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Abstract: 3x+1 sequences of numbers are the special cases of px+q sequences of numbers. Px+q sequences of 

numbers are the mapping recurrent sequences of numbers. The general term an in the classical sequences of 

numbers is a function of n, while the general term an of the px+q sequences of numbers is not a function of n. 

Usually, the classical sequences of numbers are not circular, while circularity is the most important property of 

the px+q sequences of numbers. The classical sequences of numbers only extend from left to right, while the 

px+q sequences of numbers can be extended from right to left. The leftward extendedness of the px+q sequences 

of numbers results in the infinite trees. Because the properties of the equiratio residual sequences of numbers 

are the basis for studying the leftward extendedness of the px+q sequences of numbers, in this paper, both 

equiratio residual sequences of numbers and px+q sequences of numbers are studied. 
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I. Introduction 
The authors change 3x+1 problem into all-odd 3x+1 sequences of numbers (in this paper we call them 

3x+1 sequences of numbers) and prove the problem to be true
[1]

. We know that, if x1 is an odd number then 

y1=3x1+1 is an even number. When all of the factors 2 of y1 are eliminated then an odd number x2 can be 

obtained. For example, x1=9，y1=3x1+1=28=7·2
2
. Eliminating all of the factors of 2 from y1 we can obtain the 

odd number x2=7. We call the process from y1 to x2 the deeven process of y1. That is,  odd number 9 multiplies 

3 and adds 1 and deeven then odd number 7 can be obtained. Odd number 7 multiplies 3 adds 1 and deeven then 

odd number 11 can be obtained. Odd number 11 multiplies 3 and adds 1 and deeven then odd number 17 can be 

obtained. „. By the above process the 3x+1 sequence of numbers with all the terms are odd numbers can be 

obtained: 

Sequence of number A：9,7,11,17，„. 

From the second term onward, every term of sequence of numbers A are obtained by multiplying 3, 

adding 1 and deeven on the previous term. Because the process of multiplying 3, adding 1, and deeven on the 

previous term to obtain the new term is a mapping process, from the second term onward, every term of 

sequence of numbers A is a mapping of its previous term, e. g., 7 is the image of original image 9,  11 is the 

image of original image 7,  17 is the image of original image 11, ….Also because the process of obtaining 

sequence of numbers A is a recurrent process, we call sequence of numbers A a (unary) mapping recurrent 

sequence of numbers. The 3x+1 sequences of numbers are the special cases of the px+q sequences of numbers, 

which are only one kind of the mapping recurrent sequences of numbers. 

Obviously, the general term an of sequence of numbers A is not a function of n, while the general term 

an of the classical sequences of numbers is a function of n. This shows the novelty and uniqueness of the 

mapping recurrent sequences of numbers. Moreover, the unary mapping recurrent sequences of numbers have a 

very important property: if a unary mapping recurrent sequence of numbers has two equal terms then the 

sequence of numbers in question is necessarily a circular sequence. This paves the way for studying the circular 

sequences of numbers. For several reasons, people have not studied the circular sequences of numbers. Factually, 

the circular sequences of numbers are the mathematical objects extremely valuable for study. This shows the 

importance of the mapping recurrent sequences of numbers. The classical sequences of numbers extend from 

left to right, while the px+q sequences of numbers can not only extend from left to right but also from right to 

left, forming the infinite trees or the complete trees. 

Another kind of mapping recurrent sequence of numbers is the equiratio residual sequence of numbers. 

Its simplest sequence of numbers is convenient to compute, so it has many applications. More importantly, its 

properties lay a foundation for studying the leftward extendedness of the px+q sequences of numbers. 

The concept of mapping recurrent sequences of numbers is a new method for constructing sequences of 
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numbers. It is our original innovation, no previous work can be referred.  

The rest of this paper is organized as follows: In Section 2 the mapping recurrent sequences of numbers, the 

parasitic sequences of numbers and their circularity are introduced. If each term in sequence of numbers B is a 

function of the corresponding term in sequence of number A, then B         is a parasitic sequence of 

numbers of A. For example, sequence of numbers of even numbers B：2， 4， 6，... is a parasitic sequence  of 

numbers of  natural numbers A：1， 2， 3，... . and there is bn=2an. In this section, we discuss the sufficient 

conditions for the mapping recurrent sequences of numbers and the parasitic sequences of numbers to be 

circular sequences of numbers, based on which we prove that a fraction is necessarily a circular decimal.  

 In Section 3 the leftward extendedness of the px+q sequences of numbers are introduced. px+q sequence of 

numbers is defined as follows: Suppose a, p, q∈No. If the terms in mapping recurrent sequence of numbers 

｛an｝ are a1= a, an+1=β(pan+q)，then we call ｛an｝ a px+q sequence of numbers, denoted as｛a1= a, 

an+1=β(pan+q)｝.（β( ) means to delete all of the factors 2）. Now, we expound what is the leftward extendedness 

of the px+q sequences of numbers.  

Sequence of numbers 1：｛a1=13, an+1=β(5an+1)｝： 13,33,83,13，… 

Sequence of numbers 2：｛a1=1331, an+1=β(5an+1)｝：1331,13,33,83,13，… 

Sequence of numbers 3：｛a1=4259, an+1=β(5an+1)｝：4259,1331,13,33,83,13，… 

Sequence of numbers 4：｛a1=54515, an+1=β(5an+1)｝：54515,4259,1331,13,33,83,13，… 

The above are four 5x+1 sequences of numbers. It is not hard to see that, sequence of numbers 2 is formed by 

adding one term “1331” on the left of the first term 13 of sequence of numbers 1; sequence of numbers 3 is 

formed by adding two terms “4259,1331” on the left of the first term 13 of the sequence of numbers 1; 

sequence of numbers 4 is formed by adding three terms “54515,4259,1331” on the left of the first term 13 of 

sequence of numbers 1. For convenience,, we call sequence of numbers 2, sequence of numbers 3 and sequence 

of numbers 4 as the degree 1 leftward extension sequence of numbers, the degree 2 leftward extension sequence 

of numbers and the degree 3 leftward extension sequence of numbers respectively. 

The main focus of this section is to obtain its degree n leftward extension sequences of numbers from “sequence 

of numbers 1”. 

Suppose a, b∈No，b =β(pa+q). We call a as the degree 1 predecessor of b. Similarly, we can define the degree 

n predecessor. （a being a predecessor of b means a being a left term of b） 

Besides, from sequence of numbers 2 we see that, odd number 13 has necessarily predecessor 1331. But, the 

first term 54515 of sequence of numbers 4 has no predecessor. That is to say, as a term in sequence of numbers 2 

(i.e., 5x+1 sequence of numbers), odd number 13 has a predecessor, we call it a term implying left terms. While 

54515 has no predecessor, we call it a term without a left term. 

We prove that, as to the px+q sequences of numbers, when (p, (2
δp(2)－1)/p)=1， in a residual system of p with 

all terms being odd numbers, there are δp(2) terms implying left terms. 

In Section 4 the infinite trees and the complete trees formed by the leftward extendedness of the px+q sequences 

of numbers are introduced.  Suppose r is a term implying left terms in the px+q sequences of numbers. Step 1:  

We use lines to connect r with every degree 1 predecessor of r. Step 2: We use lines to connect  every 

predecessor r′ which is the term implying left terms with every degree 1 predecessor of r′. We repeat Step 2, the 

figure we obtain at last is called a﹝r﹞px+q infinite tree, (See Fig. 1). And we call ｛a1=r, an+1=β(pan+q)｝ the  

root sequence of numbers of the﹝r﹞px+q  infinite tree. (The infinite trees are composed from the sequences 

of numbers, and the sequences of numbers are composed from the numbers. Therefore, the relationship between 

the infinite trees and the sequences of numbers is similar to one between the sequences of numbers and the 

numbers. Hence, the infinite trees are a new subject of mathematics.) 

Fig. 1 gives the﹝7﹞3x+1 infinite tree, which is formed as follows: Step 1:  Connect 7 with  each of its 

degree 1 predecessors, i.e., 9,37,149,597,„. In 7’s degree 1 predecessors, 37,149,„ are the terms implying left 

terms in the 3x+1 sequence of numbers. Step 2: Connect 37 with each of its degree 1 predecessors, i.e., 

49,197,789,„, connect 149 with each of its degree 1 predecessors, i.e., 99,397,1589,....Analogously, we obtain 

Fig. 1. 
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Similarly, we can obtain complete trees.  

In Section 5 the relationship between the characteristic solutions of the equations of equal terms and the px+q 

circular sequences of numbers and their connection with the complete trees are introduced. The equation of 

equal terms of the px+q sequences of numbers is:  

x＝q(p
k–1

+ p
k–2

·2
i1+„+ p·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–p
k
))   (8) 

As its special case, the equation of equal terms of 5x+1 sequence of numbers is: 

             x＝ (5
k–1

+5
k–2

·2
i1+„+5·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–5
k
)   (10)  

From the perspective of the source of formula (10), when we suppose that 5x+1 sequence of numbers E has an 

equal term x we can obtain formula (10). This means that when 5x+1 sequence of numbers E has an equal term 

then formula (10) has a characteristic solution. From the perspective of the relationship between the solution of 

an equation and the solution of a problem, when formula (10) has a characteristic solution then 5x+1 sequence 

of numbers E has equal term x. Since a 5x+1 sequence of numbers is a mapping recurrent sequence of numbers, 

having equal terms means it is a circular sequence of numbers.  

Through finding the characteristic solution of formula (10) we can obtain all of the circular terms of the 5x+1 

sequence of numbers, based on which we can obtain the corresponding complete tree. 

Note 1. Suppose mapping recurrent sequence of numbers ｛an｝：｛a1＝a, an+1＝(a·an)mod m｝，a＜m, then we 

call ｛an｝ an equiratio residual sequences of numbers. In this section, the properties of the equiratio residual 

sequences of numbers are introduced, and the computer algorithms for computing order, primitive root, inverse, 

higher order congruent equations and exponential congruent equations of the elementary number theory
[2]

 are 

given， and the definitions  for the two types of pseudo prime numbers and the proof of sufficient and 

necessary condition for prime numbers and the big number factorization are given.  

Note 2 give an important logical principle that must be abode by in mathematical proofs.  

The principle of supposition: If the proposition A is necessarily true, then we cannot suppose it is false; if the 

proposition A is necessarily false, then we cannot suppose it is true. 

Note 3 is a discussion on “list equations to solve application problems”. The application problems in middle 

school mathematics textbook have a common feature: for a given problem, one or more equations can always be 

listed corresponding to it. When we list an equation corresponding to an application problem, we face two 

objects. One is the application problem given (called the original problem), the other is the equation listed. This 

note clearly expounds why the effective solution (or characteristic solution of the equation listed is a solution of 

the original problem.  

We make the following stipulations for the terminologies and symbols occurring in this paper: 

1. The word “sequences of numbers” in this paper denotes the infinite sequences of numbers, unless otherwise 

specified.  

2. The lower case italic Latin letters used as variables denote the positive integers, unless otherwise specified. 

3. The names of the sequences of numbers in this paper are denoted by the upper case italic Latin letters (with 

prime or subscript), their corresponding lower case italic Latin letters denote the general terms of the sequences 

of numbers in question. For example, the general terms of the sequences of numbers A，B' are an，b'n. Sometimes, 

｛an｝ is used to denote the sequence of numbers A，｛bn｝ is used to denote the sequence of numbers B. 

4. N and No are two special symbols. N denotes the set of positive integers, No denotes the set of positive odd 

numbers.   
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II. Mapping recurrent sequences of numbers and their circularity 
First, let us define two operators often used in this paper. 

Definition 1： Suppose 0≤a＜m. Then we denote a≡b (mod m) as a＝(b)mod m, and we call ( )mod m the minimal 

non-negative residue operator modulo m. 

From Definition 1 we know that, if a is the non-negative residue of b modulo m, then a＝(b)mod m.  

For example, (10)mod 7＝3，(78)mod 63＝15. 

The following are the properties of the minimal non-negative residue which will be used in this paper: 

Property 1: if (a)mod m＝(b)mod m then a≡b (mod m)； 

Property 2: (a+b)mod m＝((a)mod m+b) mod m；（Transforming “+” into “×”, the property also holds）. 

Property 3: (a
n
)mod m＝(((a)mod m)

n
) mod m； 

Property 4: When n︱m，((a)mod m) mod n＝(a)mod n； 

Property 5:.(a)mod m≡a (mod m)； 

Property 6: There necessarily exists integer k≥0 such that a=km+(a)mod m. 

Definition 2:  We define b/a
n 
satisfying a

n︱b，a
n+1︱/ b as β(b)a（i.e., β(b)a＝b/a

n）. We call β( ) a  a de-a-factor 

operator. β( )2 is abbreviated as β( ), which is called a deeven operator. 

From Definition 2 we know that β(b)a is the result of eliminating factor a from b. Obviously, β(b)a is an integer 

without the factor a. 

For example, β(45)3＝45/3
2＝5，β(40)＝40/2

3＝5. 

Definition 3: Suppose there is a function f such that sequences of numbers ｛an｝and ｛bn｝satisfying: bn＝f(an)，

n＝1,2,„. Then, we call ｛bn｝ the parasitic sequence of numbers of ｛an｝,  and denote ｛bn｝ as ｛bn

＝f(an)｝. 

For example, sequence of numbers ｛bn｝：2,4,6,8,10,„ with every term being an even number is a parasitic 

sequence of numbers of ｛an｝：1,2,3,4,5,„ with every term being a natural number. Because now  bn＝2an，

n＝1,2,„, i.e., ｛bn｝：｛bn＝2an｝. 

Now, we define circular sequences of numbers. 

People usually call sequence of numbers ｛an｝：8,10, 1,2,3,1,2,3,1,2,3, „ as a circular sequence of numbers 

with the circular length being 3. Because in sequence of numbers ｛an｝ there are a3＝a3+3n＝1，a4＝a4+3n＝2，

a5＝a5+3n＝3，„(n＝1,2,„). Or, for every l (3≢l)，al＝al+3n，n＝1,2,„. 

However, the authors find out that, up to now, there is no general definition of the circular sequences of numbers. 

Therefore, we have:  

Definition 4: Suppose that from the ith term on, every term of sequence of numbers ｛an｝ satisfying ai＝ai+hn，

ai+1＝ai+hn+1，„(n＝1,2,„)，i.e., for every l (i≢l)， sequence of numbers ｛an｝’s term al＝al+hn. Then, we call 

sequence of numbers ｛an｝ a circular sequence of numbers, call h a circular length of｛an｝, call al(i≢l) a 

circular term of ｛an｝. 

From Definition 4 we know that, when i＜k， if ai is a circular term of ｛an｝ then ak is a circular term of ｛an｝. 

When h︱d， if h is a circular length of ｛an｝ then d is also a circular length of ｛an｝.we call the minimal length 

of the circular lengths of ｛an｝ the minimal circular length. 

For example, 3 is the minimal circular length of sequence of numbers ｛an｝：8,10, 1,2,3,1,2,3,1,2,3, „，and 

6,9, „ are also the circular length of ｛an｝. At the same time,  from the third term on, all of the terms are the 

circular terms of ｛an｝. 

Definition 5: Suppose ak is the first circular term of circular sequence of numbers ｛an｝. If k＝1 then ｛an｝ is 

called a pure circular sequence of numbers； if k＞1 then ｛an｝ is called a mixed circular sequence of 

numbers, and a1,…,ak-1 are called non-circular terms of ｛an｝. 

From Definition 5 we know that, a1,a2 in sequence of numbers ｛an｝：8,10,1,2,3,1,2,3,1,2,3, „ are the 

non-circular terms, al(3≢l) are the circular terms, and ｛an｝ is a mixed circular sequence of numbers. 

Basic theorem 1: Suppose sequence of numbers ｛bn｝ is a parasitic sequence of numbers of the sequence of 

numbers ｛an｝, then, if ｛an｝is a circular sequence of numbers then ｛bn｝ is also a circular sequence of numbers. 

Proof: From Definition 3 we know that, when ｛bn｝ is a parasitic sequence of numbers of｛an｝, then｛bn｝：

｛bn＝f(an)｝. 

Thus, ，bl＝f(al)，bl+nh＝f(al+nh).                             

Suppose ai is the first circular term of circular sequence of numbers ｛an｝, and h is the circular length. From 

Definition 4 we know that, for every l (i≢l) there is al＝al+nh.. 

If the arguments equal each other then the function values equal each other, from which we know f(al)＝f(al+nh). 

From bl＝f(al) and f(al)＝f(al+nh) we know bl＝f(al+nh). 
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From bl＝f(al+nh) and bl+nh＝f(al+nh) we know bl＝bl+nh. From Definition 4 we know that ｛bn｝is a circular 

sequence of numbers.         Q.E.D.                

For example, parasitic sequence of numbers ｛bn＝2an｝：16,20, 2,4,6,2,4,6,2,4,6,„ of circular sequence of 

numbers ｛an｝：8,10, 1,2,3,1,2,3,1,2,3,„ is a circular sequence of numbers. 

Now, let’s investigate a sequence of numbers. 

Fibonacci sequence of numbers is: a1＝a2＝1，an+2＝an+an+1，n＝1,2, …. 

That is to say, when a1＝1，a2＝1 are known,  then we have a3＝a1+a2，a4＝a2+a3，…an+2＝an+an+1. At this 

time, we can regard a3 as the image of the original images a1, a2 ; regard a4 as the image of the original images 

a2, a3;…; regard an+2 as the image of the original images an, an+1.                                                             

Definition 6: Suppose the first k terms a1,…,ak of sequence of numbers A are known. Then if there exists a k-ary 

mapping f such that  

ak+1＝f(a1,…,ak) ,ak+2＝f(a2,…,ak+1) ,…, ak+n＝f(a n,…,ak+n–1)，n＝1,2, … 

then we call A a k-ary mapping recurrent sequence of numbers. 

(Note: Please do  not confuse the mapping recurrent sequences of numbers with the pseudo-random numbers 

generator. Although Definition 6 is similar to the definition of the pseudo-random numbers generator, the 

definition of the former is the formation of the sequences of numbers, while that of the latter is the formation of 

numbers. Although the numbers generated by the pseudo-random numbers generator can be arranged as a 

sequence of numbers, it does not do so.)  

It is not hard to discover that, equidifference sequences of numbers and equiratio sequences of numbers are 

unary mapping recurrent sequences of numbers, Fibonacci sequence of numbers is a binary mapping recurrent 

sequence of numbers. 

For example, the equidiffference sequence of numbers with the first term being 1, the common difference being 

3, that is: 1,4,7,10,… is unary sequence of numbers A：a1＝1，an+1＝ an+3，n＝1,2, …. 

The equiratio sequence of numbers with the first term being 1, the common ratio being 3, that is: 1,3,9,27,… is 

unary sequence of numbers A：a1＝1，an+1＝3an，n＝1,2, … 

    The following sequence of numbers A is a 4-ary mapping recurrent sequence of numbers. 

It is known that the first 4 terms of sequence of numbers A being a1＝2，a2＝3，a3＝5，a4＝7，and an+4＝an. 

Let n＝1,2, „, we can obtain 4-ary mapping recurrent sequence of numbers A：2,3,5,7,2,3,5,7,„. Obviously, A 

is a pure circular sequence of numbers. 

To sum up, the mapping recurrent sequences of numbers have many types. Px+q sequences of numbers we 

highlight later are the standard mapping recurrent sequences of numbers. As some basic properties of the px+q 

sequences of numbers come from the mapping recurrent sequences of numbers, we need to discuss the basic 

properties of the mapping recurrent sequences of numbers before we discuss the px+q sequences of numbers. 

Now, we give a simple representation method of the mapping recurrent sequences of numbers. 

K-ary mapping recurrent sequences of numbers recur from the k+1th term. When we give the two conditions: 

(1)a1,„,ak；(2)an+k＝f(an,…,an+k–1) the sequences of numbers in question are defined, no more conditions are 

needed. 

When defining unary mapping recurrent sequences of numbers, we only need to give a1=a and an+1＝f(an). Thus, 

we abbreviate the unary mapping recurrent sequences of numbers as ｛a1=a，an+1＝f(an)｝.     

In this paper, the relevant properties of the unary mapping recurrent sequences of numbers are mainly discussed. 

The words “mapping recurrent sequences of numbers” in the rest of this paper all refer to the unary recurrent 

sequences of numbers. 

Basic theorem 2: Suppose A：｛a1=a，an+1＝f(an)｝. If ai＝aj，1≢j–i＝h. Then，A is a circular sequence of 

numbers with the circular length being h. 

Proof: From an+1＝f(an) we know，ai+1＝f(ai) ,ai+h+1＝f(ai+h). 

From ai＝aj and j–i＝h we know，ai＝ai+h. 

Because ai and ai+h are the original images of f (ai) and f(ai+h) respectively. From if the original images equaling 

each other then the images equaling each other, we know， 

f (ai)＝f(ai+h). 

