POHOZAEV-Type Identity for a Kind Of Fourth Order Elliptic Problem

Hong Huang
Nanjing Normal University Zhongbei College,P.R.China

Abstract

: In this paper,we establish the Pohozaev-type identity for a kind of fourth order elliptic problem, which has the biharmonic operator. We discuss the problem in a class of domains that are more general than star-shaped ones.

 Key Word: Pohozaev-type identity;biharmonic operator.
I. Introduction

In this paper, we consider the following fourth order elliptic problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u-c \Delta u=f(x, u), i n \Omega, \tag{1.1}\\
u=\frac{\partial u}{\partial v}=0, o n \partial \Omega,
\end{array}\right.
$$

Where $\Delta^{2}=\Delta(\Delta)$ is the biharmonic operator, c is a constant, $\Omega \subset R^{n}$ is a domain with smooth boundary $\partial \Omega, \nu(x)$ denotes the outward normal to $\partial \Omega$ at x and $f(x, u): R^{n} \times R \rightarrow R$ is continuous.

The Pohozaev identity was first introduced by S.I.Pohozaev in paper [1]. Many authors generalized the identity to more general equations under the conditions that Ω is star-shaped. Others considered the case of domains more general than star-shaped ones in paper [2-6].In this paper,we discuss a kind of fourth order elliptic problem,which has the biharmonic operator in a class of domains that are more general than star-shaped ones. We establish the Pohozaev-type identity of (1.1) , which can play important role in considering the existence of the solution.

II. Important results And the Pohozaev identity

We need the following lemma, which is similar but also has some differences with paper [8].

Lemma 2.1

Assume that $V(x)=\left(V_{1}(x), \cdots, V_{n}(x)\right)$ is a linear vector filed on R^{n} and $f(x, u): R^{n} \times R \rightarrow R$ is continuous and satisfies $F(x, t)=\int_{0}^{t} f(x, s) d s$ and $F_{1}(x, t)=\langle V(x), F(x, t)\rangle=\sum_{i=1}^{n} V_{i} \frac{\partial F(x, t)}{\partial x_{i}}$.If $u \in W_{0}^{2,2}(\Omega) \cap C^{5}(\bar{\Omega})$ is a solution of (1.1), then

$$
\begin{equation*}
\int_{\Omega} F(x, u) \operatorname{div} V(x) d x+\int_{\Omega} F_{1}(u) d x=-\int_{\Omega} f(x, u)\langle V(x), \nabla u\rangle d x \tag{2.1}
\end{equation*}
$$

Theorem2.2

Suppose that $V(x)$ is a linear vector filed on R^{n} with the form
$V(x)=\left(\begin{array}{cccc}a_{11} & \cdot & \cdot & \cdot \\ a_{1 n} \\ \cdot & \cdot & \cdot & \| \\ \cdot & x_{1} \\ \cdot & \cdot & \cdot & \| \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ a_{n 1} & \cdot & \cdot & \cdot \\ a_{n n}\end{array}\right)$

Where $f(x, u): R^{n} \times R \rightarrow R$ is continuous and satisfies $F(x, t)=\int_{0}^{t} f(x, s) d s$ and $F_{1}(x, t)=\langle V(x), F(x, t)\rangle=\sum_{i=1}^{n} V_{i} \frac{\partial F(x, t)}{\partial x_{i}}$.If $u \in W_{0}^{2,2}(\Omega) \cap C^{5}(\bar{\Omega})$ is a solution of (1.1), then $\int_{\partial \Omega}|\Delta u|^{2}\langle V(x), v(x)\rangle d s=4 \int_{\Omega} u \Delta^{2} u d x-n \int_{\Omega} u f(x, u) d x+2 c \int_{\Omega}|\nabla u|^{2} d x+2 n \int_{\Omega} F(x, u) d x+2 \int_{\Omega} F_{1}(x, u) d x$, where $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in R^{n}, \operatorname{div} V(x)=n$ and $\left.\langle V(x), x)\right\rangle=x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}$.

Proof

$$
\begin{aligned}
\int_{\Omega} \Delta u\langle V(x), \nabla u\rangle d x & =\int_{\Omega} u \Delta\langle V(x), \nabla u\rangle d x \\
& =\int_{\Omega} u \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} \sum_{i=1}^{n} V_{i}(x) \frac{\partial u}{\partial x_{i}} d x \\
& =\int_{\Omega} u \sum_{i=1}^{n} V_{i}(x) \frac{\partial \Delta u}{\partial x_{i}} d x+2 \int_{\Omega} u \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} d x \\
& =-\int_{\Omega} \Delta u \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(u V_{i}(x)\right) d x-2 \int_{\Omega} u \sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} \frac{\partial u}{\partial x_{j}}\right) \frac{\partial u}{\partial x_{i}} d x \\
& =-\int_{\Omega} \Delta u\langle V(x), \nabla u\rangle d x-n \int_{\Omega} u \Delta u d x-2 \int_{\Omega}|\nabla u|^{2} d x
\end{aligned}
$$

