ${ }^{5}$.

The generalization is the following:
Consider a function g from integers to integers (note that this is not an essential extensionastheintegerscanalwaysbemappedone-tooneontothenatural numbers ${ }^{6}$), suchthat
$g(n)=a_{i} n+b_{i}$ for $n \equiv i(\bmod p)$,
andwhere $\mathrm{a}_{\mathrm{i}} \mathrm{andb}_{\mathrm{i}}$ arerationalnumberssuchthatg(n) isalwaysaninteger.
${ }^{4}$ Oneofthebestsources aboutRiemann'spaperisEdwards [1974]. Thestatementonthelow proofquality ofthe paperisbasedonthis
quoteofEdwards:"TherealcontributionofRiemann's 1859paperlaynotinits results butinitsmethods. The principalresultwas aformula[...] However, Riemann's proof of this formula was inadequate [...]". (p.4)
${ }^{5}$ If CC would turn out to be undecidable, then it would most certainly replace the "busy beaver" as the simplest undecidable problem. The"busybeaver"concernsTuringmachines producinga string of ' 1 '-sonanemptytape. SeeBoolosetal. [2002], pp.41-44, for aclearandconcise exposition of the "busy beaver" problem.
${ }^{6}$ The reason for the extension from natural numbers to integers has to do with the problem of encoding a problem known to be undecidable into this generalization of $C C$. In that sense the construction can be reformulated restricted to natural numbers, however the result would be definitely 'ugly'.

20JeanPaulVanBendegemCCthencorrespondstothespecialcase, where: $g(n)=(1 / 2) n+0$ forn $\equiv 0(\bmod 2), \operatorname{andg}(n)=(3 / 2) n+1 / 2$ forn $\equiv 1(\bmod 2)$.
$S_{0 a_{0}}=1 / 2, b_{0}=0, a_{1}=3 / 2 \operatorname{andb}_{1}=1 / 2$.
The undecidability comes down to the fact that, given a function g , and
givena numbern, there isnoalgorithm that decides whetherthere is a number ksuchthatg ${ }^{(k)}(n)=1$.Actually, Conway provedaneven strongerresult, viz.all rational numbers b_{i} may be equal to 0 .

Obviously,whatthisresultimpliesis,atleast,thatoneshouldnotbeamazedby thecomplexity oftheoriginalproblem,theCC.Thefact that the statement resisted and continues to resist proof for quite some time now, is perhaps something to be expected, given Conway'sresult.Inthatsense, itdoeshavean influenceonmathematicians'expectations.However,thestorydoesnotend there.There are links between CC and ergodic theory (see Lagarias [1985], Section 2.8), thus introducing considerations about stochasticity and randomness into the proof search. These considerations are clearly not purely mathematical, witness this quote fromthe conclusionofLagarias[1985]:

Is the $3 \mathrm{x}+1$ problem intractably hard? The difficulty of settling the $3 \mathrm{x}+1$ problem seems connected to the fact that it is a deterministic process that simulates "random" behaviour. Weface thisdilemma:Ontheonehand, totheextentthatthe problemhas structure,wecan analyse it-yetitis precisely thisstructure thatseems topreventus fromproving thatitbehaves "randomly." On the otherhand, to the extent that the problem is structureless and "random," we have nothing to analyse and consequently cannot rigorously prove anything. Of course there remains the possibility that someone will find some hidden regularity in the $3 x+1$ problem thatallows some of the conjec- tures about it to be settled. The existing general methods in number theory and ergodic theory do not seem to touch the $3 x+1$ problem; in this sense itseems intractable at present. Indeed all the conjectures made in this paper seem currently to
beoutofreachiftheyaretrue;Ithinkthereismorechanceofdisprovingthosethatare false.
It seems obvious, at least to me, that such statements do not only go beyond mathematics proper, but at the same time contain (a) philosophical ideas about the structure of the mathematical universe, (b) the expectations one might reasonably have concerning the likelihoodofprovingatheorem, and(c)the connection(s)betweenthesetwoelements.Inasensethiscould

The Collatz Conjecture 21

be considered a form of philosophy emerging out of mathematical practice itself, and hence, produced by mathematicians themselves. This explains to a certain extent the contrast with philosophical explanations by philosophers about mathematics, that tendtofocus on "end-products", i.e., "finished" proofs. Letmeexplorethisideaabitfurtherintheconclusionofthispaper.