From ai+1＝f(ai) and f (ai)＝f(ai+h) we know，ai+1＝f(ai+h). From ai+1＝f(ai+h) and ai+h+1＝f(ai+h) we know，ai+1

＝ai+h+1.  

The above process shows that， from ai＝ai+h we can obtain ai+1＝ai+h+1. Likewise,  from ai+1＝ai+h+1 we can 

obtain ai+2＝ai+h+2,„, from ai+h–1＝ai+2h–1 we can obtain ai+h＝ai+2h. 

Thus,  from ai＝ai+h and ai+h＝ai+2h we can obtain ai＝ai+2h. Similarly, we can obtain ai＝ai+nh. 

Similar to the above proof, we can prove that, ai+1＝ai+nh+1. Similarly, we know that for every l (i≢l)，al＝al+nh.  

According to Definition 4, A is a circular sequence of numbers with the circular length being h.       Q.E.D. 
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Property 7:  I. If h is the minimal circular length of mapping recurrent sequence of numbers A then the h 

consecutive terms of A pairwise non-equal. Ⅱ.Suppose ak is the first circular term of mapping recurrent 

sequence of numbers A and ak＝ak+h. If ak≠ai (k＜i＜k+h) then h is the minimal circular length of A. 

Proof: Prove I. Suppose in A’s h consecutive terms ak, ak+1,„,ak+h–1 there is ai＝aj，k≢i＜j＜k+h. 

Let j–i＝n. Then，n＜h，aj＝ai+n＝ai. 

From ai+n＝ai and the Basic theorem 2 we know that, n (＜h) is the circular length of A. This contradicts with 

the fact that h is the minimal circular length of A. Therefore I holds. 

Prove Ⅱ. From ak≠ai (k＜i＜k+h) we know that, in A’s h+1 consecutive terms ak, ak+1,„,ak+h, only ak+h equals 

ak. This means that, when h′＜h, ak≠ak+h′. From Definition 4 we know that, h′ is not a circular length of A. That 

is, the circular length of A can not be less than h.  Q.E.D. 

Now, we use the the two Basic theorems to prove that any fraction is a circular decimal. 

First, we discuss why fraction 3/14 is a circular decimal. For this reason, we treat the process from fraction 3/14 

to decimal c=0.2142857142857… as two sequences of numbers. 

Suppose mapping recurrent sequence of numbers A is，a1＝3（3 is the numerator of fraction 3/14），an+1＝

(10an)mod 14. By calculation we can obtain， 

A：3,2,6,4,12,8,10, 2,6,4,12,8,10,„                  

The calculation process of sequence of numbers A is as follows. a1＝3 i.e., the first term of A is 3. 

From a1＝3 and a2＝(10a1)mod 14 we obtain a2＝(30)mod 14＝2（Note: a2 is the remainder of 30 divided by 14）. 

From a2＝2 and a3＝(10a2)mod 14 we obtain a3＝(20)mod 14＝6（Note: a3 is the remainder  of 20 divided by 14）. 

„„ 

For every term an of sequence of numbers A there is 0≢an＜14，and A is an infinite sequence of numbers, 

therefore, according to the pigeonhole principle there necessarily is ai＝aj，1≢j–i＝h. 

From sequence of numbers A we can see that a2＝a8＝2（i.e., the second term equals the 8
th

 term），8–2＝6. 

From Basic Theorem 2 we know that, A is a circular sequence of numbers with the minimal circular length 

being 6. 

Suppose A’s parasitic sequence of numbers B is：bn＝〔10an/14〕（Note: 〔x〕 is the integer part of x）. Thus, 

there is 

B：2,1,4,2,8,5,7,1,4, 2,8,5,7,…                   

Now we expound that the process of obtaining every term of sequence of numbers B is the process of obtaining 

every digit on the right of the decimal point of decimal c. 

The obtaining of the first term b1 of sequence of numbers B is：from b1=〔10a1/14〕 and a1＝3 we obtain b1=

〔10a1/14〕=2（i.e.,  the  quotient of 10×3=30 divided by 14 is 2）， while this is the obtaining of the first digit 

2 on the right of decimal point of c. The obtaining of the second term b2 of sequence of numbers B is：from b2=

〔10a2/14〕 and a2＝2 we obtain b2=〔10a2/14〕=1（i.e.,  the quotient of 10×2=20 divided by 14 is 1）， while 

this is the obtaining of the second digit 1 on the right of decimal point of c.…（Please perform the process of 3 

divided by 14 yourself） 

Because A is a circular sequence of numbers, and B is a parasitic sequence of numbers of A，from Basic 

Theorem 1 we know that B is a circular sequence of numbers. Also because each digits on the right of the 

decimal point of decimal c equal to their corresponding terms of B, c is a circular decimal. 

We call sequence of numbers A the sequence of numbers of the remainders of fraction 3/14，call sequence of 

numbers B the sequence of numbers of the quotients of fraction 3/14. 

Now, we prove that any fraction is a circular decimal. 

Proof: We only prove that decimals transformed from proper fraction q/p(i.e., q＜p) are circular decimals. Based 

on the above discussion we can suppose that, the sequence of numbers of remainders A of fraction q/p is: a1＝q，

an+1＝(10an)mod p；the sequence of numbers of quotients B is：bn＝〔10 an /p〕. 

Since every term of the sequence of numbers of remainders A is less than p， there necessarily exist two terms in 

the sequence of numbers in question equal to each other. From A being a mapping recurrent sequence of 

numbers and Basic Theorem 2 we know that, A is a circular sequence of numbers. While B is a parasitic 

sequence of numbers of A. From A being a circular sequence of numbers and Basic Theorem 1 we know that, B 

is a circular sequence of numbers. Because various digits on the right of the decimal point of the decimal 

obtained from fraction q/p correspond to various terms of the sequence of numbers of B, the decimal obtained 

from fraction  q/p is a circular decimal.       Q.E.D.  

The above proof fully shows the importance of the two Basic Theorems.        
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III. The leftward extendedness of px+q sequences of numbers 
We suggest you to read Note 1 before you read this section. 

Now, we define px+q sequences of numbers. 

Definition 7. Suppose a, p, q∈No. If the terms of mapping recurrent sequence in numbers ｛an｝ are a1= a, 

an+1=β(pan+q)，then we call ｛an｝ a px+q sequence of numbers, denoted as｛a1= a, an+1=β(pan+q)｝.（β( ) see 

Definition 2） 

When p=3，q=1，a1=11，｛a1=11, an+1=β(3an+1)｝：11，17，13，5，1，1，… 

The following is the calculation process of the sequence of numbers in question. a1=11 is the first term of 

｛a1=11, an+1=β(3an+1)｝. 

a2 =β(3a1+1)=β(3×11+1)=β(2×17)=17 

a3 =β(3a2+1)=β(3×17+1)=β(2
2
×13)=13 

a4 =β(3a3+1)=β(3×13+1)=β(2
3
×5)=5 

a5 =β(3a4+1)=β(3×5+1)=β(2
4
×1)=1 

a6=β(3a5+1)=β(3×1+1)=β(2
2
×1)=1  

„„ 

From the above process we see that the px+q sequences of numbers are the special sequences of numbers 

formed by the recurrent processes with odd number a as the starting point and with p and q as the parameters. 

We know that, when p=3，q=1， then the px+q sequences of numbers are called the 3x+1 sequences of numbers

（The famous 3x+1 problem can be transformed to the 3x+1 sequences of numbers to handle）. When p=5，q=3， 

then the px+q sequences of numbers are called the 5x+3 sequences of numbers. This is to say, only both p and q 

are definite odd numbers can “px+q sequences of numbers”be a kind of definite sequences of numbers. 

As ｛a1=11, an+1=β(3an+1)｝ is a mapping recurrent sequence of numbers and it has equal terms a5=a6=1，from 

Basic Theorem 2 we know that, the sequence of numbers in question is a circular sequence of numbers with the 

circular length being 1. 

Other examples are: ｛a1=3, an+1=β(5an+1)｝：3,1,3,… is a circular sequence of numbers with the circular length 

being 2; 

｛a1=1, an+1=β(5an+11)｝：1,1,1,… is a circular sequence of numbers with the circular length being 1. 

From Definition 7 we know that, ｛a1=11, an+1=β(3an+1)｝ is a 3x+1 sequence of numbers with the first term 

being 11. But for the readers who read this paper for the first time, it is difficult to know directly that “｛a1=11, 

an+1=β(3an+1)｝” refer to “the 3x+1 sequence of numbers with the first term being 11”. Here we give a tip. The 

first term 11 is given by a1, this is obvious. And change “an” in “3an+1” to “x”, obtaining the “3x+1” 

sequence of numbers we want to know. 

From the tip we know that, ｛a1=3, an+1=β(5an+1)｝is a 5x+1 sequence of numbers with the first term being 3; 

｛a1=1, an+1=β(5an+11)｝ is a 5x+11 sequence of numbers with the first term being 1.  

Once ｛a1=3, an+1=β(5an+1)｝ is given, we should know that,  sequence of numbers ｛a1=3, an+1=β(5an+1)｝ 

is sequence of numbers: 3，1，3，…. （This should be a tacit agreement between the authors and the readers.） 

Now, we expound what is the leftward extendedness of the px+q sequences of numbers. 

Sequence of numbers 1：｛a1=13, an+1=β(5an+1)｝： 13,33,83,13，… 

Sequence of numbers 2：｛a1=1331, an+1=β(5an+1)｝：1331,13,33,83,13，… 

Sequence of numbers 3：｛a1=4259, an+1=β(5an+1)｝：4259,1331,13,33,83,13，… 

Sequence of numbers 4：｛a1=54515, an+1=β(5an+1)｝：54515,4259,1331,13,33,83,13，… 

The above are four 5x+1 sequences of numbers. It is not hard to see that, sequence of numbers 2 is formed by 

adding one term “1331” on the left of the first term 13 of sequence of numbers 1; sequence of numbers 3 is 

formed by adding two terms “4259,1331” on the left of the first term 13 of the sequence of numbers 1; 

sequence of numbers 4 is formed by adding three terms “54515,4259,1331” on the left of the first term 13 of 

sequence of numbers 1. For convenience,, we call sequence of numbers 2, sequence of numbers 3 and sequence 

of numbers 4 as the degree 1 leftward extension sequence of numbers, the degree 2 leftward extension sequence 

of numbers and the degree 3 leftward extension sequence of numbers respectively. 

The main focus of this section is to obtain its degree n leftward extension sequences of numbers from “sequence 

of numbers 1”. 

Since a in Definition 7 can be any odd number, and odd number a is necessarily a term in｛a1=a, an+1=β
(pan+q)｝, any odd number is a term of the px+q sequences of numbers. Thus, we have 

Definition 8: Suppose a, b∈No，b =β(pa+q). When a, b are the terms of px+q sequences of numbers, then we 

call a as a degree 1 predecessor of b, call b as a degree 1 successor of a. If a1 is a degree 1 predecessor of a2 and 

a2 is a degree 1 predecessor of a3, then we call a1 as a degree 2 predecessor of a3. If a1 is an n－1 degree 
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predecessor of an(n＞1) and an is a degree 1 predecessor of an+1, then we call a1 as a degree n predecessor of 

an+1. If a1 is a degree n predecessor of an+1 , then an+1 is a degree n successor of a1. 

Definition 9: If a is a degree n predecessor of b then ｛a1= a, an+1=β(pan+q)｝ is a degree n leftward 

extension sequence of numbers of ｛b1=b, bn+1=β(pbn+q)｝. 

Besides, from sequence of numbers 2 we see that, odd number 13 has necessarily predecessor 1331. But, the 

first term 54515 of sequence of numbers 4 has no predecessor. （We will discuss the reason later）. That is to say, 

as a term in sequence of numbers 2 (i.e., 5x+1 sequence of numbers), odd number 13 has a predecessor, we call 

it a term implying left terms (we will give its definition later); While 54515 has no predecessor, we call it a term 

without a left term. 

From Definition 7 we know that, in px+q sequence of numbers ｛an｝ term ak+ 1＝β(pak+q)，and β(pak+q)

＝(pak+q)/ 2
i， in which i is the number of factor 2 in pak+q. Thus, ak＝(2

i
ak+ 1－q)/ p. Let s＝ak，r＝ak+ 1, we 

obtain 

s＝(2
i
r－q)/p. 

We call “s＝(2
i
r－q)/p” the leftward extension relationship formula of the px+q sequences of numbers. “s

＝ak，r＝ak+ 1”， therefore, in the leftward extension relationship formula, “s” is the predecessor of “r”. 

From 13 to obtain 1331（see sequences of numbers 2,3,4） or from 4259 to obtain 54515（see sequence of 

numbers 4） can all be accomplished by the leftward extension relationship formula. 

In the leftward extension relationship formula p，q，r are known,  the only parameter need to be determined is 

i. For example, when finding degree 1 predecessor 1331 of term 13 in sequence of numbers 2, we know that, p

＝5，q＝1，r＝13. Let i＝5 we can obtain the predecessor 

s＝(2
5·13－1)/5＝1331. 

Now, we discuss how i is assigned or what values can i be assigned. 

Definition 10: Suppose r∈No，s＝(2
i
r－q)/p. If there exists i such that s∈No， then we call r a term implying 

left terms of the px+q sequences of numbers; otherwise, we call r a term without a left term of the px+q 

sequences of numbers. 

First, we discuss the relevant properties of the predecessors of the class of x+q sequences of numbers （i.e., the 

class of px+q sequences of numbers with p=1）. 

（Note: Generally, “px+q sequence of numbers” in this paper refer to one with both p and q being definite odd 

numbers. Because only both p and q are determined can the “px+q sequence of numbers” be a kind of definite 

sequence of numbers. For example, 3x+1 sequence of numbers, 5x+3 sequence of numbers is a kind of definite 

px+q sequence of numbers respectively. In order to denote certain class of px+q sequences of numbers, we add 

prefix “class” in front of the sequences of numbers in question. For example,  the class of px+1 sequences of 

numbers, the class of x+q sequences of numbers, etc.） 

The leftward extension relationship formula of the class of x+q sequences of numbers is s＝2
i
r－q. Because r，

q∈No， there necessarily exists i such that s∈No. This means that, in this class of x+q sequences of numbers, 

any odd number r is a term implying left terms. That is, the class of x+q sequences of numbers have no term 

without a left term. 

For example, ｛a1=27, an+1=β(an+29)｝：27,7, 9,19, 3,1,15,11, 5,„. In this sequence of numbers, the 

predecessor of the second term 7 is 27.  “27” is obtained by 2
3×7－29（Here, i＝3，r=7，q =29，s＝27）. 

Besides, when i＝3,4,5,6,7,„， by 2
i×7－29 we can obtain ：27,83,195，„. This means that, 27,83,195，„ 

are all the predecessors of 7. That is, β(27+29) =β(83+29) =β(195+29) =„=7. 

But, it is a pity that any kind of px+q sequences of numbers with p＞1 have a lot of terms without a left term. 

For convenience, in the following discussion, we stipulate “p＞1”. 

Through the above discussion we know that, if r is a term of certain px+q （Remember p＞1）sequences of 

numbers, but not the first term, then r is a term implying left terms of these kinds of px+q sequences of numbers. 

For on the left of r there is a term which is the predecessor of r. Therefore, only r is the first term of certain kind 

of px+q sequence of numbers can r be the term without a left term of this kind of px+q sequence of numbers. 

Please see, 

Sequence of numbers 5：7,25,11,39,137,15,„ i.e.,｛a1=7, an+1=β(7an+1)｝. 

Sequence of numbers 6：5,7,35,17,133,119,„ i.e.,｛a1=5, an+1=β(7an+21)｝. 

Sequence of numbers 7：7,35,17,133,119,„ i.e., ｛a1=7, an+1=β(7an+21)｝. 

First, let us investigate the first term 7 of sequence of numbers 5. From r＝7，p＝7，q＝1 and s＝(2
i
r－q)/p we 

know that, s＝(2
i×7－1)/ 7∈/ No.（Because 2

i×7－1 can not be divided by 7 evenly） Thus, 7 is a term without 

a left term of the 7x+1 sequence of numbers. 

Then, let us investigate the first term 5 of the sequence of numbers 6. From r＝5，p＝7，q＝21 we know that, s
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＝(2
i×5－21)/ 7∈/ No. Thus, 5 is a term without a left term of the 7x+21 sequence of numbers. 

Then, let us investigate the first term 7 of the sequence of numbers 7. From r＝7，p＝7，q＝21 and s＝(2
i×7

－21)/ 7＝(2
i－3) we know that, there exists i such that s＝(2

i－3)∈No. Thus, 7 is a term implying left terms of 

the 7x+21 sequence of numbers.  

Let i =2,3,4,„ we obtain 7’s predecessors s＝1,5,13,„. 

Besides, when we know that 1,5,13,„ are the predecessors of the first term 7 of the sequence of numbers 7, we 

also know that, the following sequences of numbers 

｛a1=1, an+1=β(7an+21)｝： 1 ,7,35, 133,119,„ 

｛a1=5, an+1=β(7an+21)｝： 5 ,7,35, 133,119,„ 

｛a1=13, an+1=β(7an+21)｝：13 ,7,35, 133,119,„ 

„ 

are all degree 1 leftward extension sequences of numbers of sequence of numbers 7. 

Theorem 1. Suppose r∈No，(p,q)＝c. Then, 

⑴ When c＝1, if p︱r then r is a term without a left term of the px+q sequences of numbers; 

⑵ When c＞1, if c︱/ r then r is a term without a left term of the px+q sequences of numbers. 

Proof: Prove ⑴. From p︱r we can suppose r＝pr′. From s＝(2
i
r－q)/p we know that, s＝(2

i
pr′－q)/p. 

From (p,q)＝c＝1 we know that,  p︱/ 2
i
pr′－q. Then, s＝(2

i
pr′－q)/p∈/ No. 

That is to say, there is no i such that s∈No. From Definition 10 we know that, r is a term without a left term of 

the px+q sequences of numbers. 

Prove ⑵. Suppose p＝cp′，q＝cq′. From s＝(2
i
r－q)/p we obtain, s＝(2

i
r－cq′)/cp′. From Definition 7 we 

know that, p,q∈No. Therefore, (p,q)＝c∈No. c︱/ r，therefore, c︱/ 2
i
r，c︱/ 2

i
r－cq′，cp′︱/ 2

i
r－cq′.  

Thus, we know that, s＝(2
i
r－cq′)/cp′∈/ No. That is, r is a term without a left term of the px+q sequences of 

numbers.      Q.E.D. 

From (1) of Theorem 1 we know that, the first term 7 in the sequence of numbers 5:｛a1=7, an+1=β(7an+1)｝ is 

a term without a left term of the 7x+1 sequence of numbers, for at this time (p,q)＝(7,1)＝c＝1 and  p＝7︱r

＝7. 

From (2) of Theorem 1 we know that, the first term 5 in the sequence of numbers 6: ｛a1=5, an+1=β(7an+21)｝ 

is a term without a left term of the 7x+21 sequence of numbers, for at this time c＝(p,q)＝(7,21)＝3＞1 and c

＝3︱/ r＝5. 

Definition 11. If the first term of the px+q sequences of numbers is a term implying left terms, then the 

sequences of numbers in question are the leftward extendable sequences of numbers of the px+q sequences of 

numbers, otherwise, the sequences of numbers in question are the non-leftward extendable sequences of 

numbers of the px+q sequences of numbers. 

From Definition 11 we know that, sequence of numbers 5 is a non-leftward extendable sequence of numbers of 

the 7x+1 sequences of numbers. Sequence of numbers 6 is a non-leftward extendable sequence of numbers of 

the 7x+21 sequences of numbers. Sequence of numbers 7 is a leftward extendable sequence of numbers of the 

7x+21 sequences of numbers. 

Now, we discuss the sufficient and necessary condition for odd number r to be a term implying left terms in the 

px+q sequences of numbers. 

Theorem 2. Suppose (p, q)=1，r∈No. Then,Ⅰ. The sufficient and necessary condition for r being a term 

implying left terms in the px+q sequences of numbers is rq
-1

≡2
k
(mod p). At the same time,  s, the predecessor 

of r, is given by:  

s＝(2
nδp(2)-k

r－q)/p.             (1) 

Ⅱ. Suppose p′=cp，q′=cq，r′=cr，c∈No. Then,  r′ is a term implying left terms in the p′x+ q′ sequences of 

numbers if and only if r is a term implying left terms in the px+q sequences of numbers, and s′, the predecessor 

of r′, is s′=s＝(2
nδp(2)-k

r－q)/p.              

Proof: prove Ⅰ. First, we prove the necessary condition, i.e., we prove if s＝(2
i
r－q)/p∈No then rq

-1
≡2

k
(mod 

p). 

From (2
i
r－q)/p∈No we know that, 2

i
r－q≡0(mod p)，2

i
r≡q (mod p). 

From (q, p)＝1 and 2
i
r≡q(mod p) we know that, ,2

i
rq

-1
≡1 (mod p). 