Since

$$
\begin{aligned}
\int_{\Omega}\langle V(x), \nabla(\Delta u)\rangle \Delta u d x & =\int_{\Omega} \Delta\langle V(x), \nabla(\Delta u)\rangle u d x \\
& =\int_{\Omega} u \sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}\left(\sum_{i=1}^{n} V_{i}(x) \frac{\partial \Delta u}{\partial x_{i}}\right) d x \\
& \left.=2 \int_{\Omega} u \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \frac{\partial^{2} \Delta u}{\partial x_{i} \partial x_{j}} d x+\int_{\Omega} u \sum_{j=1}^{n} V_{i}(x) \frac{\partial \Delta^{2} u}{\partial x_{i}}\right) d x \\
& =2 \int_{\Omega} u \Delta^{2} u d x-n \int_{\Omega} u \Delta^{2} u d x-\int_{\Omega} \Delta^{2} u\langle V(x), \nabla u\rangle d x
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\int_{\Omega}\langle V(x), \nabla(\Delta u)\rangle \Delta u d x & \left.=\int_{\Omega} \Delta u \sum_{i=1}^{n} V_{i}(x) \frac{\partial \Delta u}{\partial x_{i}}\right) d x \\
& =\int_{\partial \Omega}|\Delta u|^{2}\langle V(x), v(x)\rangle d s-n \int_{\Omega} u \Delta^{2} u d x-\int_{\Omega}\langle V(x), \nabla(\Delta u)\rangle \Delta u d x
\end{aligned}
$$

We have

$$
2 \int_{\Omega} \Delta^{2} u\langle V(x), \nabla u\rangle d x=4 \int_{\Omega} u \Delta^{2} u d x-n \int_{\Omega} u \Delta^{2} u d x-\int_{\partial \Omega}|\Delta u|^{2}\langle V(x), v(x)\rangle d s .
$$

Then by(2.1),

$$
\begin{aligned}
\int_{\Omega} f(x, u)\langle V(x), \nabla u\rangle d x & =-\int_{\Omega} F(x, u) d i v V(x) d x-\int_{\Omega} F_{1}(x, u) d x \\
& =-n \int_{\Omega} F(x, u) d x-\int_{\Omega} F_{1}(x, u) d x,
\end{aligned}
$$

Then

$$
\begin{aligned}
2 \int_{\Omega} f(x, u)\langle V(x), \nabla u\rangle d x & =2 \int_{\Omega} \Delta^{2} u\langle V(x), \nabla u\rangle d x-2 c \int_{\Omega} \Delta u\langle V(x), \nabla u\rangle d x \\
& =4 \int_{\Omega} u \Delta^{2} u d x-n \int_{\Omega} u f(x, u) d x+2 c \int_{\Omega}|\nabla u|^{2} d x-\int_{\partial \Omega}|\Delta u|^{2}\langle V(x), v(x)\rangle d s \\
& =-2 n \int_{\Omega} F(x, u) d x-2 \int_{\Omega} F_{1}(x, u) d x
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{\partial \Omega}|\Delta u|^{2}\langle V(x), v(x)\rangle d s & =4 \int_{\Omega} u \Delta^{2} u d x-n \int_{\Omega} u f(x, u) d x+2 c \int_{\Omega}|\nabla u|^{2} d x \\
& +2 n \int_{\Omega} F(x, u) d x+2 \int_{\Omega} F_{1}(x, u) d x
\end{aligned}
$$

References

[1]. S.I. Pohozaev, Eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Soviet Math. Dokl. 6 (1965)1408-1411.
[2]. T.F. Feng, Poho zaev Identities of Elliptic Equations and Systems with Variable Exponents and Some Applications. Math. Appl. (Wuhan) 32 (2019) 581-589.
[3]. T.Q. An, Non-existence of positive solutions of some elliptic equations in positive-type domains, Appl. Math. Lett. 20 (2007) 681685.
[4]. Y. Li, R. An, K.T. Li, New Pohozaev identity and application to fourth order quasilinear elliptic equation, Journal of Xian Jiaotong University 41(10) (2007) 1245-1247.
[5]. M. Otani,Existence and nonexistence of nontrivial solution of some nonlinear degenerate elliptic equations,J. Funct. Anal. 76(1)(1988) 140-159.
[6]. Kawano, N., Ni, W.M., Yotsutani, S. A generalized Pohozaev identity and its applications. J. Math. Soc. Jpn. 1990(3),541-564 (1990).
[7]. An, T. Non-existence of positive solution of some elliptic equations in positive-type domains. Appl. Math. Lett. 20,681-685 (2007).
[8]. B.Y. Kou, T.Q. An, Pohozaev-type inequalities and their applications for equations, Bound. Value Probl. 2017 (2017) 103.
[9]. Li, G., Ye, H. Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R 3. J. Differ.Equ. 8(257),566-600 (2014).