III. Conclusion

Afirstminorremark tomake is thatthe readersurely willhave noticed that an illustrationof[I1]is missing.There are indeed, as farasI know, no examples of "sketchy proofs" that could possibly be translated or trans- formed into an acceptable proof. On the whole, occurrencesof[I1]seemtoberatherrare.
However, the presence of all the other elements do show that the Collatz Conjecture deserves to be called an "exemplar".
Secondly, andmore importantly, the readerwillalsohave noticedthatIhave given no"real" proofs of partialresults.After all,seeLagarias[2004], asone mightexpect, thereisamultitudeofproofsdealingwithbitsandpiecesofthe CC,butIdidnotwanttopay attention to that part of the mathematical process. I did want to focus on all those elements that are at the same time not proofs, but essential to guide the search for a proof. My claim is that these considerations are part and parcel of mathematical practice and, by implication, that a philosophy of mathematics that claims to deal with the essential features of what mathematics is all about, shouldincludetheseelements.

Thirdly, asaconsequenceoftheobservationabove,itfollowsthatmath- ematics-orthemathematicalbuilding,touse the bestknownmetaphor- neednotbe anintegrated wholeoraunity insomesense.Afterall, notonly will proof methodsdifferfrom mathematical domain to mathemati-cal domain - think, e.g., about the difference between "diagram chasing" in category theory and mathematicalinduction in numbertheory (see VanBendegem [2004])— but the additionalelements [I1] upto [I6] will mostcertainly differ from domain to domain-in number theory number crunching is obviously possible but visualisations, equally obviously, seem more suited to geometrical and topological problems. Note that this form of 'disunity' I am pleading for, is not in contradiction with the existence of the founda- tions of mathematics, such as settheory. From the foundational point of view, we lookat the end-products, i.e., mathematical theories, leave out the details of the process thathas led to the theory, and then integrate these theoriesbyconstructingacommon language wherein these theories can be

22 Jean Paul Van Bendegem

translated, thus creating a new universe that has a uniformity that the daily practice of mathematicians seems to be lacking. In terms of languages, foundationalwork correspondstodesigning anartificial language suchas Esperanto. WhereasinthispaperIam suggestingthatweshouldalsohavea lookatthelanguageswedailyspeak.InthesamemannerthatEsperantodid notbecometheworld language, working mathematicians know that there is this special group of "foundational speakers" that seem to have trouble to convince everyone else to speak as they do. In addition, the better we understand our daily languages, the more likely we will understand what kind of artificial languages will have any rate of success or not.

Asafinalclosingremark,letmejustmentionthatatthemomentofwriting-February 2005-the problem remains unsolved.

References

[1]. Boolos, G.S.,J.P. Burgess, and R.C.Jeffrey, Computability and Logic. Fourth edition. Cambridge University Press, Cambridge, 2002.
[2]. Conway, J.H., "Unpredictable Iterations". In: Proceedings 1972 Number Theory Conference. University of Colorado, Boulder, CO, 1972, pp. 49-52.
[3]. Edwards, H. M., Riemann's Zeta Function. Academic Press, New York, 1974 (Dover Publications, New York, 2001).
[4]. Hayes, B., "Computer Recreations. On the ups and downs of hailstone numbers." Scientific American, vol. 250, nr. 1, 1984, 13-17.
[5]. Lagarias, J. C., "The $3 x+1$ problem and its generalizations". American Mathemat- ical Monthly, 92, 1985, 3-23.
[6]. Lagarias, J.C., "The $3 x+1$ problem andits generalizations".1996. Web-address: http://www.cecm.sfu.ca/organics/papers/lagarias/index.html.
[7]. Lagarias, J.C.,"The 3x+1 problem: an annotated bibliography". 2004. Web- address: http://arxiv.org/PS_cache/math/pdf/0309/0309224.pdf.
[8]. Lakoff,G., andR.E.Nunez,Where Mathematics Comes From. How the Embodied Mind Brings Mathematics into Being.Basic Books, New York, 2000.
[9]. Lenat,DouglasB.,"AM:DiscoveryinMathematicsasHeuristicSearch".In:R.Davisand
[10]. D.B.Lenat(eds.),Knowledge-Based Systems in Artificial Intelligence.New York: McGraw-Hill, 1980, pp. 3-228.
[11]. Ribenboim, P., 13 Lectures on Fermat's Last Theorem. Springer, New York, 1979.
[12]. VanBendegem,J.P.,"Real-LifeMathematicsversusIdealMathematics:TheUglyTruth". In:E.C.W.Krabbe,R.J.DalitzandP.A.Smit(eds.),Empirical Logic and Public Debate.
[13]. Essays in Honour of Else M. Barth, Rodopi, Amsterdam, 1993, pp. 263-272.