From 2
i
rq

-1
≡1 (mod p) and (2

i
, p)＝1 we know that, rq

-1
≡(2

i
)

-1
 (mod p). （ (2

i
)

-1 
is the inverse of 2

i
 modulo p） 

From Corollary 8 (See Note 1) we know that, there necessarily exists positive integer k such that (2
i
)

-1
≡2

k
 (mod 

p). From rq
-1

≡(2
i
)

-1
 (mod p) and (2

i
)

-1
≡2

k
 (mod p) we obtain，rq

-1
≡2

k
(mod p). 

Then we prove sufficient condition, i.e., we prove that, if rq
-1

≡2
k
(mod p) then s＝(2

i
r－q)/p∈No. 

Because there necessarily exists positive integer i，k such that i＝nδp(2)－k，i+k＝nδp(2). 
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Thus, 2
i+k

=2
i
2

k
≡2

nδp(2)
≡1 (mod p). 

From 2
i
2

k
≡1 (mod p) and condition 2

k
≡rq

-1
 (mod p) we know that, 2

i
 (rq

-1
)≡1(mod p)，2

i
r≡q(mod p). 

From 2
i
r≡q(mod p) we know that, 2

i
r－q≡0(mod p). From 2

i
r－q≡0(mod p) and q, p∈No we know that, (2

i
r－

q)/p∈No. 

Let s＝(2
i
r－q)/p. Then, s＝(2

i
r－q)/p∈No. From Definition 10 and s＝(2

i
r－q)/p∈No we know that, r is a 

term implying left terms of the px+q sequences of numbers. 

From s＝(2
i
r－q)/p and i＝nδp(2)－k we know that, s＝(2

nδp(2)-k
r－q)/p.  

Prove Ⅱ. 

First, we prove that, if r′ is a term implying left terms in the p′x+ q′ sequences of numbers then r is a term 

implying left terms in the px+ q sequences of numbers, and s′=s. 

From r′ is a term implying left terms in the p′x+ q′ sequences of numbers we know that, the predecessor of r′ is 

s′＝(2
i
r′－q′)/p′∈No. So, 

           s′＝(2
i
cr－cq)/cp＝(2

i
r－q)/p＝s∈No. 

From Definition 10 we know that, r is a term implying left terms in the px+ q sequences of numbers. From Ⅰ 

we know that, s＝(2
nδp(2)-k

r－q)/p. 

Likewise, we can prove that, if r is a term implying left terms in the px+ q sequences of numbers then r′ a term 

implying left terms in the p′x+ q′ sequences of numbers, and s =s′. Q.E.D. 

We call formula (1) the predecessor calculation formula of r--the term implying left terms--in the px+q 

sequences of numbers.  

From Theorem 2 we can obtain: 

Corollary 1. r is a term implying left terms in the px+q sequences of numbers if and only if cr(c∈No) is a term 

implying left terms in the cpx+cq sequences of numbers. At the same time, the predecessors of cr--the term 

implying left terms--in the cpx+cq sequences of numbers are the same as those of r--the term implying left 

terms--in the px+q sequences of numbers. 

Theorem 2 is complex. Now, we show an example to expound the meaning of Ⅱ in Theorem 2. 

Now, in the leftward extension relationship formula s＝(2
i
r－q)/p, we let i=1，r=143，q=1，p=3. (143×2

1－
1)/3=95=s. Thus, 143 is a term implying left terms in the 3x+1 sequence of numbers （For p=3,q=1） and one of 

its predecessor is 95. 

Besides, 5p=15，5q=5，5r=715. 

What Ⅱ in Theorem 2 refers to is that, when 143 is a term implying left terms in the 3x+1 sequence of 

numbers and one of its predecessor is 95, then 715 is a term implying left terms in the 15x+5 sequence of 

numbers and one of its predecessor is also 95. Please see the following 15x+5 sequence of numbers: 

｛a1=3, an+1=β(15an+5)｝：3 ,25,95, 715,„ 

In this sequence of numbers, 95 is a predecessor of 715. 

Now, we show an example to expound the meaning of Ⅰ in Theorem 2. 

Example 1. Decide which of 15,17,119 are the terms implying left terms in the 9x+1 sequence of numbers and 

the 63x+7 sequence of numbers, and calculate the predecessors of each term implying left terms. 

Solution: First, we decide which of 15,17,119 are the terms implying left terms in the 9x+1 sequence of numbers, 

and calculate the predecessors of the terms in question. 

At this time, we know that, p＝9, q＝1, q
-1

≡1 (mod 9)，δ9(2)=6. 

When r＝15, rq
-1

≡15×1≡6 (mod 9). Because there exists no k such that 6≡2
k
 (mod 9)， 15 is a term without a 

left term in the 9x+1 sequence of numbers. 

When r＝17, rq
-1

≡17×1≡2
3
 (mod 9)，k＝3. Therefore, 17 is a term implying left terms in the 9x+1 sequence of 

numbers Now, we calculate the predecessors of 17: 

At this time, the predecessor calculation formula of 17 is: s＝(2
6n-3

17－1)/9. When n=1,2,3,„， we obtain that, 

the  predecessors of 17--the term implying left terms--in the  9x+1 sequence of numbers are 

15,967,61895,„. 

When r＝119, rq
-1

≡119×1≡2
1
 (mod 9) ，k＝1. Therefore,  119 is a term implying left terms in the 9x+1 

sequence of numbers. Now, we calculate the predecessors of 119. 

At this time, the predecessor calculation formula of 119 is: s＝(2
6n-1

119－1)/9. When n=1,2,3,„， we obtain 

that, the predecessors of 119--the term implying left terms--in the 9x+1 sequence of numbers are 

423,27079,1733063,„. 

Then, we decide which of 15,17,119 are the terms implying left terms in the 63x+7 sequence of numbers, and 

calculate the predecessors of the terms in question. 

At this time, c＝(63, 7)＝7, p＝63/7=9, q＝7/7=1，q
-1

≡1 (mod 9)，δ9(2)=6. 

Since 15,17 cannot be divided evenly by 7, from (2) in Theorem 1, we know that, 15,17 are terms without a left 
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term in the 63x+7 sequence of numbers. 

From cr＝119 and c＝7 we know that, r＝17. From 17 being a term implying left terms in the 9x+1 sequence of 

numbers we know that, 119 is a term implying left terms in the 63x+7 sequence of numbers, and the predecessor 

calculation formula of 119: s＝(2
6n-3

17－1)/9 is the same as that of 17. 

Thus, the predecessors of 119--a term implying left terms--in the 63x+7 sequence of numbers are 

15,967,61895,„. 
Corollary 1 tells us that, so long as we know all r--the terms implying left terms--in the class of px+q sequences 

of numbers with (p, q)=1 then we know all cr--the terms implying left terms--in the class of cpx+cq sequences 

of numbers. Therefore, in the following discussion we stipulate that “(p, q)=1”. 

Because n in formula (1) can be n=1,2,„， r--the term implying left terms--in the px+q sequences of numbers 

has necessarily infinitely many predecessors s. Now, let us discuss the properties of the infinitely many 

predecessors s. 

In Example 1 we have found the predecessors of 17--term implying left terms--in the 9x+1 sequence of numbers 

are 15,967,61895,„. We should notice that these infinitely many predecessors form a (infinite) sequence of 

numbers ｛an｝：15,967,61895,„. 

It is interesting that, 967=2
6×15+7, 61895=2

6×967+7,„ i.e., there is ｛an｝：｛a1＝15，an+1=2
6
an+7｝. Obviously, 

sequence of numbers ｛an｝ is a mapping recurrent sequence of numbers. 

Please see the following theorem: 

Theorem 3. Suppose the terms in the sequence of numbers ｛an｝ obtained by letting n=1,2,„ respectively of 

formula (1) of Theorem 2. That is, 

｛an｝：a1＝(2
δp(2)-k

r－q)/p， a2＝(2
2δp(2)-k

r－q)/p，„， an＝(2
 nδp(2) -k

r－q)/p. 

Then,  sequence of numbers ｛an｝ is the following mapping recurrent sequence of numbers: 

｛a1= a, an+1=2
δp(2)

an+b｝                       (2)        

Where, a=(2
δp(2)-k

r－q)/p，b =q(2
δp(2)－1)/p. 

Proof: From the supposition we know that, a1＝(2
δp(2)-k

r－q)/p， an＝(2
 nδp(2) -k

r－q)/p， 

an+1＝(2
(n+1) δp(2)-k

r－q)/p 

＝(2
n δp(2) +δp(2)-k

r－q)/p 

＝(2
δp(2)

2
 nδp(2) -k

r－q)/p 

＝(2
δp(2)

2
nδp(2)-k

r－2
δp(2)

q+2
δp(2)

q－q)/p 

＝2
δp(2)

(2
nδp(2)-k

r－q)/p+q(2
δp(2)－1))/p 

＝2
δp(2)

an+q(2
δp(2)－1))/p. 

These prove that sequence of numbers ｛an｝ is a mapping recurrent sequence of numbers:｛a1=(2
δp(2)-k

r－q)/p, 

an+1=2
δp(2)

an+q(2
δp(2)－1)/p｝. 

Let a=(2
δp(2)-k

r－q)/p，b=q(2
δp(2)－1)/p， we obtain that, ｛a1=( a, an+1=2

δp(2)
an+b｝. Q.E.D. 

Theorem 3 shows that, sequence of numbers a1＝(2
δp(2)-k

r－q)/p，a2＝(2
2δp(2)-k

r－q)/p,„,an＝(2
 nδp(2) -k

r－q)/p is 
just sequence of numbers ｛a1= a, an+1=2

δp(2)
an+b｝， where a1=(2

δp(2)-k
r－q)/p, b =q(2

δp(2)－1)/p. 

The former gives all of the predecessors of r--the term implying left terms--in the px+q sequences of numbers, 

therefore, the latter also gives those of the px+q sequences of numbers. We call formula (2) the sequences of 

numbers of the predecessors of of r--the term implying left terms-- in the px+q sequences of numbers. 

When using formula (2) to obtain the predecessors of r, the term implying left terms, we need to calculate 

a1=(2
δp(2)-k

r－q)/p and  b=q(2
δp(2)－1)/p. 

At this time, p,q,r are known, but we need to calculate δp(2)， which involves the calculation of order. And at the 

same time, we need to find k according to rq
-1

≡2
k
(mod p), which is just a process of solving exponential 

congruent equation 2
x
≡a (mod p) （Here x=k，a= rq

-1）. The calculation of the predecessors of r, the term 

implying left terms, is a difficult task, But it is solved in Note 1. Now, we give a general method for deciding 

r--the term implying left terms--in the px+q sequences of numbers and calculating its sequences of numbers of 

predecessors. 

Decision and calculation method for the term implying left terms or the term without a left term: 
⑴. Find q

-1
. If q=1 then q

-1
=1； if 1＜q then we calculate the simplest ｛a1=q, an+1=(qan) mod p｝，q

-1
=the second 

term from the right in the sequence of numbers in question.(See Conclusion 19)  

⑵. Find δp(2). We calculate the simplest ｛a1=2, an+1=(2an) mod p｝. δp(2)=the number of terms in the sequence of 

numbers in question.(See Conclusion 18) 

⑶. Find k. If (rq
-1

) mod p is a term in the simplest ｛a1=2, an+1=(2an) mod p｝ then we know that r is a term implying 

left terms, and k is the position value of  (rq
-1

)mod p at simplest ｛a1=2, an+1=(2an) mod p｝（Note: When (rq
-1

) mod 

p=1, k=0）. If (rq
-1

) mod p is not a term in the simplest ｛a1=2, an+1=(2an) mod p｝ then we know that r is a term 
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without a left term. (See Conclusion 20) 

⑷.Find the sequences of numbers of the predecessors. Calculate a=(2
δp(2)-k

r－q)/p，b =q(2
δp(2)－1)/p，obtaining: 

｛a1=a, an+1=2
δp(2)

an+b｝. 

An example. Find the sequence of numbers of the predecessors of 7--the term implying left terms--in the 

31x+25 sequence of numbers. 

Solution: Because 1＜q=25， according to (1) of the decision and calculation method for the term implying left 

terms or the term without a left term, we need to find q
-1（i.e., 25

-1）. Because the second term from the right of  

Simplest ｛a1=25, an+1=(25an)mod 31｝：25,5,1 

is 5, q
-1

=25
-1

= 5. 

According to (2) of the decision and calculation method for the term implying left terms or the term without a 

left term, we find 

Simplest ｛a1=2, an+1=(2an)mod 31｝：2,4,8,16,1. 

The number of terms of the sequence of numbers in question is 5, we obtain, δ31(2)=5. 

From r＝7 and 25
-1

= 5 we obtain，(rq
-1

) mod p=(7×25
-1

) mod 31=4. 

“4” is the second term of simplest ｛a1=2, an+1=(2an)mod 31｝：2,4,8,16,1， according to (3) of the decision and 

calculation method for the term implying left terms or the term without a left term we know that, 7 is a term 

implying left terms, and k=2. 

Then, according to (4) of the decision and calculation method for the term implying left terms or the term 

without a left term, we calculate a and b. 

From r＝7，p＝31，q＝25，δ31(2)＝5，k=2 and a=(2
δp(2)-k

r－q)/p，b =q(2
δp(2)－1)/p we obtain, 

a=(2
5-2

7－25)/31=1，b= 25(2
5－1)/31=25.  

Thus, we obtain that, the sequence of numbers of the predecessors of 7--the term implying left terms--in the 

31x+25 sequence of numbers is: 

｛a1=1，an+1=2
5
an+25｝：1,57,1849,„.                   

(It is not hard to calculate that, β(1×31+25)=β(57×31+25)=β(1849×31+25)=7, which verify that 

1,57,1849 are the predecessors of 7). 

(3) of the decision and calculation method for the term implying left terms or the term without a left term also 

tells us that, the r satisfying (r×25
-1

) mod 31=2,4,8,16,1 are all the terms implying left terms in the 31x+25 

sequence of numbers. And the r satisfying (r×1
-1

) mod 31=2,4,8,16,1 are all the terms implying left terms in the 

31x+1 sequence of numbers. 

From (r×25
-1

) mod 31=2,4,8,16,1 we know that, r·25
-1

≡2,4,8,16,1 (mod 31)，r≡19,7,14,28,25(mod 31). That is to 

say, r is a term implying left terms in the 31x+25 sequence of numbers if and only if r≡19,7,14,28,25(mod 31). 

And r is a term implying left terms in the 31x+1 sequence of numbers if and only if r≡2,4,8,16,1 (mod 31). 

The authors found out earlier that , the terms without a left term in the 3x+1 sequence of numbers can only be 

the odd numbers divided evenly by 3, the terms without a left term in the 5x+1 sequence of numbers can only be 

the odd numbers divided evenly by 5. Therefore, for a long time the authors have considered that“the number of 

the terms implying left terms is more than that of the terms without a left term”. Yet, the number of terms 

implying left terms in the 31x+25 sequence of numbers and the 31x+1 sequence of numbers are far less than that 

of the terms without a left term. Obviously, for both 31x+25 sequence of numbers and 31x+1 sequence of 

numbers, in the successive 31 odd numbers there are only δ31(2)=5 terms implying left terms. 

The successive p odd numbers are a residual system of p, which means that in the successive p odd numbers 

only δp(2) odd numbers are the terms implying left terms in the px+q sequences of numbers. Therefore, the ratio 

of the number of the terms implying left terms in the px+q sequences of numbers to that of the total odd 

numbers is δp(2)/p. Any odd number can be the first term of the px+q sequences of numbers, and the first term 

of the leftward extendable sequences of numbers is the term implying left terms, therefore, the ratio of the 

number of the leftward extendable sequences of numbers to the total number of the kind of px+q sequences of 

numbers is δp(2)/p. 

For example, in the successive 7 odd numbers 1,3,5,7,9,11,13, only 3(=δ7(2) odd numbers 1,9,11 are the terms 

implying left terms in the 7x+1 sequence of numbers（The readers please verify yourselves using the decision 

and calculation method for the term implying left terms or the term without a left term）. Therefore, in the 

following 7 sequences of numbers,  

1．｛a1=1，an+1=β(7an+1)｝：1,1,1,„； 2.｛a1=3，an+1=β(7an+1)｝：3,11,39,„； 

3．｛a1=5，an+1=β(7an+1)｝：5,1,1,„； 4.｛a1=7，an+1=β(7an+1)｝：7,25,11,„； 

5．｛a1=9，an+1=β(7an+1)｝：9,1, 1,„；6．｛a1=11，an+1=β(7an+1)｝：11,39, 137,„； 

7．｛a1=13，an+1=β(7an+1)｝：13,23, 81,„ 

only the first, fifth and sixth sequences of numbers (Their first terms are 1, 9, 11 respectively) are the leftward 

extendable sequences of numbers of the 7x+1 sequences of numbers. 
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However, whether the ratio of the terms implying left terms to all the terms in the sequences of numbers of the 

predecessors of r--the term implying left terms--in the px+q sequences of numbers is also δp(2)/p? The answer is 

No. 

Please see the sequence of numbers of the predecessors of 65--the term implying left terms--in the 21x+1 

sequence of numbers: ｛a1＝99，an+1=2
6
an+3｝：99,6339,405699,„（From β(99×21+1)=β(6339×21+1) 

=β(405699×21+1)=„=65 we know that, 99,6339,405699,„ are the predecessors of 65）. The readers can use 

Theorem 1 or the decision and calculation method for the term implying left terms or the term without a left 

term to prove that 99,6339,405699,„ are all the terms implying left terms in the 21x+1 sequence of numbers. 
Subsequently, we discuss the ratio of the terms implying left terms to all the terms in the sequences of numbers 

of the predecessors of r--the term implying left terms--in the px+q sequences of numbers. To this end, we need 

to investigate the residue modulo p of the various terms in the sequences of numbers of the predecessors of 

r--the term implying left terms--in the px+q sequences of numbers. 

Theorem 4. Suppose ｛an｝：｛a1=a, an+1=2
δp(2)

an+b｝，｛bn｝：｛bn=(an)mod p｝. Then, 

｛bn｝：｛b1=(a)mod p, bn+1=((bn+ b) mod p｝. 

Proof: From a1=a and b1 =( a1)mod p we obtain b1 =(a)mod p. From bn+1=(an+1)mod p and an+1=2
δp(2)

an+b we know 

that, 

bn+1=(2
δp(2)

an+b)mod p=((2
δp(2)

)mod p(an)mod p +b)mod p. （See Property 2） 

From  (2
δp(2)

)mod p=1 we know that, bn+1=((an)mod p +b) mod p. 

From the supposition bn =(an)mod p we know that,bn+1=(bn+b) mod p.        Q.E.D. 

From Definition 1 we know that, bn=(an)mod p is just bn≡an (mod p). From Theorem 4 we obtain:  

Corollary 2. If ｛an｝：｛a1=a, an+1=2
δp(2)

an+b｝  and｛bn｝：｛b1=(a)mod p, bn+1=((bn+ b) mod p｝，then 

an≡bn (mod p)，n=1,2,„. 

Because ｛b1 =(a)mod p, bn+1=((bn+b) mod p｝ is a mapping recurrent sequence of numbers and all of its terms are 

less than p， by pigeonhole principle and Basic Theorem 2 we know that the sequence of numbers in question is 

a circular sequence of numbers. 

It is not hard to see that, when a=(2
δp(2)-k

r－q)/p，b=q(2
δp(2)－1)/p, ｛an｝：｛a1=a, an+1=2

δp(2)
an+b｝ in Theorem 

4 is the sequence of numbers of the predecessors of r--the term implying left terms--in the px+q sequences of 

numbers given by formula (2). Performing the minimal non-negative residue modulo p to each term of it we 

obtain｛bn｝：｛bn=(an)mod p｝ i.e., ｛b1=(a)mod p, bn+1=((bn+b) mod p｝. That is to say, the minimal non-negative 

residue modulo p of the various terms in the sequence of numbers of the predecessors of r--the term implying 

left terms--in the px+q sequences of numbers is given by ｛b1=(a)mod p, bn+1=((bn+b) mod p｝. 

For this reason, we call ｛b1=(a)mod p, bn+1=((bn+b) mod p｝ with a=(2
δp(2)-k

r－q)/p，b=q(2
δp(2)－1)/p  as a 

sequence of numbers of the residue of the predecessors of r--the term implying left terms--in the px+q 

sequences of numbers. 

It worth mentioning that, a, b in ｛a1=a, an+1=2
δp(2)

an+b｝ is just a, b in ｛b1=(a)mod p, bn+1=((bn+b) mod p｝. 

Therefore, if we have the former then we can obtain the latter. 

For example, the sequence of numbers of the predecessors of 17--the term implying left terms--in the 9x+1 

sequence of numbers is: 

｛a1＝15，an+1=2
6
an+7｝：15,967,61895,„. 

Thus, the sequence of numbers of the residue of the predecessors of 17--the term implying left terms--in the 

9x+1 sequence of numbers is: 

｛b1=(15)mod 9, bn+1=((bn+7) mod 9｝：6,4,2,„. 

Obviously, 15≡6 (mod 9)，967≡4 (mod 9)，61895≡2 (mod 9)，„. 
Now, we investigate the sufficient condition for the predecessors of the terms implying left terms to be the terms 

implying left terms. This is a complicated problem, it need to prove the following lemmas first. 

In proving the lemmas we will use the following properties of the non-congruent equations a≡/ b (mod m)： 

When a≡/ b (mod m), Ⅰ.a+c≡/ b+c (mod m)；Ⅱ.If (c, m)=1 then ac≡/ bc (mod m). 

（The two properties above can be proved using proof by contradiction） 

Lemma 1. Suppose ｛an｝：｛a1=a＜m, an+1=(an+b) mod m｝. Then, Ⅰ. an=(a+(n－1)b) mod m；Ⅱ. ｛an｝ is a 

pure circular sequence of numbers with the minimal circular length being m/(b, m)；Ⅲ. If  m1︱m and (m1, 

b)=1， then, every successive m1 terms in ｛an｝ are a residual system of m1. When (b, m)=1, then every 

successive m terms in ｛an｝ are a residual system of m. 

Proof: Similar to the proof of Theorem 9 (in Note 1) we can prove that Ⅰ holds. 

Prove Ⅱ. Suppose (b, m)=c，b′=b/c，m′=m/c. Then, (b′, m′)=1，m′=m/(b, m)，b=b′c, m=m′c. 

From Ⅰ we know that, am′+1=(a+( m′+1－1)b) mod m， i.e., 
am′+1=(a+m′b) mod m=(a+m′b′c) mod m=(a+m′cb′) mod m=(a+mb′) mod m=a =a1. 
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From Basic Theorem 2 we know that, ｛an｝ is a pure circular sequence of numbers with the circular length 

being m′=m/(b, m). 

Then, we prove that m′ is the minimal circular length of ｛an｝. Since ｛an｝ is a pure circular sequence of 

numbers, a1 is a circular term. Thus, we prove that none of the terms a2, a3,„, am′－1 in ｛an｝ equals a1. 

When 1＜k≢m′，m′︱/(k－1). 

From (b′, m′)=1 we know that, m′︱/(k－1)b′，m′c︱/(k－1)b′c，m︱/(k－1)b. 

Thus, (k－1)b≡/ 0 (mod m)，a+(k－1)b≡/ a (mod m). 

From Ⅰ we know that ,ak=(a+(k－1)b) mod m. Thus, ak≡/ a (mod m). Then, ak≠a， i.e., ak≠a1. 

This proves a2, a3,„, am′－1≠a1. From Ⅱ of Property 7 we know that, m′ is the minimal circular length of 

｛an｝. 

Prove Ⅲ.  

When m1=1, Ⅲ holds. Now, we discuss the case of m1＞1. 

Suppose 1≢i－k＜m1. From m1＞1 we obtain, i－k≡/ 0 (mod m1)，i≡/ k (mod m1)，i－1≡/ k－1 (mod m1). 

From (b, m1)=1 we know that, (i－1)b≡/ (k－1)b (mod m1)， 

a+(i－1)b≡/ a+(k－1)b (mod m1).               (3)  

From Property 6 we know that, there exist integers k1≣0 and k2≣0 respectively such that  

a+(i－1)b=k1m+(a+( i－1) b) mod m and a+(k－1)b=k2m+(a+( k－1) b) mod m, i.e., 

a+(i－1)b=k1m+ai and a+(k－1)b=k2m+ak.            (4) 

From (3) and (4) we obtain that, k1m+ai≡/ k2m+ak (mod m1). 

From m1︱m we know that, k1m≡k2m≡0 (mod m1). Therefore, ai≡/ ak (mod m1). 

When 1≢i－k＜m1, ai≡/ ak (mod m1)，this means that the successive m1 terms of ｛an｝ pairwise non-congruent 

modulo m1. Therefore, every successive m1 terms of ｛an｝ are a residual  system of m1. Especially, when (b, 

m)=1, Let m1=m， at this time, there is m1︱m and (m1, b)=1.Therefore, at this time, every successive m1=m 

terms of ｛an｝ are a residual system of m1=m.     

Q.E.D. 

Let us investigate the following 3 sequences of numbers: 

Sequence of numbers 8：｛a1=1, an+1=(an+3) mod 12｝1,4,7,10,1,„ 

Sequence of numbers 9：｛a1=1, an+1=(an+5) mod 12｝1,6,11,4,9,2,7,0,5,10,3,8,1,„. 

Sequence of numbers 10：｛a1=1, an+1=(an+3) mod 36｝1,4,7,10,13,16,19,22,25,28,31,34,1,„ 

As to sequence of numbers 8, at this time, b=3，m=12，(m, b)=(12, 3)=3，m/(b, m)=12/3=4. The minimal circular 

length of the  sequence of numbers 1,4,7,10,1,„ is just 4. This verifies Ⅱ in Lemma 1. 

Besides,  Let m1=4. We have 4︱12（i.e., “m1︱m”） and (m1, b)=(4,3) =1. It is not hard to see that, the 

successive 4 terms of the sequence of numbers 1,4,7,10,1,„ is a residual system of 4. This verifies Ⅲ of 

Lemma 1. 
As to sequence of numbers 9, we have (m, b)=(12,5)=1. It is not hard to see that, the minimal circular length of 

the sequence of numbers 1,6,11,4,9,2,7,0,5,10,3,8,1, „  is 12. Also because 2,3,4,6,12 ︱ 12 and 
(2,5)=(3,5)=(4,5)=(6,5)=(12,5)=1. Every 2, 3, 4, 6, 12 successive terms of the sequence of numbers 9 are the 

residual systems of 2, 3, 4, 6, 12. 

As to sequence of numbers 10, we have (m, b)=(36,3)=3，m/(b, m)=36/3=12. It is not hard to see that, the 

minimal circular length of the sequence of  numbers 10 is 12. Also because 2, 4︱36 and (2,3)=(4,3)=1. Every 

successive 2 or 4 terms of the sequence of numbers 10 are the residual systems of 2 or 4. 

Please note that, although 6,9︱36， the successive 6 or 9 terms of the sequence of numbers 10 are not the 

residual systems of 6 or 9. This will be investigated later in Lemma 3.  

First, let us prove Lemma 2. 

Lemma 2. If every successive m terms of the sequence of numbers ｛bn｝ are a residual system of m then bi≡

bnm+i(mod m)，0≢n. 

Proof: First, we prove that in the m+1 terms bk,bk+1,„, bk+m－1, bk+m in ｛bn｝, we have bk+m≡bk (mod m). 

We use proof by contradiction. Suppose bk≡/ bk+m (mod m). 

Because bk,bk+1,„, bk+m－1 are the successive m terms of ｛bn｝, bk, bk+1,„, bk+m－1 is a residual system of m. Thus, 

bk+m is necessarily congruent modulo m with one of bk, bk+1,„, bk+m－1. 

When bk+m≡/ bk (mod m), bk+m is necessarily congruent modulo m with one of bk+1 ,„, bk+m－1. 

Thus, the successive m terms bk+1 ,„, bk+m－1, bk+m are not pairwise non-congruent modulo m, which contradicts 

with the fact that every successive m terms in ｛bn｝ are a residual system of m. Therefore the supposition does 

not hold. 
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Therefore, bk+m≡bk (mod m).  

The rest can be inferred by analogy. Thus, Lemma 2 holds.  Q.E.D. 

Lemma 3. Every successive m1 terms in ｛an｝ ：｛a1=a, an+1=(an+b)modm｝ are a residual system of m1 if and 

only if m1︱m and (m1, b)=1. 

Proof: In Lemma 1 we have proved that,  m1︱m and (m1, b)=1 is a sufficient condition of every successive m1 

terms in ｛an｝ being a residual system of m1.  Here we only prove that,  m1︱m and (m1, b)=1 is a necessary 

condition of every successive m1 terms in ｛an｝ being a residual system of m1. For this reason, we need to prove 

the following two cases. 

Case 1. If  m1︱m and (m1, b)＞1 then it does not hold that every successive m1 terms in ｛an｝ is a residual 

system of m1. 

Case 2. If m1︱/ m  then it does not hold that every successive m1 terms in ｛an｝ is a residual system of m1. 

Prove Case 1. 

Suppose (m1, b)=k＞1，b′=b/k，m2= m1/k. Thus, b =b′k，m1=k m2，k m2︱m. 

From Ⅰ in Lemma 1 we know that, the first m1=km2 terms of ｛an｝ are: 

 

  

 
a，                  (a+b′k) modm，            „，(a+( m2－1)b′k) mod m， 

(a+(2 m2－m2)b′k) mod m，(a+( 2m2－m2+1)b′k) mod m，„，(a+(2m2－1)b′k) mod m， 

„„ 

(a+( k m2－m2)b′k) mod m，(a+( km2－m2+1)b′k) mod m，„，(a+( km2－1)b′k) mod m. 

The above km2 terms form a matrix with k rows and m2 columns. Now, we investigate the second column （The 

other columns can be treated similarly）. 

We prove (a+b′k)mod m≡(a+(nm2－m2+1)b′k)mod m (mod km2), 1≢n≢k（i.e., each term in the second column are 

congruent modulo m1=km2）.
 

From km2︱m and Property 4 we know that, 

((a+(nm2－m2+1)b′k) mod m) mod km2 
=(a+(nm2－m2+1)b′k)mod km2

 

=(a+(n－1) m2b′k +b′k)mod km2 

=(a+(n－1)k m2b′+b′k)mod km2 

=(a+b′k) mod km2. 

From Property 1 we know that, (a+(nm2－m2+1)b′k)mod m≡a+b′k (mod km2). 

Likewise,  (a+b′k)mod m≡a+b′k (mod km2). 

Therefore, (a+(nm2－m2+1)b′k)mod m≡(a+b′k)mod m (mod km2).  

This proves that in ｛an｝ there are successive m1=km2 terms which are not pairwise non-congruent modulo m1. 

Or it does not hold that every successive m1 terms in ｛an｝ are a residual system modulo m1. 

Prove Case 2. m1︱/ m， therefore, either m1＜m， or m1＞m. 

First, we prove the case of m1︱/ m and m1＜m. 

From m1＜m and m1︱/ m (This means m1＞1) we know that, there necessarily exists 1＜k such that 1≢km1－m

＜m1. 

Let km1－m=c. Thus, 1≢c＜m1 and m=km1－c，m+1=(k－1)m1+m1－c+1. 

From c＜m1 we know that, 1≢m1－c＜m1，2≢m1－c+1≢m1. 

Suppose every successive m1 terms in ｛an｝ are a residual system of m1. Then, the first m1 terms of ｛an｝ is a 

residual system of m1. Thus we know that, at≡/ a1(mod m1) , 2≢t≢m1. 

Because 2≢m1－c+1≢m1， let t = m1－c+1. Thus, am1－c+1≡/ a1(mod m1). 

Besides,  from the supposition and Lemma 2 we know that, am1－c+1≡a(k－1)m1+m1－c+1 (mod m1). 

Thus, a(k－1)m1+m1－c+1≡/ a1(mod m1). From m+1=(k－1)m1+m1－c+1 we know that, 

am+1≡/ a1(mod m1). 

Besides, from Ⅱ in Lemma 1 we know that, m/(b, m) is the minimal circular length of ｛an｝.Then, m is a 

circular length of ｛an｝. Thus, am+1=a1，am+1≡a1(mod m1). 

Obviously, am+1≡a1(mod m1) and am+1≡/ a1(mod m1) are contradictory to each other, by which we know that, it 

does not hold that every successive m1 terms in ｛an｝ is a residual system of m1. 

Likewise we can prove the case of  m1︱/ m and m1＞m， where it does not hold that every successive m1 terms 

in ｛an｝ is a residual system of m1.    Q.E.D. 

 (It worth mentioning that ｛a1=a, an+1=(an+b) modm｝ in Lemma 3 should be called a equidifference residual 
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sequence of numbers, which is a sequence of numbers similar to the equiratio residual sequence of numbers) 

Now, we prove Theorem 5. 

Theorem 5. Suppose (p, (2
δp(2)－1)/p)=1. Then,  the successive p terms in the sequence of numbers of the 

predecessors of r--the term implying left terms--in the px+q sequences of numbers are a residual system of p. 

Proof: From Theorem 3 we know that,  the sequence of numbers of the predecessors of r--the term implying 

left terms--in the px+q sequences of numbers is 

｛an｝：｛a1= a, an+1=2
δp(2)

an+b｝，where a=(2
δp(2)-k

r－q)/p，b =q(2
δp(2)－1)/p. 

According to Corollary 2, we prove that, the successive p terms in ｛bn｝：｛b1=(a)mod p, bn+1=((bn+b) mod p｝ is 

a residual system of p. 

From (p，q)=1 and (p, (2
δp(2)－1)/p)=1 we know that, (p, q(2

δp(2)－1)/p)=1. From b=q(2
δp(2)－1)/p) we know that, 

(p, b)=1. From Lemma 3 we know that, the successive p terms in ｛bn｝ is a residual system of p.     Q.E.D. 

The situation of the sequences of numbers of the predecessors of the terms implying left terms in the px+q 

sequences of numbers with (p, (2
δp(2)－1)/p)＞1 is complicated, the authors do not investigate further. The 

interested readers can investigate themselves. 

We stipulate that p in what follows satisfy (p, (2
δp(2)－1)/p)=1. 

Theorem 5 tells us that, the successive p terms in the sequences of numbers of the predecessors of r--the term 

implying left terms--in the px+q sequences of numbers is a residual system of p. From (3) of the decision and 

calculation method for the term implying left terms or the term without a left term we know that, in the 

successive p terms in the sequences of numbers of the predecessors of r--the term implying left terms--in the 

px+q sequences of numbers there are  δp(2) terms implying left terms.  That is, 

Corollary 3. The ratio of the terms implying left terms to all terms in the sequences of numbers of the 

predecessors of r--the term implying left terms--in the px+q sequences of numbers is δp(2)/ p. 

Various terms in the sequences of numbers of the predecessors of r--the term implying left terms--are degree 1 

predecessors of r. According to Corollary 3, the ratio of the terms implying left terms to all the terms of the 

degree 1 predecessors of r is δp(2)/p. The degree 1 predecessors of   r also have degree 1 predecessors (They 

are degree 2 predecessors of r). And the ratio of the terms implying left terms to all terms of the degree 2 

predecessors of r is also δp(2)/p. And the degree 2 predecessors of r also have degree 1 predecessors (They are 

degree 3 predecessors of r). Thus,  

Corollary 4. If sequence of numbers A：｛a1= a, an+1=β(pan+q)｝ is a leftward extendable sequence of numbers, 

then A has necessarily n degree（n=1,2,„） leftward extension sequences of numbers B. And B and A are the 

same kind of px+q sequences of numbers. 

Definition 12. If B：｛b1= b, bn+1=β(pbn+q)｝ is an n degree (n≣1) leftward extension sequence of numbers of 

A：｛a1= a, an+1=β(pan+q)｝, then we call A as an n degree (n≣1) sub-sequence of numbers of B. 

Fact 1. Suppose A is a sub-sequence of numbers of B. Then, A is a circular sequence of numbers if and only if B 

is a circular sequence of numbers. And, a is a circular term in A if and only if a is a circular term in B. 

For example, sequence of numbers ｛a1=33, an+1=β(5an+1)｝：33,83,13,„ is a sub-sequence of numbers of 

｛a1=1331, an+1=β(5an+1)｝：1331,13,33,83,13,„. The former is a circular sequence of numbers, the latter is 

also a circular sequence of numbers.“33,83,13” are the circular terms in the former, they are also the circular 

terms in the latter. 

Theorem 6. Suppose r is a term implying left terms in the px+q sequences of numbers, its 1,„,n degree 

predecessors are ： r1,„, rn respectively. If r is a non-circular term in the px+q sequence of numbers R：rn,„, r1, 

r,„， then ri≠rk ( 1≢i≢n, 1≢k≢n, i≠k)， i.e., rn,„, r1 are pairwise non-equal. 

Proof: Suppose ri=rk. Since px+q sequence of numbers R is a mapping recurrent sequence of numbers, by Basic 

Theorem 2 we know that R is a circular sequence of numbers.  Thus, ri，rk are the circular terms in R. Besides, 

ri，rk in R are the predecessors of r, Thus, from Definition 4 we know that, r is a circular term in R. This 

contradicts with the condition that r is a non-circular term in px+q sequence of numbers R：rn,„, r1, r,„. Thus,  

ri≠rk. Q.E.D. 

For example,  5 is a non-circular term in sequence of numbers ｛a1=7, an+1=β(3an+1)｝7,11,17,13,5,1,1,„, its 

4 predecessors “7,11,17,13” are pairwise non-equal. 

4 Infinite trees and complete trees 

Definition 13. Suppose r is a term implying left terms in the px+q sequences of numbers. Step 1.  We use lines 

to connect r with every degree 1 predecessor of r. Step 2. We use lines to connect  every predecessor r′ which 

is the term implying left terms with every degree 1 predecessor of r′. We repeat Step 2, the figure we obtain at 

last is called a﹝r﹞px+q infinite tree, (See Fig. 1). And we call ｛a1=r, an+1=β(pan+q)｝ the  root sequence 

of numbers of the﹝r﹞px+q  infinite tree. 
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Fig. 1 gives the﹝7﹞3x+1 infinite tree, which is formed as follows: Step 1:  Connect 7 with  each of its 

degree 1 predecessors, i.e., 9,37,149,597,„. In 7’s degree 1 predecessors, 37,149,„ are the terms implying left 

terms of the 3x+1 sequence of numbers. Step 2: Connect 37 with each of its degree 1 predecessors, i.e., 

49,197,789,„, connect 149 with each of its degree 1 predecessors, i.e., 99,397,1589,„.  Analogously, we 

obtain Fig. 1. 

The root sequence of numbers of the﹝7﹞3x+1 infinite tree is ｛a1=7, an+1=β(3an+1)｝：7,11,17,13,„ 

The numbers parenthesized in Fig. 1 are the terms without a left term in the 3x+1 sequence of numbers. For 

example, 9 and 99 in Fig. 1 are parenthesized, they are the terms without a left term in the 3x+1 sequence of 

numbers. 

From the formation of Fig. 1 we know that, the level above 7 (the first level) contains all of the degree 1 

predecessors of 7, the second level contains all of the degree 2 predecessors of 7,，„. Fig. 1 has infinitely many 

levels, and each level has infinitely many odd numbers. 

Fig. 1 not only gives all of the predecessors of 7--the term implying left terms--in the 3x+1 sequence of numbers 

but also the arrangement of these predecessors. 

Definition 14. Suppose a(a≠r) is a number in a ﹝r﹞px+q infinite tree. We call ｛a1=a, an+1=β(pan+q)｝ as a 

sequence of numbers of the﹝r﹞px+q infinite tree,  call the set composed of the sequences of numbers of 

the﹝r﹞px+q infinite tree as a set of the sequences of numbers of the﹝r﹞px+q infinite tree. 

In Definition 14, a is a predecessor of r, therefore we have:  

Conclusion 1. Any sequence of numbers of the ﹝r﹞px+q infinite tree is a leftward extension sequence of 

numbers of the root sequence of numbers ｛a1=r, an+1=β(pan+q)｝. 

Example 2. 65 is a number on the third level of Fig. 1. 65 connects 49 downward, 49 connects 37 downward, 37 

connects 7 downward. The sequence of numbers obtained: 65,49,37, 7,„ is ｛a1=65, an+1=β(3an+1)｝. 

Obviously, ｛a1=65, an+1=β(3an+1)｝ is a degree 3 leftward extension sequence of numbers of the root sequence 

of numbers ｛a1=7, an+1=β(3an+1)｝：7,11,17,13,„. 

From Fig. 1 it is not hard to see that ｛a1=7, an+1=β(3an+1) has infinitely many degree 1 leftward extension 

sequences of numbers, infinitely many degree 2 leftward extension sequences of numbers, „, infinitely many 

degree n leftward extension sequences of numbers. 

According to Definition 13, when r is a term implying left terms in the px+q sequence of numbers, ｛a1=r, an+1=

β(pan+q)｝ has infinitely many degree n leftward extension sequences of numbers. Thus, we have 

Definition 15. Suppose A：an,„, a1, r,„ is the degree n leftward extension sequence of numbers of the root 

sequence of numbers ｛a1=r, an+1=β(pan+q)｝. We call A with n approaching infinity as a﹝r﹞px+q extremely 

leftward extension sequence of numbers. 

﹝r﹞px+q extremely leftward extension sequence of numbers A is a sequence of numbers of the﹝r﹞px+q 

infinite tree, therefore, from Definition 14 we know that,  

Conclusion 2. In the set of the sequences of numbers of the﹝r﹞px+q infinite tree there necessarily exist a

﹝r﹞px+q extremely leftward extension sequence of numbers. 

It should be pointed out that in Definition 15, “n approaching infinity” means that A is a sequence of numbers 

extending leftward constantly. The an satisfying this requirement can only be the terms implying left terms of the 

px+q sequences of numbers. 

Conclusion 3. The first term of the extremely leftward extension sequence of numbers is a term implying left 

terms of the px+q sequences of numbers. 

Besides, Suppose r’ and r are the terms in the px+q sequence of numbers, when r’ is a successor of r, r’ is 
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necessarily a term implying left terms of the px+q sequence of numbers. From Definition 13 we know that, 

there necessarily exists a px+q infinite tree with r’ as its root and r is in the infinite tree in question. 

For example, 7 and 9 are the terms of the 3x+1 sequence of numbers, and 7 is the successor of 9. Thus we see 

that, 9 is in ﹝7﹞3x+1 infinite tree.  

Conclusion 4. Any odd number r is necessarily in certain px+q infinite tree. 

Conclusion 5. If there is a circular sequence of numbers in the set of sequences of numbers of the﹝r﹞px+q 

infinite tree, then all of the sequences of numbers in the set in question are circular sequences of numbers. 

Proof: Suppose B is a circular sequence of numbers in the set of sequences of numbers of the﹝r﹞px+q infinite 

tree. 

From Definition 14 and Conclusion 1 we know that, B is a leftward extension sequence of numbers of｛a1=r, 

an+1=β(pan+q)｝. 

From Definition 12 we know that, ｛a1=r, an+1=β(pan+q)｝ is a sub-sequence of numbers of B. 

From B being a circular sequence of numbers and Fact 1 we know that,｛a1=r, an+1=β(pan+q)｝ is a circular 

sequence of numbers.  

Since ｛a1=r, an+1=β(pan+q)｝ is the sub-sequence of numbers of all of the sequences of numbers in the set of 

sequences of numbers of the﹝r﹞px+q infinite tree, from Fact 1 again we know that, all of the sequences of 

numbers in the set of sequences of numbers of the﹝r﹞px+q infinite tree are circular sequences of numbers.    

Q.E.D. 

Conclusion 5 reveals an important fact that,  if there exists a circular sequence of numbers in the px+q 

sequences of numbers then there exist infinitely many circular sequences of numbers in the kind of px+q 

sequences of numbers. 

Based on Conclusion 5 we have, 

Conclusion 6. If there exists a circular sequence of numbers in any set of sequences of numbers of the﹝r﹞
px+q infinite tree, then the kind of px+q sequences of numbers are circular sequences of numbers (i.e., all 

sequences of numbers in the kind of px+q sequences of numbers are circular sequences of numbers). 

Conclusion 7. Suppose A：am,„, a1, r,„ is a ﹝r﹞px+q extremely leftward extension sequence of numbers. If 

r is a non-circular term of A, then am is infinitely great (and it is an odd number). 

Proof: Because r is a non-circular term of A, From Theorem 6 we know that, am,„, a1 are pairwise non-equal 

(odd numbers). From m approaches infinity we know that, am is infinitely great (and it is an odd number).         

Q.E.D. 

Definition 16. Suppose A：am,„, a1, r, b1,„, b n is a sequence of numbers of the﹝r﹞px+q infinite tree. We call 

A with both m and n approaching infinity as a﹝r﹞px+q double extension sequence of numbers. 

Because any px+q sequence of numbers can extend rightward infinitely, “n approaching infinity” in Definition 

16 is a tacit consent. That is to say, the sequences of numbers defined by Definitions 15 and 16 are the same. 

And the﹝r﹞px+q extremely leftward extension sequence of numbers is just the﹝r﹞px+q double extension 

sequence of numbers. 

From Conclusion 2 we know, 

Conclusion 8. In any set of the sequences of numbers of the﹝r﹞px+q infinite tree there necessarily exists a

﹝r﹞px+q double extension sequence of numbers. 

With Conclusion 8, let us discuss two valuable reference results. For this reason, we make such supposition first,  

Supposition 1. Suppose a and b are two infinitely great terms implying left terms in the px+q sequences of 

numbers. Then a=b. 

Reference result 1. Any  ﹝r﹞px+q double extension sequence of numbers A：am,„, a1, r, b1,„, bn is a 

circular sequence of numbers. 

Proof: (1) If r is a circular term of A, then A is a circular sequence of numbers. (2) If r is a non-circular term of A, 

then from Conclusions 3 and 7 we know that, am is infinitely great and is a term implying left terms in the px+q 

sequences of numbers. Now, there exist two cases for bn.Ⅰ.bn is less that certain odd number. Then, from n 

approaching infinity we know that, there necessarily exist equal terms among b1,„, bn. Since A is a mapping 

recurrent sequence of numbers, from Basic Theorem 2 we know that A is a circular sequence of numbers. Ⅱ.bn 

is infinitely great. Because bn is a term implying left terms of the px+q sequences of numbers. From Supposition 

1 we know that, am=bn. Thus, A is a circular sequence of numbers.  Q.E.D.        

From Conclusion 8 and Reference result 1 we know that, there exist a circular sequence of numbers in the set of 

the sequences of numbers of the﹝r﹞px+q infinite tree. Thus, from Conclusion 6 we can obtain: 

Reference result 2. Any sequence of numbers of the px+q sequences of numbers is a circular sequence of 

numbers. 

References 1 and 2 are based on Supposition 1. They are probable results, only for your reference. 
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（Note: In the proof of Reference result 1 some interesting mathematical problems are embraced, interested 

readers can study further.） 

Now, let us investigate the relationship among infinite trees.  

Definition 17. Suppose a--the term implying left terms--in the px+q sequences of numbers is a degree n 

predecessor of the odd number r. Then we call the﹝a﹞px+q infinite tree as the degree n child tree of the the

﹝r﹞px+q infinite tree, call the﹝r﹞px+q infinite tree as the degree n parent tree of the ﹝a﹞px+q infinite 

tree.  

For example, 37 and 149 are the terms implying left terms in the 3x+1 sequence of numbers and are the degree 1 

predecessors of 7, therefore, the〔37〕3x+1 infinite tree and the〔149〕3x+1 infinite tree are the degree 1 child 

trees of the〔7〕3x+1 infinite tree (See Fig. 1).  

From Fig. 1 we can also see that, the〔37〕3x+1 infinite tree also has degree 1 child trees the〔49〕3x+1 infinite 

tree and the 〔197〕3x+1 infinite tree, etc. They are the degree 2 child trees of the〔7〕3x+1 infinite tree. 

Conversely, the〔7〕3x+1 infinite tree is their degree 2 parent tree. 

Besides, 7 has degree 1 successor 11, and 11 has degree 1 successor 17, „. Thus, the〔7〕3x+1 infinite tree has 

degree 1 parent tree the〔11〕3x+1 infinite tree,  degree 2 parent tree the〔17〕3x+1 infinite tree, „. 

From Definition 17 we know that, “infinite trees” are full of “infinity”. 1. An infinite tree has infinitely many 

levels and each level has infinitely many odd numbers. 2. Each infinite tree has infinitely many child trees and 

each child tree is a infinite tree. 3. Each infinite tree has parent trees, etc.  

Yet, what follows is more interesting. 

Fig. 2 is the〔43〕5x+1 infinite tree, which can be obtained similar to the obtaining of Fig. 1. 

 

 
It should be noted that “43” occurred at the third level of Fig. 2. According to Definition 17, the 〔43〕5x+1 

infinite tree given by this “43” is a child tree of the 〔43〕5x+1 infinite tree given by Fig. 2. This means that, a 

〔43〕5x+1 infinite tree is the child tree of a 〔43〕5x+1 infinite tree, a 〔43〕5x+1 infinite tree is the parent tree 

of a 〔43〕5x+1 infinite tree. And a 〔43〕5x+1 infinite tree has infinitely many child trees and parent trees which 

are 〔43〕5x+1 infinite trees. 

The phenomena is amazing that one “embodies” oneself, and one “gives birth” to oneself. But they really exist. 

What do these phenomena means? We can not answer now. What we want to do now is to prevent the 

phenomena from happening. 

Please see the degree 1 predecessors of 43：17,275,4403,„ and various terms of ｛a1=43, an+1=β(5an+1)｝：

43,27,17,43,„. 

In all of the degree 1 predecessors of 43, only 17 is a circular term of ｛a1=43, an+1=β(5an+1)｝. Looking at Fig. 

2 carefully we can find out that, 17 is the reason of “a 〔43〕5x+1 infinite tree is the child tree of a 〔43〕5x+1 

infinite tree”. 

For this reason, we delete 17 from the degree 1 predecessors of 43: 17，275，4403，„ and take the remaining 

degree 1 predecessors: 275，4403，„ as “the whole” degree 1 predecessors of 43. According to the method 

given by Definition 13, we regenerate the infinite tree with 43 as the root (See Fig. 3). We call Fig. 3, the newly 

generated infinite tree, as the〔43〕5x+1 pure infinite tree. In fact, Fig. 3 is one obtained by deleting the〔17〕
5x+1 infinite tree from Fig. 2. 
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Likewise, we can generate the〔27〕5x+1 pure infinite tree and the〔17〕5x+1 pure infinite tree. 

For convenience, we call the figure by deleting 43 from the 〔43〕5x+1 pure infinite tree as the pure predecessors 

figure of 43. Likewise, we call the figure by deleting 27 from the 〔27〕5x+1 pure infinite tree as the pure 

predecessors figure of 27, call the figure by deleting 17 from the 〔17〕5x+1 pure infinite tree as the pure 

predecessors figure of 17. (Similarly, the pure predecessors figure of r can be defined). 

Definition 18. Suppose ai+1=β(pai+q), i=1,„n， and  an+1=a1. We abbreviate the following figure formed by 

a1,„,an                                                                     

                                                                          
as 《a1,„,an》. And we call 《a1,„,an》 as a px+q directed ring. Usually we use the terminology“px+q ring 

《a1,„,an》” to denote 《a1,„,an》 as thethe px+q directed ring. 

For example, the first four terms of the sequence of numbers ｛a1=43, an+1=β(5an+1)｝：43,27,17,43„ satisfy 

the condition of Definition 18. At this time, 43,27,17 form the 5x+1 ring《43,27,17》, i.e.,                                             

 
Besides, we view 《43,27,17》，《27,17,43》 and 《17,43,27》 as the same ring, for various numbers in these 

rings meet the requirement of Definition 18. But “43,17,27” is not a ring. 

Now, we define the 5x+1 complete tree formed by 5x+1 ring 《43,27,17》 first, then we give the general 

definition of px+q complete tree. 

We connect 43, 27, 17 in the 5x+1 ring 《43,27,17》 with their pure predecessors figures respectively. We call 

the figure formed (See Fig. 4) as the 5x+1 complete tree with 43, 27, 17 as its ring vertexes, or as the《43,27,17》
5x+1 complete tree, or as the 5x+1 complete tree.                         

 
 

The 《43,27,17》5x+1 complete tree has 3 degree 1 child trees, which are the〔43〕5x+1 pure infinite tree, the

〔27〕5x+1 pure infinite tree and the〔17〕5x+1 pure infinite tree respectively. It is not hard to imagine that the 

《27,17,43》5x+1 complete tree and the 《43,27,17》5x+1 complete tree are the same complete tree. 

（Please note that, the 〔43〕5x+1 pure infinite tree in Fig. 4 and that in Fig. 3 looks different, but actually they 

are the same one） 
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Definition 19. We connect a1,„,an in the px+q ring《a1,„,an》 with their pure predecessors figures respectively, 

and call the figure obtained as the px+q complete tree with a1,„,an as its ring vertexes, also as the《a1,„,an》
px+q complete tree or the px+q complete tree. 

Conclusion 9. The px+q sequence of numbers obtained by taking any number in the 《a1,„,an》px+q complete 

tree as the first term is a circular sequence of numbers. 

For example, 225443 in Fig. 4 connects downward with 70451, which connects downward with 

43→27→17→43„. That is, we obtain a circular sequence of numbers: 225443,70451,43,27,17,43,„, which is 

5x+1 sequence of numbers {a1=225443，an+1=β(5an+1)}.  

Another example is that, from 17→43→27→17„ in Fig. 4 we can obtain the circular sequence of numbers：

17,43, 27,17,„, which is 5x+1 sequence of numbers ｛a1=17，an+1=β(5an+1)｝.  

Conclusion 10. A px+q complete tree do not has a parent tree and none of its child trees is a complete tree. And  

a complete tree does not have two numbers equaling to each other. 

From 43→27→17→43„ in Fig. 4 we can see that, 17 is the degree 1 predecessor of 43. Thus, we can obtain 

the degree 1 leftward extension sequence of numbers of ｛a1=43，an+1=β(5an+1)｝ i.e., ｛a1=17，an+1=β
(5an+1)｝17,43, 27,17,„. 27 is the degree 1 predecessor of 17. Thus, we can obtain the degree 2 leftward 

extension sequence of numbers of ｛a1=43，an+1=β(5an+1)｝, i.e., ｛a1=27，an+1=β(5an+1)｝27,17, 43, 27,„. 

This is to say that, by “rotating anti-clockwise” the 5x+1 ring 《43,27,17》 we can obtain a extremely leftward 

extension sequence of numbers of ｛a1=43, an+1=β(5an+1)｝. The extremely leftward extension sequence of 

numbers in question is one with all terms are ring vertexes, and it is a “leftward circular sequence of numbers” 

extending leftward constantly. We call it an extremely leftward sequence of numbers with ring vertexes. 

Besides, 4403,70451,„ are the degree 1 predecessors of 43， 

｛a1=4403，an+1=β(5an+1)｝4403,43, 27,17,„。 

｛a1=70451，an+1=β(5an+1)｝70451,43, 27,17,„。 

„ 

From Definition 15 we know that, any leftward extendable sequence of numbers B has degree n leftward 

extension sequence of numbers, and when n approaches infinity the degree n leftward extension sequence of 

numbers is the extremely leftward extension sequence of numbers of B. Therefore, all of the above sequences of 

numbers have corresponding extremely leftward extension sequences of numbers, which are also the extremely 

leftward extension sequences of numbers of ｛a1=43，an+1=β(5an+1)｝. The common feature of these extremely 

leftward extension sequences of numbers is that their first terms are infinity. In the extremely leftward extension 

sequences of numbers of ｛a1=43，an+1=β(5an+1)｝only the first term of the extremely leftward extension 

sequences of numbers with ring vertexes is not infinity.  

It is not hard to discover that, the 《27,17,43》5x+1 complete tree has the same amount of distinct numbers as 

that of the〔43〕5x+1 infinite tree( or that of the 〔27〕5x+1 infinite tree). Therefore, a  complete tree is an 

infinite tree with a stable structure.  

Similar to the obtaining of the 《43,27,17》5x+1 complete tree, we can also obtain the 《3,1》5x+1 complete tree 

(See Fig. 5), the 《83,13,33》5x+1 complete tree (See Fig. 6), and the 《1》3x+1 complete tree (See Fig. 7). 
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Conclusion 11. Every px+q directed ring has its corresponding px+q complete tree. 
5.The function of the equation of equal terms 

Definition 20. Suppose a1,„, ak+1∈No, and a2＝(pa1+q) /2
i1

, a3＝(pa2+q) /2
i2

,„, ak+1＝(pak+q) /2
ik
. Then, we 

call i1, i2,„, ik as the k successive exponents of the p-q iteration of a1, the k successive exponent of a1 for 

short. 

Definition 20 is not intuitive, we give the following explanation. 

We can view a1,„, ak+1 in Definition 20 as the first k+1 terms of the px+q sequence of numbers: ｛a1=a1, 

an+1=β(pan+q)｝. At this time, a1 and a2 satisfy the relation a2＝β(pa1+q)＝(pa1+q) /2
i1，where i1  is the number 

of factor 2 in pa1+q. The rest can be inferred by analogy. 

Example 3. Find the 3 successive exponents of the 3-1 iteration of 11 and the k successive exponent of the 5-3 

iteration of 1. 

First, let us find the 3 successive exponents of the 3-1 iteration of 11. 

At this time, a1＝11,p＝3,q＝1. Please see the sequence of numbers:｛a1=11, an+1=β(3an+1)｝：11,17,13,5,„ 

a2＝(11×3+1) /2i1＝(17×2
1
)/2

1
=17，we obtain i1＝1. 

a3＝(17×3+1) /2i2＝(13×2
2
)/2

2
=13，we obtain i2＝2. 

a4＝(13×3+1) /2i2＝(5×2
3
)/2

3
=5，we obtain i3＝3. 

Thus, the 3 successive exponents of the 3-1 iteration of 11 are：i1＝1 ,  i2＝2 , i3＝3 .  

Then, let us find the k successive exponents of the 5-3 iteration of 1. At this time, a1＝1,p＝5,q＝3. Please see 

the sequence of numbers ｛a1=1, an+1=β(5an+3)｝： 1,1,„ 

a2＝(1×5+3) /2i1＝(2
3
)/2

3
=1，we obtain i1＝3. Likewise, i1＝i2＝„＝ik＝3. 

Thus, the k successive exponents of the 5-3 iteration of 1 are：i1＝i2＝„＝ik＝3. 

From Example 3 and Definition 20 we know that, when p and q are given, for any odd number a1 there 

necessarily exist unique k successive exponents corresponding to it. 

Lemma 4. Suppose the k successive exponents of the ith term ei in px+q sequence of numbers E are: i1, i2, „, 

ik， if ei＝ei+k， then 

ei＝(q(p
k–1

+ p
k–2

·2
i1+„+ p·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) ) /( 2

i1+i2+„+ik–p
k
)) .  (5) 

Proof: From the definition of k successive exponents we know that, 

ei+1＝(pei +q) / 2
i1                           (6) 

                          ei+2＝(pei+1+ q) / 2
i2                          (7) 
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„„ 

ei+k＝(pei+ k–1+ q) / 2
ik 

Substituting (6) into (7) we obtain： 

ei+2＝(p
2
ei +pq+ q2

i1)/ 2
i1+i2 

Likewise，    

ei+3＝(p
3
ei +p

2
q+pq·2

i1+q·2
i1+i2)/ 2

i1+i2+i3 

„„ 

ei+k＝(p
k
ei + p

k–1
q+ p

k–2
q·2

i1+„+ pq·2
i1+i2+„+ik–2+ q·2

i1+i2+„+ik–1)/ 2
i1+i2+„+ik. 

From ei＝ei+k and the above expression we know that, 

ei＝(p
k
ei+ p

k–1
q + p

k–2
 q·2

i1+„+ p q·2
i1+i2+„+ik–2+ q·2

i1+i2+„+ik–1)/ 2
i1+i2+„+ik. 

2
i1+i2+„+ik ei＝p

k
ei+p

k–1
q +p

k–2
 q·2

i1+„+ p q·2
i1+i2+„+ik–2+ q·2

i1+i2+„+ik–1. 

2
i1+i2+„+ik ei－ p

k
ei＝q(p

k–1
 + p

k–2
·2

i1+„+ p·2
i1+i2+„+ik–2+ 2

i1+i2+„+ik–1). 

ei＝q(p
k–1

+ p
k–2

·2
i1+„+ p·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–p
k
).     Q.E.D.                                                     

We denote expression (5) as： 

x＝q(p
k–1

+ p
k–2

·2
i1+„+ p·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–p
k
))   (8) 

Since formula (8) is an equality, we can view it as an equation with x and i1, i2, „, ik as its variables. And we 

call (8) as the equation of equal terms of the px+q sequences of numbers. And we call the solution with x∈No , 

and i1, i2, „, ik being the k successive exponents of x as the characteristic solution of expression (8). 

（Please note that, Lemma 4 is the process of “the listing of the equation” in the process of “the listing of the 

equation to solve the application problem”. Usually, the listing of the equation to solve the application problem 

is to set the objects we want to find as x,y etc., then we obtain an equation. The setting of the objects we want to 

find as x,y itself presupposes the existence of the objects. If we know that, the objects we want to find do not 

exist, then  we neither set “ the objects” that do not exist as x,y, nor  do the useless thing as “the listing of the 

equation”. As to whether the objects we want to find really exist or not, it should be decided by the solution of 

the equation at last. In Lemma 4, there is condition “if ei＝ei+k”. In fact, here we presuppose that any px+q 

sequence of numbers E has the equal terms （x＝ei＝ei+k）. While, whether can we make this presupposition or 

not is an important logical matter. For this reason, the readers must refer to Note 2 at the bottom of this paper.） 

We stress again that, formula (8) is meaningful only in the case that both p and q are given. Each px+q sequence 

of numbers only corresponds its own equation of equal terms. For example, the equation of equal terms to which 

the 3x+1 sequence of numbers corresponds is: 

x＝(3
k–1

+3
k–2

·2
i1+„+3·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–3
k
)    (9)  

The equation of equal terms to which the 5x+1 sequence of numbers corresponds is: 

      x＝ (5
k–1

+5
k–2

·2
i1+„+5·2

i1+i2+„+ik–2+2
i1+i2+„+ik–1) /( 2

i1+i2+„+ik–5
k
)   (10)  

In order to draw the readers attention to the correspondence between the equations of equal terms and the px+q 

sequences of numbers, we discuss the relationship between characteristic solution of formula (10) and the 5x+1 

sequence of numbers. 

From the perspective of the source of formula (10), when we suppose that 5x+1 sequence of numbers E has an 

equal term x and the k successive exponents of x are i1, i2, „, ik, we can obtain formula (10). This means that 

when 5x+1 sequence of numbers E has an equal term then formula (10) has a characteristic solution. From the 

perspective of the relationship between the solution of an equation and the solution of a problem, when formula 

(10) has a characteristic solution then 5x+1 sequence of numbers E has equal term x. Since a 5x+1 sequence of 

numbers is a mapping recurrent sequence of numbers, having equal terms means it is a circular sequence of 

numbers. Thus, we have, 

Result 1. 5x+1 sequence of numbers E is a circular sequence of numbers, if and only if, formula (10) has a 

characteristic solution x, i1, i2, „, ik, where x is the circular term of E, k is the circular length.  

Besides, taking any sequence of numbers in the 5x+1 sequences of numbers as “sequence of numbers E” we can 

all obtain formula (10). That  is to say, “sequence of numbers E”  in Result 1 generally  refers to any 

sequence of numbers in the  5x+1 sequences of numbers. Thus, we have,  

Result 2. Any sequence of numbers of the 5x+1 sequences of numbers is a circular sequence of numbers, if and 

only if, formula (10) has a characteristic solution, and x in the characteristic solution is a circular term of the 

5x+1 sequences of numbers. 
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According to Result 1 we have, 

Conclusion 12. px+q sequence of numbers E is a circular sequence of numbers, if and only if, the equation of 

equal terms the px+q sequence of numbers corresponds has a characteristic solution and x in the characteristic 

solution is a circular term in the px+q sequence of numbers E. 

According to Result 2 we have, 

Conclusion 13. Any sequence of numbers of the px+q sequences of numbers is a circular sequence of numbers, 

if and only if, the equation of equal terms the px+q sequence of numbers corresponds has a characteristic 

solution and x in the characteristic solution is a circular term of the px+q sequence of numbers. 

We have to say that, the above feature of the equation of equal terms is very similar to the ratio of the 

circumference of a circle to its diameter π=c/d (c is the circumference of the circle, d is the diameter of the 

circle). We know that the most important factor for describing a circle is its radius r. But π is irrelevant to r. 

Thus. The ratio of circumference to circle π that would have been one for a circle becomes one for all circles. 

Similarly, the most important factor for describing a sequence of numbers is its terms. But the equation of equal 

terms is irrelevant to the terms in any sequence of numbers of the kind of px+q sequences of numbers. Thus, the 

equation of equal terms having the characteristic solution which would have been the sufficient and necessary 

condition of certain sequence of numbers E of the kind of px+q sequences of numbers being a circular sequence 

of numbers become one of any sequence of numbers of the kind of px+q sequences of numbers being circular 

sequence of numbers. 

Now, let us find the characteristic solution of formula (9). 

Let k=1. From formula (9) we can obtain characteristic solution: x =1，i1=2. From Conclusion 13 we know that, 

any 3x+1 sequence of numbers is a circular sequence of numbers and x=1 is the circular term in the 3x+1 

sequence of numbers in question. From these we can obtain 3x+1 ring 《1》， from the ring we can obtain the 

complete tree given by Fig. 7. 

Besides, we can use mathematical induction to prove that formula (9) has a unique characteristic solution: x=1，

i1＝i2＝„＝ik＝2. Therefore, not only any 3x+1 sequence of numbers is a circular sequence of numbers, but 

also any number is in the 《1》3x+1 complete tree. 

Then, let us find the characteristic solution of formula (10). 

Let k=2. From formula (10) we can obtain, characteristic solution 1: x =3, i1=4, i2=1; characteristic solution 2: x 

=1, i1=1, i2=4. 

From Conclusion 13 we know that, any 5x+1 sequence of numbers is a circular sequence of numbers, and x=3 

and x=1 are the circular terms in the 5x+1 sequence of numbers. From this we can obtain 5x+1 ring 《3, 1》. 

From the ring we can obtain the complete tree given by Fig. 5.  

Let k=3. From formula (10) we can obtain, characteristic solution 3: x =43, i1=3, i2=3, i3=1; characteristic 

solution 4: x =27, i1=3, i2=1, i3=3; and characteristic solution 5: x =17, i1=1, i2=3, i3=3. 

From Conclusion 13 we know that, x =43, 27, 17 are the circular terms in the 5x+1 sequence of numbers. From 

this we can obtain 5x+1 ring 《43, 27, 17》. From the ring we can obtain the complete tree given by Fig. 4. 

When k=3, formula (10) also has, characteristic solution 6: x =83, i1=5, i2=1, i3=1; characteristic solution 7: x 

=13, i1=1, i2=1, i3=5; characteristic solution 8: x =33, i1=1, i2=5, i3=1. 

From Conclusion 13 we know that, x =83, 13, 33 are the circular terms in the 5x+1 sequence of numbers.  

From this we can obtain 5x+1 ring 《83, 13, 33》. From the ring we can obtain the complete tree given by Fig. 6. 

Since we are unable to prove that formula (10) only has the above 8 characteristic solutions, we can not say that, 

any odd number is necessarily in one of the 《3,1》5x+1 complete tree, the 《43,27,17》5x+1 complete tree, and 

the 《83,13,33》5x+1 complete tree. 

Through the above discussion we know that, from (10) we can find all of the circular terms in the 5x+1 

sequences of numbers. But we don’t know that x in each characteristic solution is a circular term of which 5x+1 

sequence of numbers. There are two reasons for this: One is that when x is a circular term of a 5x+1 sequence of 

numbers, x is a term implying left terms in the 5x+1 sequence of numbers, and there necessarily exists a ﹝x﹞
px+q infinite tree, therefore, x is necessarily in infinitely many 5x+1 sequences of numbers. The other is that, 

“don’t know x is a circular term of which 5x+1 sequence of numbers” and “don’t know π is the ratio of the 

circumference of which circle to its diameter” has the same logical meaning, the difference is that, all circles has 

the unique ratio of circumference to diameter  π, while formula (10) has many characteristic solutions. Thus, 

some one may ask: whether Result 2 still holds or not?  To this question, we give an affirmative answer in Note 

3. 

Besides, Conclusion 13 also tells us that, if a kind of px+q sequences of numbers has (one) circular sequence of 

numbers then the equation of equal terms the px+q sequences of numbers correspond has a characteristic 

solution, and when the equation of equal terms the kind of px+q sequences correspond has the characteristic 

solution then any sequence of numbers of the kind of px+q sequences of numbers is a circular sequence of 
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numbers. Thus, we have, 

Conclusion 14 If a kind of px+q sequences of numbers have (one) circular sequence of numbers, then any 

sequence of numbers of the kind of px+q sequences of numbers is a circular sequence of numbers.  

Conclusion 14 is a little similar to Conclusion 5. The former is “one” vs. “all”, the latter is “one” vs. “infinity”. 

However, their difference is fundamental. The obtaining of Conclusion 5 only depends on the leftward 

extendedness the px+q sequences of numbers possess. While the obtaining of Conclusion 14 depends on “the 

listing of the equations to solve application problems”, which is a mathematical tool with profound logical 

meaning. It is not hard to see that, the equation of equal terms contributes a lot to the obtaining of Conclusion 14. 

Thus, we can see the importance of the equation of equal terms. 

Conclusion 14 is very important, now let us see some important conclusions based on it. 

For convenience, we call “all sequences of numbers of this kind of px+q sequences of numbers are circular 

sequences of numbers” as “this kind of px+q sequences of numbers are circular sequences of numbers”. 

Theorem 7.  (I) The class of x+q sequences of numbers （i.e., the class of px+q sequences of numbers with p 

=1） are circular sequences of numbers. (II) The class of px+q sequences of numbers with p+q＝2
m
 are circular 

sequences of numbers. 

Proof: Prove (I). 

Because in the x+1 sequences of numbers there is ｛a1=1, an+1=β(an+1)｝：1,1,„. From Conclusion 14 we know 

that, the x+1 sequences of numbers are circular sequences of numbers. 

Because in the x+3 sequences of numbers there is ｛a1=3, an+1=β(an+3)｝：3,3,„. From Conclusion 14 we know 

that, the x+3 sequences of numbers are circular sequences of numbers. 

„„ 

Because in the x+q sequences of numbers there is ｛a1=q, an+1=β(an+q)｝：q, q,„. From Conclusion 14 we 

know that, the x+q sequences of numbers are circular sequences of numbers. Thus, (I) holds. 

Prove (II). When p+q＝2
m
, in ｛a1=1, an+1=β(pan+q)｝, there are: a2=β(pa1+q) =β(p+q) =β(2

m
) =1， 

a3=β(pa2+q) =β(p+q) =β(2
m
) =1，„. 

That is, ｛a1=1, an+1=β(pan+q)｝为：1,1,„. Thus, (II) holds.     Q.E.D. 

In addition to the above method to prove (I) in Theorem 7, there are other methods to prove the circularity of the 

class of x+q sequences of numbers. However, it is very hard to find other method to prove (II), i.e., it is very 

hard to prove the kind of 3x+1 sequences of numbers,  the kind of 7x+1 sequences of numbers, the kind of 

3x+5 sequences of numbers, etc. are circular sequences of numbers. 

Another problem worth thinking is that, although from Theorem 7 we know that, infinitely many kind of px+q 

sequences of numbers are circular sequences of numbers, it is difficult or even impossible to verify any kind of 

px+q sequences of numbers are circular sequences of numbers. 

For example, it is very difficult to verify ｛a1=7, an+1=β(7an +1)｝ in the 7x+1 sequences of numbers is a 

circular sequence of numbers. But, we can not doubt the correctness of the conclusion in spite of the difficulty in 

verification. 

Lemma 5. Suppose c∈No，｛a1=a, an+1=β(pan+q)｝，｛b1=ca, bn+1=β(pbn+cq)｝. Then, bn=can. 

Proof: From a1=a 和 b1=ca we know that, b1=ca1. 

From b1=ca1 and b2=β(pb1+cq) we obtain that, b2=β(pca1+cq)=cβ(pa1+q). From b2=cβ(pa1+q) and a2=β(pa1+q) 

we obtain that, b2=ca2. 

The rest can be inferred by analogy. We know that the Lemma holds.    Q.E.D. 

    Please see the following sequences of numbers. 

    Sequence of numbers 11：｛a1=5, an+1=β(5an+1)｝5,13,33,83,13,„. 

Sequence of numbers 12：｛a1=15, an+1=β(5an+3)｝15,39,99,249,39,„. 

Sequence of numbers 13：｛a1=45, an+1=β(5an+9)｝45,117,297,747,117,„. 
Each term in sequence of numbers 12 is 3 times the corresponding term in sequence of numbers 11. Each term 

in sequence of numbers 13 is 9 times the corresponding term in sequence of numbers 11. This is to say that, 

sequence of numbers 12 and sequence of numbers 13 are all the parasitic sequences of numbers of sequence of 

numbers 11. 

Sequence of numbers 11 is a 5x+1 sequence of numbers. Sequence of numbers 12 is a 5x+3 sequence of 

numbers. Sequence of numbers 13 is a 5x+9 sequence of numbers. Every sequence of numbers of the 5x+1 

sequences of numbers corresponds to a parasitic sequence of numbers of the 5x+3 sequences of numbers and 

5x+9 sequences of numbers. Thus we know that, when the 5x+1 sequences of numbers have circular sequence of 

numbers, the 5x+q sequences of numbers are circular sequences of numbers. 

Because from Basic Theorem 1 we know that, when the 5x+1 sequences of numbers has circular sequence of 

numbers ｛a1=a, an+1=β(5an+1)｝, the 5x+q sequences of numbers have necessarily circular sequence of numbers 

｛b1=qa, bn+1=β(5bn+q)｝. From Conclusion 14 we know that, the class of 5x+q sequences of numbers are 
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circular sequences of numbers. Thus, we have, 
Conclusion 15.  If the px+1 sequences of numbers are circular sequences of numbers, then the px+q sequences 

of numbers are circular sequences of numbers. 

Since the class of px+1 sequences of numbers with p＝2
m-1 are circular sequences of numbers, thus  

Conclusion 16. The class of px+q sequences of numbers with p＝2
m-1 are circular sequences of numbers. 

For example, 63＝2
6-1. Therefore, the class of 63x+q sequences of numbers are circular sequences of numbers. 

(Note: For the doubters of Conclusion 13, Conclusion 16 (including (II) in Theorem 7) provides infinitely many 

“material” for them. So long as they can prove that there exist non-circular sequences of numbers in the classes 

of 7x+q，15x+q sequences of numbers and so on, they can disprove Conclusion 13. However, were to 

Conclusion 13 not holds it is hard for the doubters to achieve their goal. For Reference Result 1 makes it 

difficult for the doubters to disprove that a px+q sequence of numbers is a  circular sequence of numbers.) 

In the previous section we have seen 3 5x+1 rings, i.e., 5x+1 ring 《13,33,83》，5x+1 ring《43,27,17》，5x+1 

ring 《3, 1》. 

From Lemma 5 we know that, there necessarily exist three 5x+3 rings, i.e., the 5x+3 ring 《39,99,249》（See 

sequence of numbers 12）the，5x+3 ring 《129,81,51》，the 5x+3 ring 《9, 3》. 

Likewise, we can obtain three 5x+7 rings,  three 5x+9 rings,„, three 5x+q rings (1＜q∈No). 

Besides, 5+3＝2
3
. From (II) in Theorem 7 we know that, ｛a1=1, an+1=β(5an+3)｝为：1,1,„. Therefore, there 

is a 5x+3 ring 《1》. 

To sum up, there are infinitely many px+q rings. There being one px+q ring means there being one px+q 

complete tree. Therefore,  

Conclusion 17. There are infinitely many px+q complete trees.  

Note 1. Equiratio residual sequences of numbers and their applications 

The aim of this note is to provide the necessary preliminary knowledge for the study of the px+q sequences of 

numbers.  But, since equiratio residual sequences of numbers are new sequences of numbers, and they are 

practical, in this note we fully introduce the properties of equiratio residual sequences of numbers.  

We use “ (x1,x2) ” to denote the greatest common divisor of x1 and x2. And we call a satisfying a＜m and (a, 

m)＝1 as the order-existing residue modulo m. 

Definition 21. Suppose mapping recurrent sequence of numbers ｛an｝：｛a1＝a, an+1＝(a·an)mod m｝，a＜m. Then 

we call ｛an｝ as the residual sequence of numbers of equiratio a modulo m, equiratio residual sequence of 

numbers for short. And we call ｛a1＝a, an+1＝(a·an)mod m｝ with (a, m)＝1 as the order-existing residual 

sequence of numbers of equiratio a modulo m,order-existing residual sequence of numbers for short. 

From Definition 21 we know that, ｛an｝：｛a1＝a, an+1＝(a·an)mod m｝ is a unary mapping recurrent sequence 

of numbers.  Besides, all of the terms in ｛an｝ are less than modulo m. From the pigeon hole principle we 

know that, there are equal terms in ｛an｝. From Basic Theorem 2 we know that, ｛an｝ is a circular sequence 

of numbers. 

For example, ｛a1＝6, an+1＝(6an)mod 56｝：6,36,48,8,48,8,„ is a mixed circular sequence of numbers with each 

term being less than modulo 56. 

The sequence of numbers is obtained as follows: 

a1＝6 is the first term, 

a2＝(6a1)mod 56＝(6×6)mod 56＝36， 

a3＝(6a2)mod 56＝(6×36)mod 56＝48， 

„ 

Once “｛a1＝6, an+1＝ (6an)mod 56｝” is given, we should know that, the sequence of numbers is

“6,36,48,8,48,8,„”. 

Theorem 9. The nth term in  ｛a1＝a, an+1＝(a·an)mod m｝ is an＝(a
n
)mod m,n＝1,2, „. 

Proof:  We use mathematical induction. 

Step 1:  The case of n＝1. From Definition 21 we know that, a1＝a，a＜m. From Definition 1 we know that, a1

＝(a
1
)mod m. For this case the theorem holds. 

Step 2: Suppose when n＝k, ak＝(a
k
)mod m. 

Step 3: Prove when n＝k+1, ak+1＝(a
k+1

)mod m. 

From induction supposition and Property 5 we know that, ak＝(a
k
)mod m≡a

k
 (mod m). 

From ak≡a
k
 (mod m) we obtain that, a·ak≡a

k+1
 (mod m). 

From condition an+1＝(a·an)mod m we know that, ak+1＝(a·ak)mod m≡a·ak≡a
k+1

 (mod m). 

From ak+1＝(a·ak)mod m and Definition 1 we know that, ak+1＜m. 

From ak+1≡a
k+1

 (mod m) and ak+1＜m，(a
k+1

)mod m＜m we know that, ak+1＝(a
k+1

)mod m.     Q.E.D. 
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For example, the 4
th

  term in ｛a1＝2, an+1＝(2an)mod 9｝：2,4,8,7,5, 1,2,„ is a4＝(2
4
)mod 9＝7. 

From Theorem 9 we know that, various terms in ｛a1＝a, an+1＝(a·an)mod m｝ are the minimal non-negative 

residues modulo m of the corresponding terms in equiratio sequence of numbers ：a, a
2
,„,a

n
 respectively. This 

justifies the name “equiratio residual sequence of numbers”. 

Now, let us discuss the relationship between order-existing residual sequence of numbers ｛a1＝a, an+1＝

(a·an)mod m｝ and order δa(m) of a modulo m.  

The 6
th

 term in sequence of numbers ｛a1＝2, an+1＝(2an)mod 9｝ is a6＝(2
6
)mod 9＝1. Besides, the order of 2 

modulo 9 is δ9(2)＝6. From the definition of the order we know that, when  (a, m)＝1 there necessarily exists h 

such that (a
h
)mod m＝1. If h is the minimal positive number for (a

h
)mod m＝1 to hold, then h=δm(a). 

Because when (a，m)=1, there necessarily exists h such that a
h≡1(mod m). Thus, from Theorem 9 we can 

obtain, 

Corollary 5. Suppose ｛a1＝a, an+1＝(a·an)mod m｝ is an order-existing residual sequence of numbers. Then, there 

necessarily exists h∈N such that the hth term in the sequence of numbers in question is ah＝1. When ah is the 

first term in the sequence of numbers in question equaling to 1, then h=δm(a). 

When h=δm(a)， the term ah+1 in order-existing sequence of numbers ｛a1＝a, an+1＝(a·an)mod m｝is ah+1＝

(a·ah)mod m＝a＝a1. Therefore, from Basic Theorem 2 and Definition 5 we can obtain, 

Corollary 6. Order-existing sequence of numbers ｛a1＝a, an+1＝(a·an)mod m｝ is necessarily a pure circular 

sequence of numbers, and its minimal circular length is δm(a). 

Corollaries 5 and 6 tell us that, the set formed by the first δm(a) terms in order-existing sequence of numbers ｛a1

＝a, an+1＝(a·an)mod m｝ is one formed by all of the terms in the sequence of numbers in question.  

For this reason, we call the sequence of numbers formed by the first δm(a) terms in order-existing sequence of 

numbers ｛a1＝a, an+1＝(a·an)mod m｝ the simplest sequence of numbers of ｛a1＝a, an+1＝(a·an)mod m｝ , 

“simplest｛a1＝a, an+1＝(a·an)mod m｝” for short. 

    Below are all of the simplest sequences of numbers of the order-existing sequences of numbers module 11. 

Simplest ｛a1＝1, an+1＝(an)mod 11｝： 1. 

Simplest ｛a1＝2, an+1＝(2an)mod 11｝：2,4, 8,5, 10,9,7, 3,6, 1.（The second sequence of numbers）     

Simplest ｛a1＝3, an+1＝(3an)mod 11｝：3, 9, 5, 4, 1.                     

Simplest ｛b1＝4, bn+1＝(4bn)mod 11｝：4, 5, 9, 3, 1.        （The fourth sequence of numbers）          

Simplest ｛a1＝5, an+1＝(5an)mod 11｝：5, 3, 4, 9, 1. 

Simplest ｛a1＝6, an+1＝(6an)mod 11｝：6,3, 7,9, 10, 5,8, 4,2, 1. 

Simplest ｛a1＝7, an+1＝(7an)mod 11｝：7,5, 2,3, 10, 4,6, 9,8, 1. 

Simplest ｛a1＝8, an+1＝(8an)mod 11｝：8,9, 6,4, 10,3,2, 5,7, 1. 

Simplest ｛a1＝9, an+1＝(9an)mod 11｝：9,4, 3,5, 1. 

Simplest ｛a1＝10, an+1＝(10an)mod 11｝：10, 1. 

From the above simplest sequences of numbers we can observe the following results. 

(1). Every order-existing residue a modulo m necessarily corresponds to a simplest ｛a1＝a, an+1＝(a·an)mod m｝. 

(2). Every simplest ｛a1＝a, an+1＝(a·an)mod m｝ ends with “1”. 

Conclusion 18. The number of terms in simplest ｛a1＝a, an+1＝(a·an)mod m｝ is δm(a). 

This is convenient for a computer to find order. 

Theorem 10. The relationship between ｛a1＝a, an+1＝(a·an)mod m｝ and ｛b1＝ak, bn+1＝(ak·bn)mod m｝ is ：

bn＝akn. 

Proof:  from Theorem 9 and the supposition we know that, ak＝(a
k
)mod m，bn＝(ak

n
)mod m. 

Substituting ak＝(a
k
)mod m into bn＝(ak

n
)mod m, we obtain, 

bn＝(((a
k
)mod m)

n
)mod m＝((a

kn
)mod m))mod m＝(a

kn
)mod m＝akn. (The transformation of this formula please refer to 

Property 3)    Q.E.D. 

Please see the second and the fourth sequences of numbers above. 

It is not hard to see that, 1
st
, 2

nd
, 3

rd
, 4

th
, 5

th
 terms in the fourth sequence of numbers are 2

nd
, 4

th
, 6

th
, 8

th
, 10

th
 

terms in the second sequence of numbers respectively. The reason is that, the first term b1 in the fourth sequence 

of numbers is “b1＝a2”. Here, “2” is k in Theorem 10. Thus, the number of terms δ11(4) in the fourth sequence 

of numbers is only half the number of terms δ11(2) in the second sequence of numbers. That is, δ11(4)= 

δ11(2)/2=10/2=5. 

We know that, δm(a
k
)＝δm(a)/( δm(a) , k). From Theorem 9 we know that, in｛a1＝a, an+1＝(a·an)mod m｝ there is ak

≡a
k
(mod m). Therefore, δm(ak)＝δm(a

k
). Thus, we have, 

Corollary 7. The order δm(ak) of the term ak modulo m in order-existing sequence of numbers ｛a1＝a, an+1＝
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(a·an)mod m｝satisfy I. δm(ak)＝δm(a)/( δm(a), k). II. δm(ak)|δm(a); III. In simplest ｛a1＝a, an+1＝(a·an)mod m｝ there 

are ϕ (δm(ak)) terms whose orders modulo m equal δm(ak); IV. If k＝δm(a)/d(1＜d＜δm(a)) then δm(ak)＝d. 

From Theorem 10 we can also prove Corollary 7. 

Of δm(ak)＝δm(a)/( δm(a), k) and δm(a
k
)＝δm(a)/( δm(a) , k), although they are similar and equivalent, their 

functions are quite different. 

Now, we use ｛a1＝7, an+1＝(7an)mod 15｝ as an example to show the difference between δm(ak) and δm(a
k
). 

Because simplest｛a1＝7, an+1＝(7an)mod 15｝：7,4, 13,1 has 4 terms, δ15(7) =4（i.e., “δm(a) =4”）. 

From δm(ak)＝δm(a)/( δm(a), k) we know that,  

δ15(a1) =δ15(7)/( δ15(7)，1) =4.（δ15(a1) i.e., δ15(7)） 

δ15(a2) =δ15(7)/( δ15(7)，2) =2.（δ15(a2) i.e., δ15(4)） 

δ15(a3) =δ15(7)/( δ15(7)，3) =4.（δ15(a3) i.e., δ15(13)） 

δ15(a4) =δ15(7)/( δ15(7)，4) =1.（δ15(a4) i.e., δ15(1)）. 

That is to say, Corollary 7 tells us that, once we find simplest ｛a1＝a, an+1＝(a·an)mod m｝，we can obtain the 

order modulo m of any term in the sequence of numbers in question. Obviously, δm(a
k
)＝δm(a)/( δm(a) , k) does 

not have the function. 

This fact tells us that, even if the result obtained from the perspective of the equiratio residual sequence of 

numbers is equivalent to one obtained from number theory, their functions are different. The examples of 

solving higher order congruent equations and exponential congruent equations given later can expound this 

point further.  

Besides, from δm(ak)＝δm(a)/( δm(a), k) we also know that, the orders modulo m of various terms in 

order-existing residual sequence of numbers ｛a1＝a, an+1＝(a·an)mod m｝ are all less than or equal to δm(a), 

which lay a foundation for the computer algorithm of finding the primitive root.  

Now, we discus the computer algorithm for finding the primitive root.（Those readers who do not care the 

primitive root can skip the following part confined by “〖〗”） 

〖Please see sequence of numbers Q： 1, 2, 3, 4, 5, 6, 0, 8, 9, 10, 11, 12, 13, 0,15,16, 17, 18, 19, 20, 0, 22, 23, 

24, 25, 26,27,0,29, 30, 31, 32, 33,34, 0, 36, 37, 38, 39, 40, 41, 0, 43, 44, 45, 46, 47, 48, 0. 

Sequence of numbers Q has 49 terms, in which the term values of the non-zero terms are the same as their 

position values, i.e., qn＝n. For example, q1＝1, q10＝10 etc.. At the same time, these non-zero terms are just all 

order-existing residues of 49.  

It is impossible for 1 to be a primitive root of 49, therefore, 2 is the minimal number that is possibly a primitive 

root of 49. 

Find the simplest sequence of numbers of 2, i.e., find simplest ｛a1＝2, an+1＝(2an)mod 49｝： 

2,4,8,16,32,15,30,11,22,44,39,29,9,18,36,23,46,43,37,25,1. 

Because the number of terms in the sequence of numbers in question is δ49(2)=21＜φ(49), 2 is not a primitive 

root of 49. meanwhile, from Corollary 7 we know that, none of the 21 numbers: 

2,4,8,16,32,15,30,11,22,44,39,29,9,18,36,23,46,43,37,25,1 is a primitive root of 49.  

We set the terms in sequence of numbers Q whose position values are: 

2,4,8,16,32,15,30,11,22,44,39,29,9,18,36,23,46,43,37,25,1 to 0,  obtaining  sequence of numbers T： 

0, 0, 3,0, 5, 6, 0, 0, 0, 10, 0, 12, 13, 0,0,0, 17, 0, 19, 20, 0, 0, 0, 24, 0, 26, 

27,0,0, 0, 31, 0, 33,34, 0, 0, 0, 38, 0, 40, 41, 0, 0, 0, 45, 0, 47, 48, 0. 

Then, we find the simplest sequence of numbers of the first non-zero term (That is 3) in sequence of numbers T, 

i.e., simplest ｛a1＝3, an+1＝(3an)mod 49｝： 

          3,9,27,32,47,43,31,44,34,4,12,36,10,30,41,25,26,29,38,16,48， 

46,40,22,17,2,6,18,5,15,45,37,13,39,19,8,24,23,20,11,33,1. 

The number of terms in the sequence of numbers in question is δ49(3)=42=φ(49). Therefore, 3 is a primitive 

root of 49, i.e., we have found a primitive root of 49. Termination.  

We know that, k satisfying (k,φ(49) )=1 are k=1,5,11,13,17,19,23,25,29,31,41. Thus, from Corollary 7 we know 

that, the first, the 5
th

 , the 11
th

 , the 13
th

 , the 17
th

 , the  19
th

 , the 23
th

 , the 25
th

 , the 29
th

 , the 31
th

 , the  37
th

 , the 

41
th

  terms in simplest ｛a1＝3, an+1＝(3an)mod 49｝ are all  primitive roots of 49.  The first, the 5
th

 , the 11
th

 , 

the 13
th

 , the 17
th

 , the  19
th

 , the 23th , the 25
th

 , the 29
th

 , the 31
th

 , the  37
th

 , the 41
th

  terms in the sequence 

of numbers in question are 3,47,12,10,26,38,40,17,5,45,24,33. Therefore, the 12 numbers: 

3,47,12,10,26,38,40,17,5,45,24,33 are all primitive roots of 49 (The readers can verify themselves). 

Thus we see that, if we have found simplest ｛a1＝3, an+1＝(3an)mod 49｝ then we have found all of the primitive 

roots of 49.  

When we view sequence of numbers Q as an one dimensional array, the process of changing sequence of 

numbers Q to sequence of numbers T is one that set array Q’s terms qk＝0 (k adopts  the term values of 
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simplest ｛a1＝2, an+1＝(2an)mod 49｝ successively.) This process is one that deletes part of non-primitive roots in 

array Q. We call it the process of deleting the non-primitive roots. 

If 3 was not a primitive root of 49 then we would perform the process of deleting the non-primitive root again, 

i.e., we would set array Q’s terms qk＝0 again (At this time, k would adopt the term values of simplest ｛a1＝3, 

an+1＝(3an)mod 49｝ successively). Obviously,  the non-zero non-primitive root terms in array Q will be reduced 

further, i.e., the probability of the first non-zero term in array Q being a primitive root will be increased. 

According to this method, we can necessarily find a primitive root modulo m that has primitive roots. (Note: “if 

3 was not a primitive root of 49” is counterfactual, we only use it as an “explanation”, we can not use it to make 

inference further) 

Besides, we know that, 3 is the minimal primitive root of 49. That is to say, the primitive root directly obtained 

by the above method is the minimal primitive root of 49. Now, we give the general algorithm of finding 

primitive roots modulo m (Here, we tacitly consent that m has primitive roots). 

Algorithm for finding the minimal primitive root: 

Step 1. Initialization. If m is an odd number, then let a=2， otherwise let a=3. And let the one dimensional array 

Q(m) satisfy ： If (k, m)=1（1≢k≢m） then let qk= k， otherwise let qk=0. 

Step 2. Finding simplest ｛a1＝a, an+1＝(aan)mod m｝. If a is a primitive root modulo m then terminate, otherwise 

go to Step 3. 

Step 3. Performing the process of deleting the non-primitive roots. Let a equals the first non-zero term in Q(m), 

and go to Step 2. 

Now, we use the algorithm for finding the minimal primitive root to find the primitive roots of 22. 

Because 22 is an odd number, according to Step 1, let a=3. And let the 22 terms in the one dimensional array 

Q(22) be ：1,0,3,0,5,0,7,0,9,0,11,0,13,0,15,0,17,0,19,0,21,0, respectively. 

According to Step 2,we find simplest ｛a1＝a, an+1＝(aan)mod m｝. Now, it is ｛a1＝3, an+1＝(3an)mod 17｝：

3,9,5,15,1. δ22(3)=5＜φ(22)=10，thus we know that 3 is not a primitive root of 22. 
According to the algorithm, go to Step 3. We perform the process of deleting the non-primitive roots, change the 

3
rd

, 9
th

, 5
th

, 15
th

, 1
st
 terms in array Q to 0. Thus, the terms in Q are ：

0,0,0,0,0,0,7,0,0,0,11,0,13,0,0,0,17,0,19,0,21,0 respectively. The first non-zero term is the 7
th

 term 7. Let a=7. 

According to the algorithm, go to Step 2. We find simplest ｛a1＝a, an+1＝(aan)mod m｝. Now, it is｛a1＝7, an+1

＝(7an)mod 22｝：7,5,13,3,21,15,17,9,19,1. δ22(7) =10=φ(22)， thus, we know that 7 is the minimal primitive root 

of 22, terminate.  

Besides, 1,3,7,9 are mutually prime with φ(22) =10, therefore, 1
st
, 3

rd
, 7

th
, 9

th
 terms in simplest ｛a1＝7, an+1＝

(7an)mod 22｝, that is, 7,13,17,19 are all primitive roots of 22. 

Since the computational complexity of the algorithm for finding minimal primitive roots is extremely low and 

its convergence is better than the sift method for finding the prime numbers, it is an extremely practical 

computer algorithm. At the same time, if we make proper improvements to it, then it can become a decision 

algorithm deciding whether m has a primitive root or not, and  become an algorithm for computing the 

primitive roots of m.〗 

Now, we discuss the relationship of the positions between ak and its inverse ak
-1

 modulo m in simplest ｛a1＝a, 

an+1＝(a·an)mod m｝. 

Simplest ｛a1＝2, an+1＝(2an)mod 11｝：2,4, 8,5, 10,9,7, 3,6, 1 has 10 terms.  Its 1
st
  term 2 and the 9

th
 （9=10

–1） term 6 has the relationship 2×6≡1(mod 11); its 2
nd

 term 4 and the 8
th

 （8=10–2） 3 has the 

relationship4×3≡1(mod 11); „ ; its 5
th

 term 10 and the 5
th

 （5=10–5） term 10 has the relationship 

10×10≡1(mod 11). Thus, we can obtain the following result.： 

When any order-existing residue of modulo m occurs in order-existing residual sequence of numbers ｛a1＝a, 

an+1＝(a·an)mod m｝, the inverse of the order-existing residue in question necessarily occurs in the sequence of 

numbers in question.  

Any term in order-existing residual sequence of numbers ｛a1＝a, an+1＝(a·an)mod m｝ is mutually prime with 

modulo m, therefore, any term in the sequence of numbers in question has an inverse. And, we have, 

Theorem 11. Suppose ak
-1

 (＜m) is the inverse of terms ak in order-existing residual sequence of numbers ｛a1

＝a, an+1＝(a·an)mod m｝ to modulo m. Then, ak
-1

=ai，i= nδm(a)－k. Or, (a
k
)
 -1

≡a
nδm(a)–k 

(mod m). 

Proof: For k given by the Theorem, there necessarily exist positive integers i，n such that i=nδm(a)–k. Thus, 

k+i=nδm(a). 

From ak＝(a
k
)mod m≡a

k
 (mod m) and ai＝(a

i
)mod m≡a

i
 (mod m) we can obtain, akai≡a

k+i
≡a

nδm(a)
≡1 (mod m). 

From akai≡1 (mod m) we know, ak
-1

≡ai (mod m). From ak
-1＜m and ai＜m we know that, ak

-1
=ai. 

Or, from a
k+i

≡1 (mod m) we obtain, (a
k
)

 -1
≡a

i
≡a

nδm(a)–k 
(mod m).   Q.E.D. 
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From the proof of Theorem 11 we know that, 

Corollary 8. Suppose the inverse of a
k
 to modulo m is (a

k
)

 -1
. Then, there necessarily exists positive integer i 

such that (a
k
)

 -1
≡a

i 
(mod m). 

As a special case of Theorem 11： Let k=1，n=1， from ak
-1

=ai，i= nδm(a)－k we obtain, a
-1

=aδm(a)－1. Since aδm(a)

－1 is the second from the right term in simplest ｛a1＝a, an+1＝(a·an)mod m｝, we have, 

Conclusion 19.  a
-1

 is the second from the right term in simplest｛a1＝a, an+1＝(a·an)mod m｝. 

Conclusion 19 is convenient for finding a
-1 

by a computer.  

Both finding a
-1

 and finding δm(a) need to find simplest ｛a1＝a, an+1＝(a·an)mod m｝. The difference is that, the 

former needs to find the second from the right term in the sequence of numbers in question, while the latter 

needs to find the number of terms in the sequence of numbers in question. 

Now, we use equiratio residual sequence of numbers to solve the higher order congruent equations. 

Please see the following 6×6 matrix. 

2  4  8  7  5  1 

4  7  1  4  7  1 

8  1  8  1  8  1 

7  4  1  7  4  1 

5  7  8  4  2  1 

1  1  1  1  1  1 

The first to the 6
th

 rows of the matrix are the first 6 terms of ：｛a1＝2, an+1＝(2an)mod 9｝，｛a1＝4, an+1＝(4an)mod 

9｝，｛a1＝8, an+1＝(8an)mod 9｝，｛a1＝7, an+1＝(7an)mod 9｝，｛a1＝5, an+1＝(5an)mod 9｝，｛a1＝1, an+1＝(an)mod 

9｝ respectively. The first column gives a mutually prime residual system modulo 9, i.e., the first column is a 

degree 1 order-existing residue of x modulo 9; the second column is a degree 2 order-existing residue of x 

modulo 9; „; the 6
th

 column is a degree 6 order-existing residue of x modulo 9. We call the above matrix as a 

matrix of order-existing residue modulo 9. 
Using the matrix of order-existing residue modulo 9 we can find mutually prime solutions (i.e., solutions of (x,9)

＝1) of the following congruent equation: 

x
43

+2x
38

+3x
33

+4x
28－x

13
+x

12
+x+6≡0 (mod 9)                   (11) 

φ(9)＝6，x
6n

≡1(mod 9)，therefore, x
43

≡x (mod 9)，x
38

≡x
2
 (mod 9)，„，x

12
≡1 (mod 9). 

That is, the congruent equation (5) is equivalent to  
x

 
+2x

2
+3x

3
+4x

4
+7≡0  (mod 9)                      (12) 

x≡(x)mod 9(mod 9),x
2
≡(x

2
)mod 9(mod 9),x

3
≡(x

3
)mod 9(mod 9),x

4
≡(x

4
)mod 9(mod 9)， therefore,  

x
 
+2x

2
+3x

3
+4x

4
+7≡(x)mod 9+2(x

2
)mod 9+3(x

3
)mod 9+4(x

4
)mod 9+7 (mod 9) 

Also because the first row of the matrix is the first 6 terms of ｛a1＝2, an+1＝(2an)mod 9｝, the 1
st
, 2

nd
, 3

rd
 , 4

th
 

terms of the first row are : (2)mod 9,(2
2
)mod 9,(2

3
)mod 9, (2

3
)mod 9, i.e., 2,4,8,7. At this time, when we let x=2（i.e., the 

first term of the first row）， (x)mod 9＝2, (x
2
)mod 9＝4, (x

3
)mod 9＝8, (x

4
)mod 9＝7. Thus, 

(x) mod 9+2(x
2
) mod 9+3(x

3
) mod 9+4(x

4
) mod 9+7=2

 
+2×4+3×8+4×7+7=69. 

From this we know that, when x=2, x
 
+2x

2
+3x

3
+4x

4
+7≡69(mod 9). 

From 69≡/ 0 (mod 9) we know that, x≡2 (mod 9) is not a solution of congruent equation (12). 

From the 1
st
, 2

nd
, 3

rd
, 4

th 
terms of the second row of the matrix we can obtain, 

4
 
+2×7+3×1+4×4+7＝54≡0 (mod 9) 

From this we know that, x≡4 (mod 9) is a solution of congruent equation (12). 

From the 1
st
, 2

nd
, 3

rd, 4th 
terms of the third row of the matrix we can obtain, 

8
 
+2×1+3×8+4×1+7＝45≡0  (mod 9)  

From this we know that, x≡8 (mod 9) is a solution of congruent equation (12). 

Similar to the above method, we know that, x≡1,5,7 (mod 9) are not solutions of congruent equation (6). 

Therefore, the mutually prime solutions of congruent equation (12) are ：x≡4,8 (mod 9). 

Because the mutually prime solutions of congruent equation (5) are the same as those of (6), the mutually prime 

solutions of congruent equation (5) are：x≡4,8 (mod 9). 

Now, we find the non-mutually prime solutions of congruent equation (11). Please see the following equiratio 

residual sequences of numbers: 

｛a1＝0, an+1＝(0an)mod 9｝：0,0, 0,„. 

｛a1＝3, an+1＝(3an)mod 9｝：3,0, 0,„. 

｛a1＝6, an+1＝(6an)mod 9｝：6,0, 0,„. 

Since in the minimal non-negative residual system modulo 9, the x satisfying (x, 9)＞1 can only be 0, 3, 6. From 

the above 3 sequences of numbers we know that, when n＞1, x
n
≡0(mod 9). Thus, congruent equation (11) has 

the same solution as x+6≡0 (mod 9). 
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Obviously, only x≡3 (mod 9) is the solution of x+6≡0 (mod 9), i.e., the non-mutually prime solution of 

congruent equation (11). Adding the above mutually prime solutions, we obtain that , the solutions of congruent 

equation (11) are x≡3,4,8 (mod 9). 

It is not hard to prove that, when m=p
 k
(p is a prime number) and (m, a)＞1， term an in ｛a1＝a, an+1＝(aan)mod 

m｝ is   an＝0(n≣k). 
According to the above method, we can find the solution of higher order congruent equation f(x)≡0 (mod p

n
). 

Furthermore, we can find the general solution of  f(x)≡0 (mod m)（m is any positive integer）. Since the 

computation of equiratio residual sequences of numbers can be performed entirely by computers, the solving of 

the higher order congruent equations can be performed entirely by computers.  

Then, we use equiratio residual sequences of numbers to solve the class of exponential congruent equations a
x
 

≡b (mod m). 

Find the solutions of ⑴4
x
≡10 (mod 13), ⑵6

x
≡48 (mod 56) ,⑶6

x
≡8 (mod 56),⑷6

x
≡28(mod 56). 

Solving ⑴： Find ｛a1＝4, an+1＝(4an)mod 13｝：4,3,12,9,10,1,4,„. The circular length of the sequence of 

numbers in question is 6. 

It is not hard to discover that, a5+6n＝(4
5+6n

)mod 13＝10(0≤n). Therefore, the solutions of 4
x
≡10 (mod 13)：x=5+6n 

or x≡5(mod 6).  

（Note： x=5+6n means that, x equals to the position value of 10 in ｛a1＝4, an+1＝(4an)mod 13｝） 

Solving ⑵⑶⑷： Find ｛a1＝6, an+1＝(6an)mod 56｝：6,36,48,8,48,8,„. The sequence of numbers in question 

is a mixed circular sequence of numbers with the circular length being 2. 

From a3+2n＝(6
3+2n

)mod 56＝48(0≢n) we know that, the solution of 6
x
≡48 (mod 56) is x=3+2n. 

From a4+2n＝(6
4+2n

)mod 56＝8(0≢n) we know that, the solution of 6
x
≡8 (mod 56) is x=4+2n. 

Since 28 does not occur in ｛a1＝6, an+1＝(6an)mod 56｝, which means that, the minimal non-negative residue of 6
x
 

to modulo 56 can not be 28. Therefore, 6
x
 ≡28(mod 56) has no solution. From this we can obtain, 

Conclusion 20.  a
x
≡b (mod m) has solutions if and only if (b)mod m is a term in ｛a1＝a, an+1＝(a·an)mod m｝and x 

equals to the position value of (b)mod m in ｛a1＝a, an+1＝(a·an)mod m｝. 

This Conclusion is an important foundation in Section 3 in the discussion of the leftward extendeness of the 

px+q sequences of numbers. 

Now, we discuss the relationship between Corollary 7 and the pseudo prime numbers. 

People usually call composite number m with a
m
≡a (mod m) or δm(a)｜m–1(1＜a＜m–1) as a pseudo prime 

number with base a , a-pseudo prime number for short. 

We know that 341 is the minimal 2-pseuso prime number. But there are many a such that 341 is the a-pseudo 

prime number. 

For example, simplest ｛a1＝2, an+1＝(2an)mod 341｝：2,4 ,8,16,32, 64,128,256,171,1. The sequence of numbers in 

question has 10 terms. Thus, δ341 (2) =10. 

Let a∈｛2,4 ,8,16,32,64,128,256,171｝，1＜a＜341–1. From II in Corollary 7 we know that, δ341 (a)｜δ341(2). 

From δ341 (2) =10 we know that, δ341 (a)｜10｜341–1. 

Therefore,  341 is a pseudo prime number with a∈｛2,4 ,8,16,32,64,128,256,171｝ as the bases.  

Another example: simplest ｛a1＝31, an+1＝(31an)mod 49｝：31,30 ,48, 18,19,1 has 6 terms.Thus, δ49(31) =6. 

Let a∈｛31,30, 18,19｝. 1＜a＜49–1. δ49(a)｜6｜49–1. 

Therefore, 49=7
2 
is a pseudo prime number with a∈｛31,30,18,19｝ as the bases. That is, there are 7-3 a such that 

7
2
 is a a-pseudo prime number.  

In order to differentiate another kind of pseudo prime number we will introduce later, we call compose number 

m with a(1＜a＜m–1) such that δm(a)｜m–1 holds as type I pseudo prime number. Obviously, when m is a 

a-pseudo prime number, m is a type I pseudo prime numbers. 

Surprisingly, almost all odd composite numbers are type I pseudo prime numbers. 

δ15(4)=δ15(11)=2｜15-1， therefore, 15 is a pseudo prime number with 4 and 11 as its bases. 15 is the minimal 

type I pseudo prime number. 

Lemma 6. Suppose g is a primitive root of odd number m. Then, in simplest ｛a1＝g, an+1＝(g·an)mod m｝, I. 

There exists and only exists aϕ(m)＝1. II. If m＞3 then there exists and only exists term aϕ(m)/2＝m–1.  

Proof:  From g being a primitive root of m we know that, the ϕ(m)＝δm(g) terms of simplest ｛a1＝g, an+1＝

(g·an)mod m｝ are a minimal non-negative mutually prime residual system of m, therefore, they are pairwise 

non-equal. And, if aϕ(m)＝1 then aϕ(m)＝1 uniquely； if aϕ(m)/2＝1 then aϕ(m)/2＝1 uniquely. 

Prove I. Simplest ｛a1＝g, an+1＝(g·an)mod m｝ has ϕ(m) terms, therefore, aϕ(m) is the last term of the sequence of 

numbers in question. 

aϕ(m)＝(g
ϕ(m)

) mod m＝1. Therefore, I holds. 
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Prove II. From m being an odd number we know that, 2｜ϕ(m). From ϕ(m)＝δm(g) we know that, 2｜δm(g). 

From odd number m＞3 we know that, ϕ(m)＞2，δm(g)＞2. 

Let c＝δm(g)/2. From 2｜δm(g) and δm(g)＞2 we know that, 1＜c＝δm(g)/2＜δm(g). 

From c＝δm(g)/2(1＜c＜δm(g)) and IV in Corollary 7 we know that, δm(ac)＝2. 

From the definition of order we know that, (ac)
2
≡1 (mod m). 

When m has a primitive root, congruent equation x
 2
≡1 (mod m) only has solution x≡±1(mod m). 

From (ac)
2
≡1 (mod m) we know that, ac≡±1(mod m). 

From ac≡±1(mod m) and ac being a term in simplest ｛a1＝g, an+1＝(g·an)mod m｝we know that, ac＝1 or ac＝m-1. 

However, if ac＝1 then δm(ac)＝1. Therefore, from δm(ac)＝2 we know that, ac＝m–1.    

From ϕ(m)＝δm(g) and c＝δm(g)/2 we know that, aϕ(m)/2＝m–1.    Q.E.D. 

Theorem 12. Suppose m＝p
k
(p is a prime number,1＜k). Then , I. If δm(a)｜p–1 then δm(a)＜m

1/2
. II. There 

necessarily exists δm(b) |/ m–1. III. If 3＜p then there necessarily exists a  such that m is a a-pseudo prime 

number (i.e., m is a type I pseudo prime number). 

Proof: Prove I. From δm(a)｜p–1 we know that, δm(a)＜p. From m＝p
k
(1＜k) we know that, p≢m

1/2
.  

From δm(a)＜p and p≢m
1/2

 we know that, δm(a)＜m
1/2

. Hence I holds. 

Prove II. Suppose g is a primitive root of m. Thus, δm(g)=ϕ(m)＝ϕ(p
k
)＝(p–1)p

k-1
. 1＜p

k-1＜δm(g). 

Let c＝p–1. From δm(g)＝(p–1)p
k-1

 we know that, c＝δm(g)/ p
k-1

. 

From c＝δm(g)/ p
k-1

(1＜p
k-1＜δm(g)) and IV in Corollary 7 we know that, δm(ac)＝p

k-1
. 

Let b=ac, δm(b)＝p
k-1

. From 1＜k we know that, p
k-1

 |/ p
k–1＝m–1, i.e., δm(b) |/ m–1. Hence II holds.      

Prove III. From δm(g)＝(p–1)p
k-1

 we know that,  there necessarily exists s＝δm(g)/(p–1 )，1＜s＜δm(g). 

From s＝δm(g)/(p–1 ) (1＜s＜δm(g)) and IV in Corollary 7 we know that, δm(as)= p–1. 

From m–1＝p
k–1＝(p–1) (p

k-1+p
k-2+„+1) we know that,  

δm(as)｜m–1               (13) 

From δm(g)=ϕ(m) and s=δm(g)/ (p–1 ) we know that, s≠ϕ(m). From I in Lemma 6 we know that, as≠1. 

From 3＜p and s=δm(g)/ (p–1 ) we know that, s≠ϕ(m)/2. From II in Lemma 6 we know that, as≠m–1. 

Because 1 and m–1 are the minimal term and the maximal terms of the minimal non-negative mutually prime 

residual system of m (Simplest ｛a1＝g, an+1＝(g·an)mod m｝) respectively, from as≠1 and as≠m–1 we know 

that,  

1＜as＜m–1               (14) 

Let a=as. From formulae (13) and (14) we know that, m is a a-pseudo prime number. That is, III holds.                    

Q.E.D. 

From the proof of Theorem 12 we know that,  

Corollary 9. If m＝p
k
(3＜p is a prime number, 1＜k) then there are p-3 a’s such that δm(a)｜m-1(1＜a＜m-1). 

Theorem 13. Suppose m =m1m2，(m1，m2)＝1. Then when m1y≡–2 (mod m2), x
2
≡1 (mod m) has solution x 

≡±(m1y+1) (mod m). Or, when m1y≡2 (mod m2), x
2
≡1 (mod m) has solution x ≡±(m1y-1) (mod m). 

Proof: First, we prove that when x ≡±(m1y+1) (mod m) and m1y≡–2 (mod m2)，then x
2
≡1 (mod m). 

From x ≡±(m1y+1) (mod m) we know that, x
2
≡(m1y+1)

2
 (mod m). 

x
2
–1≡(m1y+1)

2
–1 (mod m)                   (15) 

From m1y≡–2 (mod m2) we know that, m1y+1≡–1 (mod m2). And there necessarily exists integer q such that 

m1y+1 = qm2–1. 

Thus, (m1y+1)
2
–1=( qm2–1)

2
–1= qm2 (qm2–2), from which we know that, m2｜(m1y+1)

2
–1. 

Besides, ( m1y+1)
2
–1= m1y ( m1y +2), from which we know that, m1｜( m1y+1)

2
–1.

                                      
 

From m1｜( m1y+1)
2
–1 and m2｜( m1y+1)

2
–1 we know that, [m1, m2]｜( m1y+1)

2
–1.  

From (m1，m2)＝1 we know that, [m1, m2]=m1m2=m. Thus, m｜( m1y+1)
2
–1， 

( m1y+1)
2
–1≡0 (mod m)              (16) 

From formulae (15) and (16) we know that,x
2
–1≡0 (mod m)，x

2
≡1 (mod m). 

Likewise, we can prove that, when x ≡±(m1y-1) (mod m) and m1y≡2 (mod m2)，x
2
≡1 (mod m). Q.E.D. 

Now, we solve x
2
≡1 (mod m). 

I . Decompose modulo m into m1 and m2，such that (m1, m2)=1. 

I I.. Solve degree 1 congruent equation m1y≡-2 (mod m2)（or m1y≡2 (mod m2) ) regarding y.                

I I I . Let y =(y)mod m2
.
 Finding m1y+1（or m1y-1）, we obtain x≡±(m1y+1) (mod m)（or x≡±(m1y-1) (mod m) ). 

Example 4. Solve x
2
≡1 (mod 105). 

Solution.  At this time m=105, which can be decomposed into ：3×35，5×21，7×15（satisfying “(m1, 

m2)=1”）. 
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Let m1=35，m2=3. From “m1y≡2 (mod m2)” we obtain,   

                             35y≡2 (mod 3) 

                              y ≡1 (mod 3)   

Let y=1. From “m1y-1” we obtain, 35×1-1=34. Thus, x
2
≡1 (mod 105) has solution x≡±34 (mod 105). 

  (Note: If we let m1=3，m2=35， the result is the same.)  

Let m1=21，m2=5. From “m1y≡2 (mod m2)” we obtain,   

21y ≡2 (mod 5)  

y ≡2 (mod 4) 

Let y=2. From “m1y-1” we obtain, 21×2-1=41. Thus, x
2
≡1 (mod 105) has solution x≡±41 (mod 105).    

Likewise, let m1=15，m2=7 we can obtain, x≡±29 (mod 105).  

x
2
≡1 (mod 105) has 2

3
=8 solutions in total, i.e., x≡±1，±34，±41，±29 (mod 105). 

Obviously, when we let x≡±34，±41，±29 (mod 105), δ105(x)=2｜105–1. 

Therefore, 105 is a pseudo prime number with 34,71,41,64,29,76 as its bases. （Note: 71=105-34. 64 and 76 are 

the same）. 

It is not hard to discover that, when m＝p1
a1„p1

an
，p1,„,pn (n＞1) are distinct odd prime numbers, there are 2

n-1
 

distinct (x)mod m (2＜(x)mod m＜m-1) such that x
2
≡1 (mod m) holds. (Note: Here, m＞3. Therefore,  (x)mod m=2 

can not be a solution of x
2
≡1 (mod m)) 

Conclusion 21. Suppose m＝p1
a1„p1

an
，p1,„,pn (n＞1) are distinct odd prime numbers. Then,there exist at least 

2
n
-2 distinct a such that m is an a-pseudo prime number (i.e., m is a type I pseudo prime number). 

From Theorem 12 and III in Conclusion 21 we can obtain, 

The sufficient condition for type I pseudo prime numbers: Suppose odd number m＞p(p is a prime number 

greater than 3). If p｜m then m is a type I pseudo prime number. That is to say, all odd composite numbers are 

type I pseudo prime numbers except for 3
k
(1＜k). 

Now, we give the sufficient and necessary condition for prime numbers. 

Because, when odd number m＝p
k
(p is a prime number，1＜k)， from II in Theorem 12 we know that, there 

necessarily exists δm(a) |/ m-1. 

Besides, when m＝p1
a1„p1

an
，p1,„,pn (n＞1) are distinct odd prime numbers, there necessarily exists l＜a＜m-1 

such that δm(a)=2. 

For odd composite numbers only the above tow cases hold. Thus, we have, 

Sufficient and necessary condition for prime numbers. The sufficient and necessary condition for odd 

number m being a prime number is, for any δm(a) we have δm(a)｜m-1， and, if  l＜a＜m-1 then δm(a)≠2. 

Definition for type II pseudo prime numbers. 

Suppose 2｜δm(p)（p is a prime number）. We call the odd composite number m with δm(p)｜m-1，p
δm(p)/2

≡-1 

(mod m) as type II pseudo prime number with p as the base, p-II type pseudo prime number for short. 

Through verification, almost no 2-pseudo prime number the authors encounter is a 2-II type pseudo prime 

number except 2
2

5

+1. But facts show that there are probably infinitely many p-II type pseudo prime numbers.  

Definition 22. Suppose there are 2k terms in simplest ｛a1＝a, an+1＝(a·an)mod m｝, we call the kth term ak as the 

middle term of the sequence of numbers in question. 

Now, we show some examples to expound the function of the middle terms to the factorization of the big 

numbers. 

For example, the middle term a6 in simplest｛a1＝2, an+1＝(2an)mod 45｝：2,4 ,8,16,32, 19,38,31,17,34,23,1 is a6

＝19. 

(19-1, 45) = (18,45) =9，there is 9｜45. At the same time, (19+1, 45) = (20, 45) =5｜45. 

Obviously, there is 45 =9×5. 

Another example, the middle term a14 in simplest ｛ a1 ＝ 2, an+1 ＝ (2an)mod 645 ｝ ： 2,4 ,8,16,32, 

64,128,256,512,379,113,226,452,259, 

518,391,137,274,548,451,257,514,383,121,242,484,323,1 is a14＝259. 

(259-1,645) = (258,645) =3×43=129｜645。(259+1,645) = (260,645) =5｜645. 

Obviously, there is 645=129×5. 

When simplest ｛a1＝a, an+1＝(a·an)mod m｝ has middle term ak, from Definition 22 we know that, δm(a)=2k. 

From I in Corollary 7 we know that, δm(ak)=2. Therefore, ak
2≡1(mod m). From Theorem 13 and Example 4 we 

know that, 

Conclusion 22. Suppose ak(1＜ak＜m-1) is the middle term of simplest ｛a1＝a, an+1＝(a·an)mod m｝. Then there 

necessarily  
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1＜m1=(ak-1, m) and 1＜m2=(ak+1, m) such that m=m1m2，(m1，m2)＝1. 

 

Note 2. The principle of Supposition  

Here we give an important logical principle that must be abode by in mathematical proofs. 

The principle of supposition: If the proposition A is necessarily true, then we cannot suppose it is false; if the 

proposition A is necessarily false, then we cannot suppose it is true. 

When the proposition A being true (false) is proved logically (or by a fact), then we say that A is necessarily true 

(false), we also say that A is a conclusion or a theorem. The difference between a proposition and a conclusion 

lies in that, the former is a judgement whose truth value is unknown, while the latter is a judgement whose truth 

value is known. Therefore, to the former we can suppose it being true, we can also suppose it being false, while 

to the latter we cannot make the opposite supposition. (In fact, this is an alternative expression of the principle 

of supposition)  

(Note: Because there is a fundamental difference between a proposition and a conclusion, their expressions 

should be different. For example, proposition I “6 can be divided by 3 exactly” corresponds to conclusion I “that 

6 can be divided by 3 exactly is true”; proposition II “5 can be divided by 3 exactly” corresponds to conclusion 

II “that 5 can be divided by 3 exactly is false”. But people are accustomed to omit “is true” and “is false”. They 

usually express conclusion I as “6 can be divided by 3 exactly”, express conclusion II as “5 cannot be divided by 

3 exactly”. Although these omissions usually do not result in misunderstanding, but we must not confuse the 

propositions with the conclusions.) 

The correctness of the principle of suppositions is self-evident. For example, in the axiomatic system of number 

theory, we cannot suppose “3+2–5=1” or “3+2–5≠0”. If we made such suppositions, we would obtain 0=1，0=n

和 0≠0，n≠n etc., so as to cause an unbearable chaos in the axiomatic system of number theory. Likewise, in the 

axiomatic system of Euclidean geometry we cannot suppose the sum of the three internal angles of a triangle not 

to equal to 180°， while in the axiomatic system of non-Euclidean geometry we cannot suppose the sum of the 

three internal angles of a triangle to equal to 180° etc.  

    Because there is no evidence showing that any px+q sequence of numbers has no equal terms, the condition 

“if ai＝ai+k” in Lemma 4 does not violate the principle of supposition. 

 

Note 3 Discussion on “list equation to solve application problems” 

To answer the question that formula (10) has many characteristic solutions while Result 2 still holds, we need to 

answer the question why we can solve application problems by listing equations. 

Let us investigate the contents of “ list equations to solve the application problems” in middle school 

mathematics textbook. The application problems in middle school mathematics textbook have a common feature: 

for a given problem, one or more equations can always be listed corresponding to it. Therefore, the problem is 

called the listable equation problem. 

When we list an equation corresponding to an application problem (or a listable equation problem), we face two 

objects. One is the application problem given (called the original problem), the other is the equation listed. Thus, 

two questions arise: 1. Why can the solution of the original problem be obtained by solving the equation listed? 

2. Which solutions of the equation listed are the solutions of the original problem? In order to answer these 

questions, let us look at an example first. 

    Problem 1: The sum of the square of an integer and a positive integer equals 3, find out the two numbers. 

Solution: Suppose the integer is x, the positive integer is y. According to the problem we can list 

                   x
2
+y=3                            (17) 

Here, Problem 1 is the original problem, equation (17) is the equation listed. At first glance, they are quite 

different. Yet, they refer to the same thing. Because x is supposed to be the integer, x
2
 can be read as “the square 

of the integer”. Likewise, y can be read as “the positive integer”. Thus, equation (17) can be read as “the sum of 

the square of the integer and the positive integer equals 3”. Hence we see that the original problem and the 

equation listed refer to the same thing, i.e., the equation listed is a re-description of the original problem. Thus 

we say that, the original problem and the equation listed are “identical” and call this fact “the principle of 

identity”. The principle of identity tells us that, the finding of the solution of the original problem can be 

realized by finding the solution of the equation listed. This is the fundamental reason for “list equation to solve 

the application problems” being a classical mathematical method. . 

Besides, from the angle of the equation listed, x and y in (17) can be any real number or complex number. But, 

in order for equation (17) and Problem 1 to refer to the same thing, x must be an integer, y must be a positive 

integer. Here, x and y are variables. The conditions set to variables x and y are called constraints. Precisely 

speaking, only all of the variables satisfy the constraints can the equation listed and the original problem refer to 

the same thing. Since in this case the two refer to the same thing, the solutions of the two are necessarily the 

same. The remaining thing for us to do is that we should make sure what kind of solutions are the solutions of 

the equations listed. 
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The so-called solution of an equation, formally speaking, is an assignment to its relevant variables. As to the 

equation listed, if the assignment to each variable satisfies the constraints of the variable in question, then the 

solution (called the effective solution or characteristic solution) is one whose variables of the equation listed 

satisfy the constraints. Thus, we know that all of the effective solutions of the equation listed are the solutions of 

the original problem. 

    Solving equation (17), we can obtain 3 effective solutions of the equation: 

x=1        x=0        x= –1 

y=2,        y=3，      y=2 .   

It is not hard to verify that these effective solutions are all the solutions of Problem 1. And we have, 

Result 2′. Problem 1 has solutions if and only if formula (17) has effective solutions. 

Formula (17) has many effective solutions, while Result 2′ obviously holds. This proves that Result 2 holds. In 

fact, as to Result 2′ there is the problem of “which of the above 3 effective solutions is the one needed”. Yet, this 

problem is irrelevant to whether Result 2′ holds or not. That is to say, which circular term in the 5x+1 sequences 

of numbers does x of the characteristic solutions of formula (10) belongs to is irrelevant to whether Result 2 

holds or not. 
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